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Abstract. We propose a new method of classifying vector bun-
dles on projective curves, especially singular ones, according to
their “representation type”. In particular, we prove that the clas-
sification problem of vector bundles, respectively of torsion–free
sheaves on projective curves is always either finite, or tame, or
wild. We completely classify curves which are of finite, respec-
tively tame, vector bundle type by their dual graph. Moreover,
our methods yield a geometric description of all indecomposable
vector bundles and torsion–free sheaves on finite and tame curves.

Introduction

Vector bundles over projective varieties, in particular, over projective
curves have been widely studied. Usually, the main emphasis lies in
the study of stable bundles and their moduli (cf. [33], [38], [30]). Nev-
ertheless, not too much seems to be known about the classification of
all vector bundles over some variety, which is a quite different problem.
Compared to representation theory, stable bundles play the role of irre-
ducible (simple) modules, as all other ones can be obtained from them
by extensions. In most cases the construction of such extensions is far
from being trivial or simple, even if one restricts to semi-stable bundles,
which are extensions of stable ones with fixed slope [38]. On the other
hand, the classification of vector bundles on projective curves is closely
related to the study of Cohen–Macaulay modules on surface singular-
ities, due to the work of Kahn [28]. Hence, from different points of
view, it is important to have some ideas about the complexity of these
classification problems. The most prominent results here are those of
Grothendieck [26] for the projective line and of Atiyah [2] for ellip-
tic curves. For instance, the latter result made it possible to classify
Cohen–Macaulay modules on simple elliptic surface singularities [28].

This article is devoted to the study of vector bundles over projective
curves, in particular, singular and reducible ones, from the point of
view of representation theory. Since it could be interesting for people
working in algebraic geometry as well as in representation theory, we
try to explain our results in this introduction, in an informal way, such
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that it could be understood from both sides. Moreover, we relate it to
some well known problems in both of these fields.

In several areas of representation theory, for instance, in studying
representations of finite dimensional algebras, Cohen–Macaulay mod-
ules, etc., one usually distinguishes between three main cases of the
classification problem. We propose to use analogous notions when
considering curves with respect to the classification of vector bundles.
Namely, these three cases are the following:

• finite, when indecomposable modules (respectively, vector bun-
dles) are completely defined by some discrete parameters (this
is the case for the projective line);

• tame, when indecomposable modules (respectively, vector bun-
dles) form small, usually only one-parameter, families (this is
the case for elliptic curves);

• wild, which can be defined in two ways:
– geometrically, as those having families of indecomposable

modules (respectively, vector bundles) depending on any
prescribed number of parameters;

– algebraically, as such that for any finitely generated algebra
Λ there is an exact functor from the category Λ-mod of
finite dimensional Λ-modules to the category of modules
(respectively, vector bundles) which maps indecomposable
modules to indecomposable and non-isomorphic to non-
isomorphic ones (we call such a functor a representation
embedding).

However, it is a highly non-trivial problem whether the above two
definitions of wildness are equivalent. For the cases of finite dimensional
algebras and Cohen-Macaulay modules, it only follows from the so
called tame-wild dichotomy [13, 15]. For the case of vector bundles
over reduced projective curves such an equivalence follows from the
results of this paper (cf. Remark 1.8).

When one considers vector bundles, one has to slightly modify these
notions taking into consideration the natural shifts by tensoring with
line bundles of different degrees. Moreover, if the curve is reducible,
one can make shifts on each of its components independently. The
corresponding definitions are given in Definition 1.4.

From this point of view, the projective line is finite, while a smooth
elliptic curve is tame. Note that the latter is a little different from
the tame algebras in representation theory where only rational curves
are used to parameterize indecomposable modules. Here one cannot
avoid using the curve itself as we have to parameterize, in the first
instance, the line bundles. It is not too complicated to show that all
other smooth curves are wild (algebraically, hence, geometrically), cf.
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Theorem 1.6. We suppose that it is more or less known to the experts,
although we do not know any article containing this result.1

The aim of this article is to prove the finite–tame–wild trichotomy
for vector bundles over reduced projective curves, in particular, to show
that the geometrical wildness also implies the algebraic one. Note that
sometimes one does not suppose that “tame” excludes “finite.” We
prefer to distinguish between them, following the book [20]. Moreover,
there is at least one important reason. Namely, the finite case for vector
bundles (just as for algebras and Cohen–Macaulay modules) is not only
discrete in the sense that there are finitely many indecomposables, say,
of given rank and degree. It is also bounded in the sense that all ranks
of indecomposables are smaller than a prescribed number. Taking an
example from the representation theory, one can easily see that the
quiver of type A∞

∞ , that is

. . . −→ · −→ · −→ · −→ . . . ,

is representation discrete, but not bounded. It seems reasonable to call
finite the case which is both discrete and bounded. In representation
theory of finite dimensional algebras the claim that “discrete” implies
“bounded” is known as the second Brauer-Thrall conjecture and its
proof (a complicated one) was only given in [4].

In this article we prove that the following assertions hold, with C
reduced and connected (cf. Theorem 1.6, Proposition 2.7 and Theo-
rem 2.8):

(1) A non–singular projective curve C is:
• VB–finite if and only if it is rational;
• VB–tame if and only if it is elliptic (that is, of genus 1);
• VB–wild in all other cases.

(2) Let C be a singular projective curve, C1, . . . , Cs its irreducible
components and ∆ the intersection graph (or the dual graph)
of C. Then C is:

• VB–finite if and only if all Ci are smooth, rational and ∆
is of type An (that is, a chain);

• VB–tame if and only if all Ci are smooth, rational and ∆

is of type Ãn (that is, a cycle) or C is irreducible, rational
with one simple node;

• VB–wild in all other cases.

In the wild case we construct explicitly a representation embedding
of the category Λ-mod to that of semi-stable vector bundles. This
shows that even semi-stable bundles are extremely complicated if we
do not restrict to a fixed rank but allow extensions. Certainly, it is
impossible that the image of a representation embedding belongs to

1After this article had been written, W. Scharlau informed us that he had also
proved the result for smooth curves; moreover, it is also true for any smooth variety
of dimension greater than 1, see [37].
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the category of stable bundles, as it must preserve extensions, and
extensions of stable bundles are in general not stable. On the other
hand, in the finite and tame cases we give a complete description of all
indecomposable vector bundles (Theorems 2.11 and 2.12) and illustrate
it in a geometric way. Moreover, it happens that for VB–finite and VB–
tame curves the classification of all torsion-free sheaves can also be done
within the same framework.

Of course, in the smooth case there is nothing to add here. More-
over, every coherent sheaf over a smooth curve is just a direct sum
of a vector bundle and a sky-scraper sheaf, and the indecomposable
sky-scrapers of prescribed length are parameterized by the curve it-
self. But in the singular case there is an essential difference between
the classification of vector bundles (or torsion free sheaves) and that
of all coherent sheaves. First of all, the classification of sky-scrapers
can be very complicated. It is known, for instance, that all simple
plane curve singularities are finite with respect to the classification of
torsion-free modules [24], while all of them, except of A1 , are wild
with respect to the classification of modules of finite length (i.e., sky-
scrapers) [12]. Secondly, in the singular case we always have also mixed
indecomposable sheaves, i.e., neither sky-scraper nor torsion-free, and
their description is also non-trivial. There is, however, some evidence
that for the VB–tame projective curves a complete classification can
also be done for all coherent sheaves, but we still do not have a definite
result.

Our classification of vector bundles has already been used to describe
Cohen–Macaulay modules over the so called cusp surface singularities,
as well as to find out which of the minimally elliptic surface singularities
are tame and which are wild with respect to the classification of Cohen–
Macaulay modules [18].

The methods we use are well–known in representation theory. Name-
ly, it is the techniques of matrix problems, which are used, for instance,
to prove the tame-wild dichotomy in [13, 15] or to determine the types
of some classes of classification problems. Fortunately, after eliminating
the wild cases, we come to a known matrix problem (the so called
“Gelfand problem” in the version due to Bondarenko [6]). This gives
us the possibility to obtain a complete list of indecomposable vector
bundles for the finite and tame cases.

Unfortunately, we cannot recommend any relevant textbook for this
material. The only one dealing with matrix problems is [20], but it only
considers a very special case of matrix problems which does not include
those we use here. This is why we try to give complete definitions
and include Appendix B devoted to bunches of chains in the sense
of [6]. As we only need a special case of such bunches, we restrict
Appendix B to this case, which is essentially easier than the general
one. We reformulate it in terms of bimodule categories which seems to
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be more usual than the original matrix formulation and present the list
of indecomposable objects from [6] in a form which is easier to apply
in our case. On the other hand, we use the standard textbook [27] for
the references concerning algebraic geometry. For more special results
concerning vector bundles we refer to [30, 38], although we never use
anything but some standard definitions.

The description of torsion-free sheaves in the tame singular case fits
into the framework of the so called strings and bands which is wide-
spread in representation theory (cf. [40, 7]). There is no a priori
explanation why other kinds of tame matrix problem (for instance,
more general clans [9] or bunches of semi-chains [6]) do not appear.
Such an explanation would certainly be of interest.

It is a fact that for every VB–tame curve C the dualizing sheaf [27]
coincides with the structure sheaf. Hence, Serre duality coincides with
the obvious duality given by the functor Hom( ,OC) . Moreover, it also
follows from [3] that the Auslander–Reiten translation is also trivial in
the category of vector bundles on such curves. This means that all
indecomposable vector bundles belong to the so called homogeneous
tubes in the sense of [35]. For elliptic curves the latter is also true for
all coherent sheaves. The answer for singular tame curves can only
be given from a classification of all coherent sheaves, which is not yet
known (it follows from [3] that the Auslander–Reiten translation cannot
be defined inside the category of torsion-free sheaves). Nevertheless,
from the description of torsion-free sheaves it seems plausible that the
category of all coherent sheaves in this case should look like that of
modules over the so called string algebras. Moreover, there is a special
class of string algebras which seems closely related to singular tame
curves, just in the same way as the so called canonical algebras [35] are
related to the weighted projective lines considered in [21]. We define
these algebras in Appendix A which is devoted to some other open
questions.

Let us give a short survey of the article. In Section 1 we define VB–
types of projective curves and the result for smooth curves is proved.
In Section 2 we consider singular curves, formulate the trichotomy re-
sult and give a description of torsion-free sheaves in the finite and
tame cases. The following sections present the proofs of these results.
Namely, Section 3 is devoted to matrix problems in a bimodule for-
mulation. As the bimodules arising from projective curves possess a
natural group of shifts, we introduce here shifting bimodules. Again,
shifts make it necessary to modify, in an obvious way, the notions of
finite and tame, which is also done in this section. Section 4 explains
the relations between vector bundles over singular curves and some
shifting bimodules. The latter naturally arise when one compares vec-
tor bundles on a curve and on its normalization. This procedure is
very much like the one used in the study of torsion-free modules over
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curve singularities, for instance, in [15, 16], the main difference coming
just from taking shifts into consideration. We also prove here that all
irreducible components of a singular curve which is not VB–wild are
rational. This leads to the consideration of rationally composed curves
in Section 5. They give rise to a very special class of shifting bimod-
ules. We call them special bimodules and consider them in Section
5, too. Finally, in Section 6 we establish representation types of spe-
cial bimodules and describe their indecomposable elements in the finite
and tame cases. This immediately implies the trichotomy result and
the description of vector bundles from Section 2. Appendix A presents
some related problems which we consider as interesting and important.
Appendix B is devoted to bunches of chains.

A preliminary version of this article has appeared as Preprint 99-130
of the Max–Planck–Institut für Mathematik, Bonn, 1999. The work
on this paper was also supported by the DFG-Schwerpunkt “Glob-
ale Methoden in der komplexen Geometrie,” Grant GR640/9-1, and
CRDF Grant UM2–2094. We should like to thank the Max–Planck–
Institut as well as the DFG and the CRDF for their support. Moreover,
we should like to thank the referee for several remarks which helped us
to make the presentation (hopefully) clearer.

1. VB-type of a curve. Smooth case

Here we define the notions of finite, tame and wild curves with re-
spect to the classification of vector bundles and prove the finite–tame–
wild trichotomy for smooth curves (Theorem 1.6).

Throughout this section and further on we use the following nota-
tions:

Notations 1.1. (1) C is an algebraic curve over an algebraically
closed field k , which we suppose to be reduced and connected
but usually singular and even reducible.

(2) O = OC denotes the structure sheaf of C and K denotes the
sheaf of rational functions on C (its stalk at a point x is the
full ring of quotients of Ox ).

(3) VB = VB(C) is the category of (finite dimensional) vector
bundles on C or, equivalently, that of locally free (coherent)
sheaves on C . (We identify vector bundles with the correspond-
ing locally free sheaves and in our case it is more convenient to
deal with sheaves.)

(4) Let M be a sheaf of O-modules. Call the torsion part of M ,
and denote it by t(M) , the kernel of the natural homomor-
phism M → K⊗O M . The sheaf M is said to be torsion-free
if t(M) = 0 and torsion if t(M) = M . In the following
we always identify a torsion-free sheaf M with its image in
K ⊗O M .
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Obviously, M is torsion if and only if for every point x ∈ C and for
every element t ∈ Mx there is a non-zero-divisor a ∈ Ox such that
at = 0 ; M is torsion-free if and only if, for every nonzero t ∈ Mx and
for every non-zero-divisor a ∈ Ox, at 6= 0 . It is also clear that t(M)
is the biggest torsion sub-sheaf of M , while M/ t(M) is torsion-free.

We are going to define the vector bundle type (VB-type) of a curve,
i.e., its type with respect to the classification of vector bundles on it.
We take into consideration that such a classification involves evident
discrete parameters, namely, rank and degree. However, if the curve has
several irreducible components, these parameters become more compli-
cated.

Definition 1.2. Let C be a projective curve, C = ∪t
i=1Ci its decom-

position into irreducible components, B a vector bundle over C and
Bi the restriction of B onto Ci . The vector-degree of B is defined as
the vector DegB = (d1, d2, . . . , dt) , where di = degBi (cf. [27]).

In particular, the mapping Deg defines an epimorphism Pic(C) → Zt.
For each i choose a non-singular point ci ∈ Ci and put O(d) =
O(
∑t

i=1 ci) . It gives us a section of Deg , ω : Zt → Pic(C) , such that
O(d) = ω(d) . Thus, we define Zt as a group of shifts on the category
of coherent sheaves (in particular, on that of vector bundles) by setting
M(d) = O(d)⊗OM. Considering representation types of categories of
sheaves, we should also take into account the action of this big discrete
group.

If X is an algebraic variety, there is a natural notion of a family of
vector bundles on a curve C with base X . Namely, such a family is
just a vector bundle V on X×C . For our purpose, a non-commutative
analogue of this notion is also important.

Definition 1.3. (1) Let Λ be a k-algebra (not necessarily com-
mutative). We identify Λ as well as all Λ-modules with the
corresponding constant sheaves over C . Denote by VB(C,Λ)
the category of sheaves over C which are coherent sheaves
of O ⊗ Λ-modules, locally free as O-modules and flat as Λ-
modules. The objects of this category are called families of
vector bundles over C with base Λ .

(2) Given a family M ∈ VB(C,Λ) and a finite dimensional 2 Λ-
module N , we can construct the tensor product M(N) =
M ⊗Λ N , which is locally free over O , i.e. is a vector bun-
dle over C . We say that the modules M(N) belong to the
family M .

(3) A family M ∈ VB(C,Λ) is said to be strict 3 if the following
conditions hold:

2“finite dimensional” always means finite dimensional as a vector space over k .
3This notion was first introduced in [14]; see also [15, 16].
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(a) If N is an indecomposable finite dimensional Λ-module,
then the sheaf M(N) is also indecomposable.

(b) If two finite dimensional Λ-modules N and N ′ are non-
isomorphic, then the sheaves M(N) and M(N ′) are also
non-isomorphic.

In other words, the functor N → M(N) from Λ-mod to
VB(C) is a representation embedding : it is exact, maps in-
decomposable modules to indecomposable vector bundles and
non-isomorphic to non-isomorphic ones.

For any morphism f : C ′ → C of curves and any family M ∈
VB(C,Λ) , the inverse image f ∗(M) belongs to VB(C ′,Λ) . It is also
quite obvious that if M ∈ VB(C,Λ) , then also M⊗O L ∈ VB(C,Λ)
for every invertible sheaf L on C ; in particular, M(d) ∈ VB(C,Λ)
for every vector d ∈ Zt . Moreover, if M is strict, so is M⊗O L for
each invertible sheaf L ; in particular, M(d) is strict for each d . For
every finite-dimensional Λ-module N , put M(d, N) = M(d)(N).

If Λ = k[X] for some affine variety X , then an object from VB(C,Λ)
can obviously be identified with a family of vector bundles on C with
base X . However, our construction also produces families of multi-
ple ranks that arise when one considers vector bundles M(N) with
dimkN > 1 . Note that for two different points p 6= q of X the
residue fields k(p) and k(q) are non-isomorphic as k[X ]-modules.
Hence, for a strict family M over X , the fibres over p and q , i.e.,
the vector bundles M(p) and M(q) , are also non-isomorphic (and
indecomposbale).

Definitions 1.4. (1) Call a curve C vector bundle finite or VB-
finite if there is a finite set M of indecomposable vector bundles
on C such that every indecomposable vector bundle on C is
isomorphic to B(d) for some B ∈ M and some vector d ∈ Zt.4

(2) Call a curve C VB-tame if there is a non-empty set M =
{Mi } of strict sheaves Mi ∈ VB(C,Λi) (note that the Λi may
be different for different i) satisfying the following conditions:
(a) Each Λi is a commutative finitely generated integral smooth

k-algebra of Krull dimension 1 .
(b) For each integer r and vector d , the set Mr,d is finite,

where Mr,d = {M ∈ M | rk(M) = r ,DegM = d } , where
DegM is, by definition, Deg(M/mM) for some (and,
hence, every) maximal ideal m ⊂ Λi (if M ∈ VB(C,Λi) ).

(c) For each integer r and vector d0 , all but a finite number
of locally free indecomposable sheaves on C of rank r
and vector-degree d0 are isomorphic to those of the form

4We shall see later that indeed rk(B) = 1 for every indecomposable vector bundle
on a VB-finite curve.
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Mi(d, N) , for some Mi ∈ M , d ∈ Zt and some finite
dimensional Λi-module N .

In this case call M a parametrising set for vector bundles over
C . Denote by ν(r) the minimal number of sheaves in Mr,d ,
where M runs through all such parametrising sets and d runs
through Zt, and call it the growth function. Then a VB-tame
curve C is said to be:

• bounded if there is an integer m such that ν(r) ≤ m for
all ranks r ;

• unbounded otherwise.
(As we have already mentioned, for representations of finite di-
mensional algebras, as well as for Cohen–Macaulay modules
over curve singularities, only coordinate algebras of rational
curves have occurred in the tame case. Studying vector bundles
we cannot avoid, for instance, the curve C itself as it gives rise
to families of line bundles. Therefore, in (2 a) we only require
that Λi is of dimension 1.)

(3) Call a curve C VB-wild if, for every finitely generated k-algebra
Λ , there is a strict sheaf M ∈ VB(C,Λ) .
Hence, for wild curves, the classification of vector bundles is at
least as complicated as the classification of the representations
of all finitely generated k-algebras, which justifies the name
“wild.”

Indeed, to prove wildness it is sufficient to check one typical algebra,
as the following result shows.

Proposition 1.5. A curve C is VB-wild if there is a strict sheaf M ∈
VB(C,Γ), where Γ is one of the following algebras:

• F = k〈 z1, z2 〉, the free algebra in two generators (this is one
way to define wildness, cf. [20, 13, 15]);

• k[z1, z2], the polynomial algebra in two generators;
• k[[z1, z2]], the power series algebra in two generators.

Proof. It is well known (cf. [13]) that if Γ is one of these algebras and Λ
is an arbitrary finitely generated algebra, there is a strict representation
of Γ over Λ, i.e., a Γ-Λ-bimodule V such that:

(1) V is finitely generated and free as Λ-module.
(2) If N is an indecomposable finite dimensional Λ-module, the Γ-

module V ⊗Λ N is also indecomposable.
(3) If N,N ′ are non-isomorphic finite dimensional Λ-modules, the

Γ-modules V ⊗Λ N and V ⊗Λ N
′ are also non-isomorphic.

Therefore, if a sheaf M ∈ VB(C,Γ) is strict, so is also M ⊗Λ V ∈
VB(C,Λ).

We recall the explicit form of a strict representation V of the free
algebra F over any algebra Λ with generators a1, a2, . . . , an . As Λ-
module, V = (n + 2)Λ while the action of z1 and z2 is given by
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the matrices Z1 and Z2 , respectively, where Z1 is a Jordan cell of
dimension n+ 2 and

Z2 =




0 0 0 . . . 0 0 0
1 0 0 . . . 0 0 0
a1 1 0 . . . 0 0 0
0 a2 1 . . . 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 · · · an 1 0



.

�

Note also that this definition of tameness (namely, the condition
M 6= ∅) implies that “tame” excludes “finite,” i.e., we have a real
trichotomy.

First of all, consider VB-types of smooth projective curves.

Theorem 1.6. A smooth projective curve C of genus g is:

• VB-finite if g = 0 , i.e., if C ≃ P1 ,
• VB-tame bounded if g = 1 , i.e., if C is an elliptic curve,
• VB-wild if g > 1 .

Proof. It is known that each indecomposable vector bundle on P1 is
isomorphic to O(n) for some n [26]. Hence, P1 is VB-finite. On
the other hand, the classification of vector bundles on elliptic curves
[2] implies that all elliptic curves are VB-tame and bounded (indeed,
in this case the growth function satisfies ν(r) ≤ 1 for each r). So we
only have to prove that any curve of genus g > 1 is VB-wild, i.e.,
to construct a strict sheaf M ∈ VB(C,F) , where F = k〈 z1, z2 〉 .
We shall even construct a sheaf M ∈ VB(C,F) such that M(N) ≃
M(N ′) ⊗O L for some line bundle L if and only if N ≃ N ′ and
L ≃ O . In other words, even the natural action of Pic(C) on the set
of vector bundles does not simplify their classification.

For any two points x 6= y of C ,

HomO(O(x),O(y)) ≃ H0(C,O(y − x)) = 0 .

On the other hand,

Ext1
O(O(x),O(y)) ≃ H1(C,O(y − x)),

as Ext1
O(O(x),O(y)) = 0 . Using the Riemann–Roch theorem for the

divisor y − x , we get

dim H1(C,O(y − x)) = g − 1 ≥ 1 .

We shall also use the following simple lemma.

Lemma 1.7. If C is a smooth curve of genus g > 0 , for any n there
are n points x1, x2, . . . , xn on C such that 2xi 6∼ xj +xk (as divisors
on C, cf. [27]) if i 6= j .
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Proof. Note that since g > 0 , the space H0(C,O(x)) consists only of
constants for any point x ∈ C : otherwise there is a non-constant func-
tion f with the unique pole at the point x and such a function defines
an isomorphism C → P1 [27]. On the other hand, the Riemann–Roch
theorem together with the Clifford theorem [27, Theorem IV.5.4] gives
that dim H0(C,O(2z)) ≤ 2 . If this space is one-dimensional, i.e., con-
sists only of constants, x + y ∼ 2z is impossible for x 6= z . Suppose
that it is two-dimensional, i.e., consists of the functions λ+µf for some
fixed (non-constant) f and λ, µ ∈ k . Then f defines a two-fold sur-
jection C → P1 and the set R = { p ∈ P1 | card(f−1(p)) = 1 } is finite
(it is the set of the ramification points of f ) [27]. Obviously, the set R
does not depend on the choice of f in H0(C,O(2z)) . Hence, there are
only finitely many points y ∈ C such that 2z ∼ 2y . Moreover, since
x + y 6∼ x + y′ for a fixed x and y 6= y′ , an equivalence x + y ∼ 2z
for given x, z defines y uniquely. Now the points x1, x2, . . . , xn can
be constructed by an easy induction. �

Using this lemma, choose 5 different points x1, . . . , x5 in such a way
that 2xi 6∼ xj + xk if i 6= j , and consider the class of locally free
sheaves A admitting an exact sequence:

(1) 0 −→ A1 −→ A −→ A2 −→ 0 ,

where

A1 = r1O(x1) ⊕ r2O(x2) ⊕ r3O(x3)

and

A2 = r4O(x4) ⊕ r5O(x5) .

Let ξ ∈ ExtO(A2,A1) be the element corresponding to the sequence
(1). As there are no homomorphisms from the sub-sheaf to the factor-
sheaf, one can easily check that two elements ξ, ξ′ ∈ ExtO(A2,A1)
lead to isomorphic modules A and A′ if and only if there are auto-
morphisms α : A1

∼
→ A1 and β : A2

∼
→ A2 such that αξ = ξ′β (we

mean here the Yoneda multiplication). Choose some nonzero elements
ξij ∈ Ext1

O(O(xj),O(xi)) . Put S = O ⊗ F , where F = k〈 z1, z2 〉 ,
the free k-algebra in two generators, S(x) = S ⊗O O(x) for x ∈ C .
Then Ext1

S(S(x),S(y)) ≃ Ext1
O(O(x),O(y)) ⊗ F . Consider the exact

sequence of locally free S-modules

0 −→ S(x1) ⊕ S(x2) ⊕ S(x3) −→ M −→ S(x4) ⊕ S(x5) −→ 0

corresponding to the element of the Ext-space given by the matrix


ξ14 ξ15
ξ24 z1ξ25
ξ34 z2ξ35


 .

If N is any finite dimensional F-module, then the locally free O-
module M(N) corresponds to the element of the Ext-space given by
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the matrix 

ξ14I ξ15I
ξ24I ξ25Z1

ξ34I ξ35Z2


 .

Here I denotes the identity matrix of size dimkN , while Z1 and Z2

are the matrices describing the action of z1 and z2 , respectively, on
the module N . Then an easy straightforward calculation shows that
M(N) ≃ M(N ′) if and only if N ≃ N ′ .

Suppose now that M(N) ≃ M(N ′) ⊗O L , where L = O(D) for
some divisor D on C . Then for each i ∈ { 1, 2, 3 } , there are j, k ∈
{ 1, 2, 3, 4, 5 } such that

HomO(O(xi),O(D + xj)) = H0(C,O(D + xj − xi)) 6= 0

and

HomO(O(D + xi),O(xk)) = H0(C,O(−D + xk − xi)) 6= 0 .

The first inequality implies that degD ≥ 0 , while the second one
implies degD ≤ 0 . Hence, degD = 0 . But then both D + xj − xi

and −D + xk − xi are equivalent to zero, whence 2xi ∼ xk + xj . The
choice of these points implies that xj = xk = xi and D ∼ 0 , i.e., we
return to the case just considered. �

Remark 1.8. If C is a VB-wild curve, there are families of vector
bundles on C consisting of indecomposable, pairwise non-isomorphic
bundles and depending on any number of parameters. Indeed, any
strict sheaf M ∈ VB(C,Λ) for Λ = k[x1, x2, . . . , xn] gives rise to such
a family consisting of the vector bundles M(p) , where p ∈ An .

Certainly, the existence of “big families” of non-isomorphic indecom-
posable vector bundles for curves of genus g > 1 is well known and
follows, for instance, from the dimension of moduli spaces of stable
bundles [30, 38]. On the other hand, we could not find any paper
where the VB–wildness of such curves was shown.

Just as above, in the following we give an explicit construction of
strict sheaves from VB(C,F) for F = k〈 x, y 〉 (hence, from VB(C,Λ)
for any Λ ) for any VB-wild curve C . This gives an explicit represen-
tation embedding from the category of finite dimensional Λ -modules to
VB(C) , i.e., an exact functor Λ-mod → VB(C) mapping indecompos-
able objects to indecomposable and non-isomorphic to non-isomorphic
ones.

Note also that all vector bundles belonging to the strict families
which we obtain for wild curves are semi-stable (cf.[33], [38]). In the
proof of Proposition 1.6 this follows from the fact that such a bundle
has a filtration whose factors are all of rank 1 and of degree 1 (analogous
observations are also valid in the other cases considered below). As we
have already mentioned, it is impossible to construct strict families such
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that all bundles belonging to these families are stable, as the category
of stable vector bundles is not closed under extensions.

To cast more light on the notion of wildness, we should also mention
that, if a classification problem does not involve extensions, it is not
difficult to present examples where there are n-parameter families of
non-isomorphic indecomposable objects for arbitrary n , but there is
nothing like algebraic wildness. On the other hand, we are not aware
of any classification problem including extensions where such a phe-
nomenon appears, i.e., where algebraic and geometric wildness differ.
Nevertheless, in all known cases the proof used deep investigations.

2. VB-types of singular curves

In this section we consider the case of singular curves. We formulate
the trichotomy theorem (Theorem 2.8) and give an explicit description
of torsion-free sheaves over VB–finite and tame singular curves (The-
orems 2.11 and 2.12). The proofs of these results will be given in the
following sections.

We introduce, in addition to Notations 1.1, the following

Notations 2.1. (1) Let π : C̃ → C denote the normalisation of

C (cf. [27]). (Note that C̃ can be reducible or, equivalently,
non-connected.)

(2) S = S(C) denotes the set of singular points of C and we put

S̃ = π−1(S) .

(3) Set Õ = π∗(O eC) ; we identify O with its natural image in Õ .

(4) Let J be the conductor of O in Õ , i.e., the biggest sheaf on

C of Õ-ideals contained in O .
(5) Set F = O/J and F̃ = Õ/J .

(6) For any torsion-free sheaf B on C of O-modules, put B̃ =

Õ ⊗O B/ t(Õ ⊗O B) (cf. 1.1) and B = B/JB . In particular,

F = O and F̃ = Õ .
As B is torsion-free, the canonical map B → B̃ is a monomor-
phism and we always consider B as a sub-sheaf of B̃ . Note

also that if B is a vector bundle, then Õ ⊗O B has no torsion

part, and hence coincides with B̃ . Any morphism g : B → B′

of O-modules lifts in a unique way to a morphism g̃ : B̃ → B̃′

of Õ-modules.

Lemma 2.2. For every torsion-free sheaf B of O-modules the sheaf

B̃ is naturally isomorphic to the Õ-subsheaf in K ⊗O B generated by
B .
(Recall that K denotes the sheaf of rational functions on C .)

Proof. By definition of the torsion part, we have an exact sequence

0 −→ t(Õ ⊗O B) −→ Õ ⊗O B −→ K⊗O (Õ ⊗O B) ≃ K⊗O B .
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The image of Õ⊗OB is hence isomorphic to B̃ and obviously coincides

with the Õ-subsheaf of K ⊗O B generated by B . �

Note that F and F̃ are sky-scraper sheaves of algebras, zero outside
S and with finite dimensional stalks. Hence, we may (and will) identify

them with the finite dimensional k-algebras
⊕

x∈S Fx and
⊕

x∈S F̃x

respectively. Just in the same way we identify the sky-scraper sheaf of
modules B with the F -module

⊕
x∈S Bx .

When considering families of torsion-free sheaves, we have to impose
some conditions, which guarantee that they are “uniformly embedded”

into their Õ-closures. Thus, we give the following definition for such
families (in [25], in a local setting, they are called δ-constant).

Definition 2.3. Let Λ be a k-algebra (not necessarily commutative).
Denote by TF(C,Λ) the category whose objects are coherent sheaves
on C of O ⊗ Λ-modules B satisfying the following conditions:

(1) B is torsion-free over O .

(2) B̃ is flat over Õ ⊗ Λ .

(3) B̃/B is flat over Λ .

Such sheaves are called families of torsion-free sheaves on C with base
Λ .

Lemma 2.4. If B ∈ TF(C,Λ) , then it is flat over Λ and, for every
Λ-module N , the sheaf B(N) = B ⊗Λ N is also torsion-free over O ;

moreover, the natural homomorphism B(N) → B̃(N) is an embedding

and induces an isomorphism B̃(N) ≃ B̃(N) .

Proof. Put T = B̃/B , which is a torsion sheaf over O . Consider the

exact sequence 0 → B → B̃ → T → 0 . As B̃ and T are both Λ-flat,
so is B . Tensoring by N over Λ , we get again an exact sequence:

0 −→ B(N) −→ B̃(N) −→ T (N) −→ 0 .

As B̃ is flat over Õ ⊗ Λ and (B̃ ⊗Λ N) ⊗ eO X ≃ B̃ ⊗ eO⊗Λ (N ⊗X ) for

any sheaf of Õ-modules X , the sheaf B̃(N) = B̃ ⊗ΛN is flat over Õ ,
hence, torsion free. Therefore, B(N) is also torsion-free. Moreover,

as the image of B(N) obviously generates B̃(N) , the latter coincides

with B̃(N) in view of Lemma 2.2. �

Using this notion, we are able to define TF-finite, TF-tame and TF-
wild curves just in the same way as we have defined the corresponding
VB-types. Nevertheless, it happens that indeed the TF-type of a curve
coincides with its VB-type. We formulate in this section the corre-
sponding results; the remaining part of the article will be devoted to
their proofs. First the following holds:

Proposition 2.5. If a singular curve C is not VB-wild, then:
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(1) All irreducible components of C are rational curves, i.e., their
normalizations are isomorphic to P1 .

(2) Any singular point x ∈ S is a simple node (simple double
point).
In other words, the pre-image π−1(x) under the normalization

map π consists of 2 points and F̃x ≃ k2 .

Proof of 1 cf. Section 4, p. 31; proof of 2 cf. Section 6, pp. 36 and 40.
�

If all irreducible components of C are rational and all its singular
points are simple nodes, we call C a line configuration. To such a
configuration we associate its dual graph and we shall see that this
graph defines the VB–type of the curve C . Recall the corresponding
definition.

Definitions 2.6. If C is a line configuration, its dual graph is the
graph ∆(C) whose vertices are the irreducible components of C , the
edges are the singular points of C and an edge corresponding to the
point pj is incident to the vertex corresponding to the component Ci

if and only if pj ∈ Ci .

Note that the graph ∆(C) is non-oriented, but may have loops and
multiple edges. A loop appears if a singular point pj belongs to a
unique component Ci (in this case the edge corresponding to pj is only
incident to the vertex corresponding to Ci ). As we always suppose C
to be connected, the graph ∆(C) is connected, as well.

It is also convenient to consider P1 as a line configuration. As it
has only one component and no singular points, its dual graph has
one vertex and no edges at all. The following result will be proved in
Section 6 (Step 6.3, page 41):

Proposition 2.7. Let C be a line configuration. Then:

(1) C is TF-finite (hence, VB-finite) if and only if ∆(C) is a
Dynkin diagram of type A , i.e., a chain. (For instance, this is
the case if C = P1.) Moreover, in this case all indecomposable
vector bundles on C are of rank 1 and they are determined up
to isomorphism by their vector-degrees.

(2) C is TF-tame (hence, VB-tame) if and only if ∆(C) is an

extended Dynkin digram of type Ã , i.e., a cycle. (For instance,
this is the case if C is irreducible, rational and has only one
simple node.) Moreover, in this case it is VB-unbounded (hence,
TF-unbounded).

(3) In all other cases C is VB-wild (hence, TF-wild).

In the first, respectively, the second case, we call C a line configuration

of type A , respectively, Ã .
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Altogether, we obtain from Theorem 1.6 and Propositions 2.5 and 2.7
the following theorem, completely describing the VB-types of projective
curves:

Theorem 2.8. Let C be a reduced projective curve.
(1) If C is a line configuration of type A , then it is TF-finite

(hence, VB-finite).
(2) If C is a smooth elliptic curve, then it is VB-tame, bounded.

(3) If C is a line configuration of type Ã , then it is both TF-tame
and VB-tame, unbounded.

(4) In all other cases C is VB-wild (hence, TF-wild).

Remark 2.9. Note some evident corollaries of Theorem 2.8.

(1) An irreducible projective curve C is
(a) VB-finite if and only if C ≃ P1 ;
(b) VB-tame bounded if and only if it is smooth elliptic;
(c) VB-tame unbounded if and only if it is rational and has

only one singular point which is a simple node;
(d) VB-wild otherwise.

(2) Any deformation of a VB-finite curve is also VB-finite; any
deformation of a VB-tame one is also VB-tame.

(3) If a curve C is VB-finite, its arithmetic genus dimk H1(C,OC)
(cf. [27]) is always 0 ; if it is VB-tame, its arithmetic genus is
always 1 . The converse is not true: any line configuration C
such that its dual graph ∆(C) is a tree has arithmetic genus
0 , although most of them are VB–wild.

(4) In the tame case the dualizing sheaf ωC (cf. [27]) is trivial, i.e.,
isomorphic to OC . Hence, Serre duality (cf. [27]) on such a
curve is just given by the functor HomO( ,O) .

The triviality of the dualizing sheaf implies the following corollary
concerning the Auslander–Reiten quiver of the category of vector bun-
dles. We refer to [3] for the corresponding definitions.

Corollary 2.10. Let the curve C be VB–tame and τ be the Auslander–
Reiten translation in the category VB(C) . Then τB ≃ B for every
indecomposable vector bundle B . In particular, the Auslander–Reiten
quiver of VB(C) consists only of homogeneous tubes, i.e., quivers of
the form

· ⇆ · ⇆ . . . · ⇆ · ⇆ . . .

with the identity translation.

Proof. Follows from [3, Theorem 3.3]. �

We shall now give a description of all vector bundles and torsion-free

sheaves on line configurations with dual graphs of types A and Ã .

Such a sheaf B can be given by its “normalization” B̃ and by the rule

of glueing, which describes the image of B/JB in B̃/J B̃ . Recall that
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π : C̃ → C denotes the normalization, Õ = π∗O eC , J the conductor

of O in Õ and B̃ = Õ ⊗O B/t(Õ ⊗O B) .

First, let C be a line configuration of type A , {C1, C2, . . . , Ct } its
irreducible components. Each Ci is isomorphic to P1 and the nor-

malization C̃ of C can be identified with their disjoint union
⊔

i Ci .
Let {x1, x2, . . . , xt−1 } be the singular points of C ; we suppose that
xi ∈ Ci ∩ Ci+1 and denote by x′i (resp., x′′i ) the pre-image of xi on
Ci (resp., on Ci+1 ).

Consider any vector of the form s = (m; d1, d2, . . . , dr) , where 1 ≤
m ≤ t , r ≤ t−m+ 1 , and define the torsion-free sheaf B = Bs in the
following way:

• Set B̃ = π∗B eC , where B eC is the unique sheaf on C̃ with
support

⊔r

j=1Cm+j−1 and B eC |Cm+j−1
= OCm+j−1

(dj) for j =

1, . . . , r . Then B̃ ≃
⊕r

j=1 OCm+j−1
(dj) if we identify every

OCi
(d) with its direct image on C . Hence, the stalk of the

sky-scraper sheaf B̃/J B̃ at a point x ∈ C is nonzero only if
x = xi for i = m, . . . ,m+r−1 ; in this case it is k(x′i)⊕k(x′′i ) .

• Let B be the preimage in B̃ of the subsheaf of the factor B̃/J B̃
such that its stalk at the point xi , for each i = m, . . . ,m+r−1 ,

is the one-dimensional subspace of B̃xi
/J B̃xi

= k(x′i) ⊕ k(x′′i )
generated by (1, 1) .

Certainly, Bs 6≃ Bs′ if s 6= s′ and the sheaf Bs is a vector bundle if and
only if its support coincides with all of C , i.e., we have m = 1 and r =
t . In this case B is isomorphic to OC(d) where d = (d1, d2, . . . , dt) .

Theorem 2.11. If C is a line configuration of type A , then all
torsion-free sheaves Bs defined above are indecomposable and pairwise
non-isomorphic and every indecomposable torsion-free sheaf on C is
isomorphic to one of the sheaves Bs .

In particular, an indecomposable torsion-free sheaf on C is com-
pletely determined by its vector-degree. Any indecomposable vector bun-
dle on C is of rank 1 , indeed, they are all isomorphic to the shifts of
the structure sheaf OC(d) for some d .

The proof of this theorem is given in Section 6 (Step 6.2, case 1,
page 41).

Now let C be a line configuration of type Ã , {C1, C2, . . . , Ct }
its irreducible components. If t > 1 , each Ci is again isomorphic

to P1 and C̃ ≃
⊔

i Ci . If t = 1 , C̃ ≃ P1 . We denote by Oi the
structure sheaf of the normalization of Ci (which coincides with Ci

if t > 1 ). Let x1, x2, . . . , xt be the singular points of C . We suppose
that xi ∈ Ci ∩ Ci+1 (putting Cs+1 = C1 ) and denote, if t > 1 , its
pre-image on Ci (resp., on Ci+1 ) by x′i (resp., x′′i ). If t = 1 , x1 has
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two pre-images on C̃ and we denote them by x′1 and x′′1 too. Put also

Fi = Õxi
/Jxi

and identify it with k(x′i) ⊕ k(x′′i ) .
Call a band datum a triple b = (d, n, λ) , where m is a positive

integer, λ is a nonzero element of the field k and d is a sequence of
integers (d1, d2, . . . , dtr) , which is t-aperiodic, i.e., cannot be obtained
by a repetition of a shorter sequence whose length is also a multiple
of t . For every band datum b define the vector bundle B = Bb as
follows (nM always denotes the n-fold direct sum of the sheaf M ):

• Set Aj = nOj(dj) , where Oj = Ok for j ≡ k (mod t) , and
set A = ⊕tr

j=1A
j .

Note that

(Aj/JAj)xi
≃





nk(x′i) if j ≡ i (mod t)

nk(x′′i ) if j ≡ i+ 1 (mod t)

0 otherwise.

We identify a nonzero factor (Aj/JAj)xi
with the vector space

nk(x′i) or nk(x′′i ) and denote by
{

e′
jk | 1 ≤ k ≤ n

}
, respec-

tively by
{
e′′

jk | 1 ≤ k ≤ n
}

, its canonical basis (consisting of
the vectors (0, . . . , 1, . . . , 0) ).

• Define B = Bb as the vector bundle on C such that B̃ coin-
cides with the sheaf A defined above and the image of B/JB
in A/JA coincides with the subspace spanned by the following
vectors:

e′
jk + e′′

j+1,k for all j 6= rt and all k ;

e′
rt,1 + λe′′

1,1 ;

e′
rt,k + λe′′

1,k + e′′
1,k for 1 < k ≤ n .

One easily sees that Bb ≃ Bb′ if b′ = (d′, m, λ) , where d′ is ob-
tained from d = (d1, d2, . . . , dtr) by a t-cyclic permutation, i.e., d′ =
(d′1, d

′
2, . . . , d

′
tr) , where d′i = dtl+i for some l (putting dj+tr = dj for

all j ). In this case we say that the band datum b′ is obtained from
b by a t-cyclic permutation.

Now call a string datum a sequence s = (m; d1, d2, . . . , dr) , where
1 ≤ m ≤ t and di are integers ( r being any positive integer). Define
the torsion-free sheaf Bs on C as follows:

• Put Aj = Om+j−1(dj) for 1 ≤ j ≤ r and A = ⊕r
j=1A

j .

Again we identify here a nonzero factor (Aj/JAj)xi
with k(x′i)

or k(x′′i ) and denote, respectively, by e′
j or by e′′

j its basis
vector.

• Define B = Bs as the torsion-free sheaf on C such that B̃
coincides with the sheaf A defined above and the image of
B/JB in A = A/JA coincides with the subspace B spanned
by the vectors e′′

1 , e′
j + e′′

j+1 ( 1 ≤ j < r ) and e′
r .
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Note that the sheaf B = Bs is never locally free. This follows from
Proposition 4.2 as the F -submodule B ⊂ A is not correct in the sense
of Definition 4.1.1. One can also see it from Figure 4 below, as the
rank varies on a certain component.

Theorem 2.12. If C is a line configuration of type Ã , then all
torsion-free sheaves Bb and Bs , where b (respectively s ) runs through
all possible band (respectively string) data, are indecomposable and ev-
ery indecomposable torsion-free sheaf on C is isomorphic to one of
the sheaves Bb or Bs . The only possible isomorphisms between these
sheaves are Bb ≃ Bb′ , where b′ is obtained from b by an s-cyclic
permutation; the sheaves Bs are pairwise non-isomorphic.

In particular, Bb are all indecomposable vector bundles, while Bs

are all indecomposable torsion-free sheaves which are not vector bun-
dles.

Note that in the latter case there are only discrete sets of sheaves:
there are no non-trivial families of torsion-free sheaves, which are not
vector bundles.

The proof of Theorem 2.12 is also given in Section 6 (Step 6.2, case
2, page 42).

We should like to illustrate the above classification by some pictures
in order that the structure of these sheaves becomes more clear.

Let t = 3, C1, C2, C3 the three components of C, Ci = P1 and
x1, x2, x3 the three intersection points as in Figure 1:

C3

C1 C2

x1

x3 x2

Figure 1

According to the description in Theorem 2.11, a vector bundle B =
Bb is given by a t-aperiodic band datum b = (m,λ,d), where d =
(d1, . . . , dtr) ∈ Ztr, rk(B) = mr, m ∈ N, λ ∈ k∗. (In our example

t = 3.) The sequence d describes π∗B on C̃ where π : C̃ → C is the
normalization.

Since we consider bundles together with a trivialization in neighbour-
hoods of singular points, we have fixed a basis of each vector space B(xi)
and also of π∗B at the two pre-images of xi. Hence, any vector bundle
B on C is completely described by π∗B, where π∗B| eCj

≡ B|Cj
is a direct

sum of OCj
(di) for certain di, and by the glueing of B|Cj

with B|Cj+1

at xj with respect to the given bases. The glueing of B|Cj
with B|Cj+1

can be trivialized for 1 ≤ j < t, that is, given by the identity matrix,
but the glueing of B|Cs

with B|C1
at x1 perhaps not. Indeed, if m ≥ 1

and B is of rank mr, this glueing can be described as being the identity
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on the first m(r − 1) basis vectors, and the Jordan cell of rank d with
eigenvalue λ on the last m basis vectors (in particular, multiplication
with λ if m = 1).

In Figure 2 and Figure 3, a thick line with label di at the component
Cj corresponds to the sheaf OCj(di), a thin line corresponds to the
trivial glueing and a dotted line to a non-trivial glueing, described by
the matrix A. The marked points symbolize a basis of the fibres over
the corresponding intersection points:

x x

d d

d

d

x x
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C

d

C

d

C

A

1
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1
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2
1

Figure 2
Bundle of rank 2, b = (1, λ; d1, . . . , d6),

A = (λ)

d
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C

C

A

1

1
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3
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3

3

2

2

5

2

2

Figure 3
Bundle of rank 4, b = (2, λ; d1, . . . , d6),

A = ( λ 1
0 λ )

A torsion-free sheaf M on C which is not locally free is given by a
string datum which can be coded as s = (m;d), d = (d1, . . . , dr) ∈ Zr,
1 ≤ m ≤ s.
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Here, d describes π∗M as before, while Cm is the component where
the glueing starts. Again we do cyclic glueing, although the cycle does
not close but has two free ends corresponding to the basis elements
which are not glued (encircled in Fig. 4). Hence all glueings are trivial
and we see that (not locally free) torsion-free sheaves on C are charac-
terized by discrete data without moduli.

x

d

d

x x

xx3

C

d

C

d

1C

x1

d3

3

5

2

3

2

2

4

1

2
1

Figure 4
Torsion-free sheaf of rank 1 on C1, rank 2 on C2 and C3,

s = (2; d1, . . . , d5).

3. Shifting bimodules

The study of vector bundles on singular curves is closely related to
bimodule problems considered in [11, 13, 9]. Bimodules appear during
the description of the glueing necessary to obtain a sheaf on such a
curve from a sheaf on its normalization. This relation will be studied
in the next section. Here we recall and make precise some of the corre-
sponding definitions and, in addition, modify them to take into account
more complicated sets of discrete parameters. Namely, our bimodules
are endowed with a group of shifts. As we shall see later, these shifts
reflect the natural shifts B 7→ B(d) in the category of vector bundles
considered in the previous section. Hence, we have to change slightly
the definitions of representation types, taking into account these shifts,
just as we have done for VB–types of curves.

As the definitions of this section are somewhat abstract and there
is no appropriate textbook for references, we try to explain them by
giving some simple examples.

In the following “category” usually means a category over an alge-
braically closed field k . This means that all Hom-spaces are vector
spaces over k and the product of morphisms is k-bilinear. Given two
categories A1 and A2 , an A1-A2-bimodule is, by definition, a functor
U : A1ø×A2 → Vect , the category of k-vector spaces. If A1 = A2 = A ,
U is called an A-bimodule. Usually we suppose that our categories are
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additive. Whenever some category C is not additive, we consider its
additive hull, i.e., the smallest additive category A = add C containing
C , and identify C-bimodules with A-bimodules.

Let U be an A-bimodule. Define the category El(U) of elements of
the bimodule U as follows. Its object set is

Ob El(U) =
⋃

A∈Ob A

U(A,A)

and morphisms from u ∈ U(A,A) to v ∈ U(B,B) are morphisms
f ∈ A(A,B) such that fu = vf . Here (and later on) we write fu
instead of U(1, f)u and vf instead of U(f, 1)v . Note that both of
these elements belong to U(A,B) .

Elements of a bimodule U are often called “matrices over U ” [13,
20], since, given a decomposition of an object A into a direct sum
of indecomposbales: A =

⊕n

i=1Ai , one can consider an element of
U(A,A) as an n× n matrix (uij) , where uij ∈ U(Aj , Ai) .

Example 3.1. One of the main examples arises when A = Pr Λ is the
category of (finitely generated) projective modules over a k-algebra Λ .
Suppose that Λ is finite dimensional and basic, i.e., Λ/ radΛ ≃ kn .
Then an A-bimodule U can be completely determined by the value
U0 = U(Λ,Λ) , which is a Λ-bimodule. Namely, let 1 = e1 + e2 +
· · · + en be a decomposition of the unit element of Λ into a sum of
primitive idempotents. Put Pi = Λei . Any projective Λ-module P
is isomorphic to a direct sum

⊕n

i=1 kiPi [19]. (We denote by kM the
direct sum of k copies of M .) It is known that A(Pi, Pj) ≃ Λij =
eiΛej and A(P, P ′) , where P ′ =

⊕n

i=1 liPi can be identified with the
set of matrices of the form

(2) X =




X11 X12 . . . X1n

X21 X22 . . . X2n

. . . . . . . . . . . . . . . . . . . .
Xn1 Xn2 . . . Xnn


 ,

where each Xij is an li×kj-matrix with entries from Λij . In the same
way, one can see that U(Pi, Pj) is naturally isomorphic to Uij = eiU0ej

and U(P, P ) can be considered as the set of matrices of the form

(3) Y =




Y11 Y12 . . . Y1n

Y21 Y22 . . . Y2n

. . . . . . . . . . . . . . . . . .
Yn1 Yn2 . . . Ynn


 ,

where each Yij is a kj × ki-matrix with entries from Uij . The mul-
tiplication of morphisms, as well as the action of A on U , coincide
under this identification with the usual multiplication of matrices. In
particular, a morphism in El(U) from the matrix (3) to another matrix
Y ′ ∈ U(P ′, P ′) of the same shape is a matrix (2) such that XY = Y ′X .
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Call a shift in a category A any auto-equivalence A
∼
→ A . Define

now a shifting category to be a triple (A,Σ, ρ) where A is a category,
Σ is a group and ρ is a homomorphism from Σ to the group of shifts
in A . As usual, we write σ(a) instead of ρ(σ)(a) , where a is an
object or a morphism of A . We call Σ a group of shifts in A .

Let U be an A -bimodule and σ be some shift in A . A shift in U

compatible with σ is, by definition, an isomorphism of A -bimodules
σ : U

∼
→ Uσ , where Uσ denotes the bimodule obtained from U via

pullback by σ , i.e. Uσ(a1, a2) = U(σ(a1), σ(a2)) .
Given a shifting category (A,Σ, ρ) , define a shifting A-bimodule as

a pair (U, ρu) , where ρu maps each element σ ∈ Σ to a shift of U

compatible with ρ(σ) and ρu(στ) = ρu(σ)ρu(τ) for each σ, τ ∈ Σ .
Again we write σ(u) instead of ρu(σ)(u) . Note that in this case the
category El(U) also becomes a shifting category with the same group
Σ of shifts.

Example 3.2. Let A0 be the category with the set of objects Z and
the set of morphisms generated by morphisms xn : n → n + 1 . In
other words, it is the category of paths of the graph

· · · · −→ · −→ · −→ . . .

(the quiver of type A∞
∞ ). Denote by A = add A0 , the aditive hull

of A0 . There is a natural shift σ in A mapping n to n + 1 , so
one can consider A as a shifting category with the group of shifts
Z ≃

{
σk | k ∈ Z

}
. Note that A(n,m) is one-dimensional if n ≤ m

and zero otherwise. An object A ∈ A is a (formal) finite direct sum⊕
n∈Z

kn ·n, kn ≥ 0 , and elements of A(A,B), where B =
⊕

n∈Z
ln ·n ,

can be considered as matrices

(4) X =




. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . X−1,−1 0 0 . . .

. . . X0,−1 X0,0 0 . . .

. . . X1,−1 X1,0 X1,1 . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . .



,

where Xmn is an lm × kn matrix with entries from k , zero if m < n .
The shift σ just replaces Xmn by Xm−1,n−1 .

Consider the regular A-bimodule, i.e., such that U(A,B) = A(A,B) .
Then an element from U(A,A) is also a matrix Y of the form (4) (with
li = ki ). A morphism in El(U) from Y to Y ′ ∈ U(B,B) is a matrix
X of the form (4) such that XY = Y ′X .

We need the notion of the tensor product of two categories A⊗C . By
definition, the objects of this category are formal direct sums of formal
products A ⊗ P , where A ∈ A , P ∈ C . The space of morphisms
(A⊗C)(A⊗P,B⊗Q) is defined as the tensor product of vector spaces
A(A,B) ⊗ C(P,Q) . If U is an A-bimodule, we define the A ⊗ C-
bimodule U⊗C by putting (U⊗C)(A⊗P,B⊗Q) = U(A,B)⊗C(P,Q) .
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Hence, the category El(U⊗C) is well defined. We say that the elements
of (U ⊗ C)(A ⊗ P,A⊗ P ) are based on A . We are mostly interested
in the case when C = Pr Λ is the category of finitely generated (right)
projective modules over some k-algebra Λ . Then we write UΛ instead
of U ⊗ C and El(U,Λ) instead of El(U ⊗ C) . If, moreover, Λ is a
commutative domain and u ∈ UΛ(A ⊗ P,A ⊗ P ) , where rkΛ P = r ,
we say that u is an element of rank r based on A .

If every projective Λ-module is free, one can identify A⊗Pr Λ with
A⊗Λ and U

Λ with U⊗Λ , since every object from A⊗Pr Λ is of the
form A⊗ rΛ ≃ rA⊗ Λ for some r ≥ 0 .

Example 3.3. Suppose that U is the bimodule of Example 3.2 and
Λ = k[x] . Then an element u ∈ UΛ(P⊗M,P⊗M) , where rkΛM = r ,
is again given by a matrix Y of the form (4), but this time its com-
ponents Yij are of size rki × rkj and with entries from Λ . If N is a
finite dimensional Λ-module, we can consider it as Λ-k-bimodule. In
order to obtain u(N) one has to replace every entry f of the corre-
sponding matrix Y (which is a polynomial from k[x] ) by the matrix
defining the multiplication with u in the module N . In particular, if
dimkN = 1 , hence, N ≃ Λ/(x−λ) , the entry f is replaced by f(λ) .

Note that any functor θ : C → C
′ induces the functor θ∗ = 1 ⊗ θ :

El(U⊗C) → El(U⊗C′) . In particular, given a Λ′-Λ-bimodule N (i.e.,
a left Λ-module and right Λ′-module), which is finitely generated and
projective over Λ′ , we get the functor El(U,Λ) → El(U,Λ′) induced
by the tensor product ⊗Λ N . The image of an element u ∈ El(U,Λ)
under this functor will be denoted by u(N) .

Denote by vect the category of finite dimensional vector spaces over
k . Then A ⊗ vect ≃ A for each additive category A and we always
identify these categories. Hence, any functor N : C → vect gives rise
to the functor N∗ : El(U⊗C) → El(U) . In particular, if C = Pr Λ , such
a functor is given by some finite dimensional Λ-module and we shall
identify this module with the functor N . For this reason, in the general
case, the functors C → vect are also called C-modules (more precisely,
they should be called finite dimensional modules, but we never deal
with other ones). Denote the category of C-modules by C-mod .

Definition 3.4. Let U be a shifting bimodule with group of shifts
Σ . Call an element u ∈ El(U ⊗ C) strict if it satisfies the following
conditions:

(1) The element u(N) is indecomposable in El(U) for each inde-
composable C-module N .

(2) For any two C-modules N , N ′ and for each shift σ ∈ Σ , the
elements u(N) and σ(u)(N ′) are isomorphic in El(U) if and
only if σ = 1 and N ≃ N ′ (as Λ-modules).

For instance, in Example 3.3, the element u ∈ (U⊗Λ)(n⊗Λ, n⊗Λ)
given by the 1 × 1 matrix (x) is obviously strict.
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Definition 3.5. Let U be a shifting bimodule with the group Σ
of shifts. Suppose we have given, for each k-algebra Λ , a full sub-
category El

′(U,Λ) ⊆ El(U,Λ) satisfying the following conditions:

(1) u(N) ∈ El
′(U,Λ′) for each element u ∈ El

′(U,Λ) and for each
Λ′-Λ-bimodule N which is finitely generated and projective
over Λ′ .

(2) σ(u) ∈ El
′(U,Λ) for each shift σ ∈ Σ and for each element

u ∈ El
′(U,Λ) .

Then call the family of sub-categories {El
′(U,Λ) |Λ } a correct family

and the elements u ∈ El
′(U,Λ) correct elements (with respect to this

correct family).

For instance, in Example 3.2 one can define a correct family of el-
ements {El

′(U,Λ) } by taking only matrices X of the form (4) such
that all diagonal components Xnn are invertible.

Correct families will appear later from some conditions that are to
be imposed on the elements of bimodules in order that they correspond
to vector bundles (cf. page 29).

Definitions 3.6. The representation type of a shifting A-bimodule
U (with the group Σ of shifts) supplied by a correct family of sub-
categories is defined as follows. The bimodule is said to be:

• Correctly finite if there exists a finite set of indecomposable
correct elements M ⊆ El

′(U) such that each indecomposable
correct element is isomorphic to σ(u) for some σ ∈ Σ and
some u ∈ M .

• Correctly tame if there exists a set M consisting of strict ele-
ments u ∈ El

′(U,Λu) such that:
(1) Each Λu is a commutative domain, finitely generated as k-

algebra and of Krull dimension 1 (note that it may depend
on u ).

(2) For each object A ∈ Ob A and for each natural number r ,
the set MA,r = { u ∈M | u is an element of rank r based
on A } is finite.

(3) For each object A ∈ Ob A , all indecomposable correct el-
ements from U(A,A) , except possibly for a finite number,
are isomorphic to σ(u)(N) for some element u ∈ M , some
shift σ ∈ Σ and some (finite dimensional) Λu-module N .

In this case we call M a parametrising set for correct elements
of U .

Moreover, if U is correctly tame, call it:
– bounded if there exists a parametrising set M for correct

elements of U such that all cardinalities |MA,r| are not
greater than a constant c for all possible A and r ;

– unbounded if there is no such parametrising set.
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• Correctly wild if there exists a correct strict element u ∈ El
′(U,Λ)

for each finitely generated k-algebra Λ .

In the case that all elements are considered to be correct, we omit the
word “correct” and speak about finite, tame (bounded or unbounded)
or wild shifting bimodules. Sometimes, to stress it, we say that the
bimodule is “absolutely” finite, tame or wild.

Recall once more that to prove U to be correctly wild, we only have
to find a correct strict element in El

′(U,F) , where F = k〈 z1, z2 〉 is a
free (non-commutative) k-algebra with 2 generators.

In most cases we deal with so called bipartite bimodules [11]. They
are defined as follows. If U is an A1-A2-bimodule, we can consider it as
a bimodule over the direct product A = A1 ×A2 by setting U((a1, a2),
(b1, b2)) = U(a1, b2) for ai, bi ∈ Ai . Call this bimodule a bipartite
A1-A2-bimodule. In this case an element of U based on a pair (A1, A2) ,
where Ai ∈ ObAi , is indeed an element u ∈ U(A1, A2) . A morphism
from u to another element u′ ∈ U(A′

1, A
′
2) is a pair (f, g) , where f :

A1 → A′
1, g : A2 → A′

2 , such that gu = u′f (both these elements are
from U(A1, A

′
2) ). Note that in [13] and [20] only bipartite bimodules

were considered.
Bipartite bimodules correspond to the class of matrix problems which

were called separated in [20]. We prefer the word “bipartite,” since
“separated” is too widely used (and sometimes in quite different senses).

4. Relation between vector bundles and bimodules

We are now going to apply the notions of the preceding section to
the study of torsion-free sheaves on a singular curve C . Namely, we
connect with such a curve a shifting bimodule which describes the
correspondence between vector bundles on this curve and on its nor-
malization. Moreover, we give here the proof of the first assertion of
Proposition 2.5 (page 31).

We use Notations 2.1. In particular, π : C̃ → C denotes the nor-

malization of C , O the structure sheaf of C , Õ = π∗O eC and J

the conductor of O in Õ ; finally, F = O/J and F̃ = Õ/J . To
describe the glueing, necessary to obtain sheaves of O-modules from

Õ-modules, the following notions are convenient.

Definitions 4.1. (1) Let Λ be a k-algebra, A a coherent flat

sheaf on C of Õ ⊗ Λ-modules and M a coherent F ⊗ Λ-
subsheaf of A = A/JA . Call this subsheaf correct if it satisfies
the following conditions:
(a) A/M is flat over Λ .
(b) M is flat over F ⊗ Λ .

(c) The natural homomorphism F̃ ⊗F M → A is an isomor-
phism.
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If only condition (a) holds and F̃M = A , call M semi-correct.
(2) Define the category Cs = Cs(C,Λ) as follows:

(a) its objects are pairs (A,M) , where A is a flat coherent

sheaf of Õ⊗Λ-modules and M is a semi-correct submod-
ule of A ;

(b) a morphism (A,M) → (A′,M′) is a morphism f : A →

A′ such that the induced mapping f : A → A
′

maps M
to M′ .

(3) Let C = C(C,Λ) be the full sub-category of Cs(C,Λ) consisting
of all pairs (A,M) with a correct submodule M .

We write Cs(C) and C(C) instead of Cs(C,k) and C(C,k)
correspondingly.

(4) Define a functor F : TF(C,Λ) → Cs(C,Λ) , mapping any sheaf

B ∈ TF(C,Λ) to the pair (B̃,B) and any morphism g : B → B′

to the morphism g̃ : B̃ → B̃′ . (Recall that B̃ = Õ⊗OB/t(Õ⊗O

B) and B = B/JB .)

One can easily check that B is indeed a semi-correct submodule of

B̃/J B̃ and g̃(B) ⊆ B
′
. Note only that the definitions imply immedi-

ately that J B̃ = JB . Moreover, if B is a flat sheaf, the submodule
B is indeed correct. This construction leads to the folloing statement.

Proposition 4.2. The functor F establishes an equivalence between
the categories TF(C,Λ) and Cs(C,Λ) . Moreover, the restriction of F
to VB(C,Λ) establishes an equivalence of VB(C,Λ) and C(C,Λ) .

Proof. Define the inverse functor G as follows: for any object P =
(A,M) of Cs let B = GP be the pre-image of M ⊆ A in A .

It is a coherent subsheaf in A such that ÕB = A . In particular,

B is torsion-free and B̃ ≃ A . As A/B ≃ A/M is flat over Λ ,
B ∈ TF(C,Λ) . If P ′ = (A′,M′) is another pair and f : P → P ′

is a morphism from Cs(C,Λ) , then, by construction, f(GA) ⊆ GA′ .
Therefore, we obtain a functor G : C

s → VB , inverse to F .
Let now the pair P be correct, that is, M ≃ B/JB is flat over

F ⊗ Λ . As it is also coherent, it is a projective F ⊗ Λ-module. Fix
a point x ∈ S and put M = Mx/mMx , where m is the maximal
ideal of Fx . M is a flat finitely generated, hence projective Λ-module.
Then P = Ox ⊗M is a projective Ox ⊗Λ-module such that P/mP ≃
Bx/mBx . Hence, there is a homomorphism f : P → Bx such that
Im f + mBx = Bx . Since Bx is finitely generated as Ox ⊗ Λ-module,

f is an epimorphism. Moreover, as Ax ≃ F̃ ⊗F Mx , also Ax/mAx ≃

P̃ /mP̃ , where P̃ = Õx ⊗M = Õx ⊗Ox
P . Since P̃ and Ax are both

finitely generated projective Õx ⊗Λ-modules, they are isomorphic and



28 YURI A. DROZD AND GERT-MARTIN GREUEL

the commutative diagram

Ox ⊗M
f

−−−→ Bxy
y

Õx ⊗M
∼

−−−→ Ax

shows that f is a monomorphism, hence, an isomorphism. Therefore,
Bx is a projective (thus flat) Ox ⊗ Λ-module for every point x ∈ S .
For all other points y , By = Ay is also flat, therefore, the whole sheaf
B is flat over O ⊗ Λ , that is, belongs to VB(C,Λ) . �

For each vector bundle Ã of constant rank r on C̃ , we can always

choose an open affine sub-variety C ′ ⊂ C̃ such that S̃ ⊂ C ′ and the

restriction of Ã on C ′ is trivial: Ã|C′ ≃ rO eC |C′ . Using this, we

can (and do) always suppose that Ã|C′ = rO eC |C′ . Therefore, setting

A = π∗Ã , we get A|π(C′) = rÕ|π(C′) and hence A = rF̃ . This

identification is compatible with tensor products if we identify Õ⊗ eO Õ

with Õ via the natural isomorphism. A correct subsheaf of A is then

given by r elements v1, v2, . . . , vr of rF̃ linearly independent over F ,
namely, M =

∑r

i=1 Fvi . We often write (A, v1, v2, . . . , vr) instead of
(A,M) for objects from Cs(C) .

For instance, a line bundle L over C is given by a line bundle L̃ over
C̃ and an invertible element v of the algebra F̃ . If B is the torsion-
free sheaf corresponding to a semi-correct pair P = (A,M) then their
tensor product B ⊗O L is given by the pair PL = (A ⊗ eO L, vM) .
This is how the Picard group Pic(C) acts on the category Cs(C) . Of
course, if P ∈ C , also PL ∈ C .

In particular, we get a rule for tensor products of line bundles. Note
that the bundles corresponding to the pairs (L̃, v) and (L̃′, v′) are

isomorphic if and only if L̃ ≃ L̃′ and v′ = θv for some invertible

element θ ∈ F (take into account that both L̃|C′ and L̃′|C′ coincide

with π∗O eC |C′ ). Note also that any isomorphism L̃
∼
→ L̃′ is locally

constant (as the curve C̃ is projective). Denote by C the image of

all locally constant functions in F̃ . Then the preceding considerations
immediately give the following corollary.

Corollary 4.3. Pic(C) ≃ Pic(C̃) × (F̃∗/C∗F∗) .

If C is irreducible, C = k ⊆ F , so the latter factor is nothing but

F̃∗/F∗ .
The following result is quite obvious.

Proposition 4.4. If C̃ is VB-wild, so is also C .

Proof. Indeed, let A ∈ VB(C̃,F) , where F = k〈 x, y 〉 , be a strict

sheaf. For any point x ∈ S̃ , Ax/JAx is a projective F-module,
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hence, it is free (cf. [8]). It is evident that all these factors are of
the same rank r . Fix an F-bases ex

1 , e
x
2 , . . . , e

x
r of these factors for all

points x ∈ S̃ and consider the F⊗F-subsheaf M ⊂ A/JA generated
over F ⊗ F by the set




∑

π(x)=y

ex
i | y ∈ S, 1 ≤ i ≤ r



 .

Clearly, this subsheaf is correct, hence, defines a family B ∈ VB(C,F) .

But this family is strict as so is A and evidently B̃(N) ≃ A(N) for
every N . �

The vector-degree Deg defines a homomorphism Pic(C) → Zt and

it is evident that DegB = Deg B̃ . Recall that we have chosen a section
ω : Zt → Pic(C) in such a way that ω(ei) = O(pi) for some smooth
point pi , where ei = (0, . . . , 0, 1, 0, . . . 0) (1 at the i-th place), and put
O(d) = ω(d) and A(d) = A⊗OO(d) for every sheaf A of O-modules
(cf. page 7). Thus VB(C) becomes a shifting category with the group
Σ = Zt of shifts. The same is true for C and Cs : if P = (A,M) , put

P(d) = (A(d),M) . Note that under the identification Ã|C′ = rO eC |C′

imposed above, A(d)|π(C′) = A|π(C′) , hence, A(d) = A . Certainly,
the equivalence VB(C) ≃ C(C) preserves these shifts.

The category Cs has the advantage that it can be easily reinterpreted
with the help of some bimodule category.

Denote by A the category of locally free (coherent) Õ-sheaves on C
and by B the category of projective (finitely generated) F -modules.
Define a bipartite B-A-bimodule U by setting, for B ∈ B and A ∈ A ,

U(B,A) = HomF(B,A) .

This is also a shifting bimodule with the same group Σ = Zt of shifts.
Namely, shifting by d acts on A as above, acts on B trivially and
maps an element u ∈ U(B,A) , i.e., a homomorphism B → A , to the
same element considered as a homomorphism B → A(d) = A (we
denote it by u(d) ).

Define two correct families of elements of the bimodule U . The
first one is denoted by Elc and called the family of correct elements
consisting of all elements u ∈ UΛ(B,A) = HomF⊗Λ(B,A) satisfying
the following conditions:

(1) B ≃ F ⊗ P for some free F -module F and some projective
Λ-module P .

(2) Ker u ⊆ (radF)B .
(3) Coker u is flat as Λ-module.

(4) The induced map u eF : F̃ ⊗F B → A is an isomorphism.
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The second family is denoted by Elsc and called the family of semi-
correct elements. It consists of all elements satisfying conditions 2 and
3 above and the following one:

4′. u eF is an epimorphism.

Proposition 4.5. For each correct (respectively semi-correct) element
u ∈ UΛ(P,A) , the image Im u is a correct (respectively semi-correct)
submodule in A and the mapping u → (A, Im u) induces a functor
F : Elc(U,Λ) → C(C,Λ) (respectively Elsc(U,Λ) → C

s(C,Λ) ) having
the following properties:

(1) It is dense, i.e., each object from C (respectively C
s ) is iso-

morphic to Fu for some object u from Elc (respectively from
Elsc ).

(2) It is full, i.e., all induced maps of morphism spaces Elsc(u, u
′) →

C
s(Fu, Fu′) are surjective.

(3) It reflects isomorphisms, i.e., u ≃ u′ if and only if Fu ≃ Fu′ .
(4) It preserves indecomposability, i.e., u is indecomposable if and

only if Fu is indecomposable.
(5) It is compatible with shifts, i.e., F (u(d)) ≃ σ(F (u))(d) for

each σ ∈ Zn .

Proof. For each pair (A,M) ∈ Cs the F -module U = M/(radF)M
is semi-simple, hence, isomorphic to a direct sum of Ui ⊗ Pi , where
Ui are simple F -modules and Pi are projective Λ-modules. Then
Ui ≃ Bi/(radF)Bi , where Bi is a projective F -module, and there is
an epimorphism u : B = ⊕iBi⊗Pi → M such that Ker u ⊆ (radF)B .
Obviously, u is a semi-correct (respectively correct if M is a correct
submodule) element of UΛ(B,A) and F (u) ≃ (A,M) . Moreover,
as any homomorphism can be lifted to projective covers, the functor
F is full, and as Ker u ⊆ (radF)B , it reflects isomorphisms. The
compatibility with shifts follows immediately from the definition of
F . �

Due to condition 2 of the definition of correct elements, if an element
u ∈ U(B,A) is correct, the number of indecomposable summands in
B is at most dimk A . Hence, if A is fixed, there are only finitely
many possibilities for B . On the other hand, if A ∈ A is of rank
r , then DegA(ei) = DegA + rei . Hence, any correct element u has
a shift lying in U(B,A) with 0 ≤ DegA < (r, r, . . . , r) . Here an
inequality for vectors means inequality for all components. Together
with Proposition 4.5 this implies the following corollary.

Corollary 4.6. A curve C is VB-finite, VB-tame or VB-wild if and
only if the bimodule U(C) is correctly finite, correctly tame or correctly
wild, respectively.

The same is true for TF-types of curves and semi-correct types of
the corresponding bimodules.
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We accomplish this section with the proof of Proposition 2.5 (1 ):

If a singular curve C is not VB-wild, then all its irreducible compo-
nents are rational curves.

Proof. Accordingly to Proposition 4.4 and Theorem 1.6, whenever a
curve C is not VB-wild, the irreducible components of C̃ are either
rational or elliptic curves. We show that the latter case is still impos-
sible.

Let C1, C2, . . . , Ct be the irreducible components of C̃ , Ok = OCk
.

Suppose there is a component C1 which is elliptic. As C is singular
and connected, there is a singular point e ∈ C which lies on π(C1) .
Consider the case when also e ∈ π(C2) for another component C2

(the other cases are even simpler to handle). Using Lemma 1.7, find

4 different points x1, . . . , x4 on C1 \ S̃ such that 2xi 6∼ xj + xk for

i 6= j , and a point y ∈ C2 \ S̃ . Consider the element u from El(U,F) ,
where F = k〈 z1, z2 〉 , defined as follows:

u ∈ U(B,A) , where

A = ⊕4
i=1Ai ⊗ F, where Ai = Õ(xi + iy) ,

B = 4F ⊗ F .

In this case u : B → A can be given by a set of 4×4 matrices up,k with
entries from (Okp/J ) ⊗ F , as such a matrix defines a homomorphism
Bp → Ap . Here p runs through S(C) and k = 1, 2, . . . t . We set all
components equal to the identity matrices except ue,2 which is




z1 z2 1 1
1 1 1 0
0 1 0 0
1 0 0 0


 .

Obviously, u ∈ Elc(U,F) . We shall prove that this element is strict.

The Riemann–Roch theorem [27] for the components Ci of C̃ im-
plies that Hom eO(Ai, Ai) ≃ kt (each direct factor reflects the multipli-

cation by scalars on the corresponding component of C̃ ). If i 6= j ,
homomorphisms from Hom eO(Ai, Aj) are zero on the component C1

and can be nonzero on C2 only if i < j and C2 ≃ P1 . If N ∈ F-mod ,
then A ⊗F N ≃ ⊕4

i=1Ai ⊗ N and B ⊗F N ≃ 4F ⊗ N . An element
u(N) can be obtained from u if we replace zk by the matrix Zk which
defines the multiplication with zk in N ( k = 1, 2 ) and replace 1 and
0 everywhere by the identity and zero matrices, respectively.

Suppose that N ′ is another F-module given by matrices Z ′
1, Z

′
2 . A

morphism from u(N) to u(N ′) is a pair of homomorphisms (f, g) ,
where f : 4F ⊗ N → 4F ⊗ N ′ and g : ⊕4

i=1Ai ⊗ N → ⊕4
i=1Ai ⊗ N ′ ,

such that gu(N) = u(N ′)f . Since the component ue,1 is the identity
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matrix, the component fp coincides with the restriction of g onto C1 ,
which is a block-diagonal matrix of the form

G1 =




G1 0 0 0
0 G2 0 0
0 0 G2 0
0 0 0 G2


 ,

where the blocks correspond to the direct summands Ai ⊗ N and
Ai ⊗N ′ . The restriction of g onto C2 is a block-triangular matrix

G2 =




A11 0 0 0
A21 A22 0 0
A31 A32 A33 0
A41 A42 A43 A44




such that G2ue,2(N) = ue,2(N
′)G1 . The last equality implies that

Aij = 0 if i 6= j , all matrices Gi and Ajj ( i, j = 1, 2, 3, 4 ) are
equal, and if G denotes their common value, then GZk = Z ′

kG for
k = 1, 2 . In particular, if u(N) ≃ u(N ′) , then also N ≃ N ′ , and if N
is indecomposable, i.e., has no nontrivial idempotent endomorphisms,
so is u(N) .

Moreover, if M ∈ VB(C,F) is the corresponding sheaf, one can
verify, just as in the proof of Theorem 1.6, that M(N) ≃ M(N ′)⊗OL
for some line bundle L if and only if N ≃ N ′ and L ≃ O . Hence,
the element u is strict and the curve C is VB–wild. �

5. Rationally composed curves and special bimodules

From now on we suppose that all components of C̃ are rational
curves (i.e., isomorphic to P1). In this case we say that the curve C
itself is rationally composed. Note that a rationally composed curve is a
line configuration if and only if all its singular points are simple nodes.
To find the VB-types of rationally composed curves, we introduce a
specific class of bipartite bimodules (called special bimodules).

First of all, consider the category L0 such that Ob L0 = Z (the
integers) and the set of morphisms is generated by morphisms xn : n→
n + 1 and yn : n → n + 1 subject to the relations: xn+1yn = yn+1xn

for all n ∈ Z . Let L be its additive hull. It is well known that L is
equivalent to the category of vector bundles over the projective line P1 :
the object n corresponds to the sheaf OP1(n) and the morphisms xn ,
respectively yn , correspond to the multiplication with x , respectively
y , the homogeneous coordinates on P1 . There is a natural shift σ on
L mapping n to n + 1 and we consider L as a shifted category with
the group of shifts Z ≃

{
σk | k ∈ Z

}
.

Definition 5.1. Special data consist of the following components:

(1) A finite dimensional commutative algebra R and a sub-algebra
S ⊂ R .
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Let R =
∏r

k=1 Rk and S =
∏s

j=1 Sj be their decompositions
into direct product of local algebras. Denote by J the set of
all pairs (k, j) such that SjRk 6= 0 .

(2) An equivalence relation ∼ on the set of local components of R

(indeed on the index set { 1, 2, . . . , r } ).
Let C be the set of equivalence classes of the relation ∼,
C = { c1, c2, . . . , ct } . For each class ci put R(i) =

∏
k∈ci

Rk .

Denote also by J the set of all pairs (i, j) such that (k, j) ∈ J

for some k ∈ ci .
(3) For each class ci ∈ C , two elements, ξi, ηi ∈ R(i) .

If k ∈ ci , denote by ξik , respectively ηik , the image of ξi ,
respectively ηi in the field K considered as the residue field
Rk/ radRk .

We impose the following restrictions on these data:

(1) S contains no nonzero ideal of R .
(2) For each k = 1, 2, . . . , r there exists a j such that SjRk 6= 0 .
(3) If k ∈ ci , then (ξik, ηik) 6= (0, 0) , so the point κ(i, k) = (ξik :

ηik) ∈ P1 is well defined, and if k′ ∈ ci, k
′ 6= k , then κ(i, k) 6=

κ(i, k′) .
(4) If J = J′∪J′′ such that (i, j) ∈ J′ implies (i, j′) /∈ J′′ for each

j′ as well as (i′, j) /∈ J′′ for each i′ , then either J′ or J′′ is
empty.5

We denote such data (somewhat ambiguously) by [R,S, ξ, η ] .

To special data [R,S, κ ], we associate a shifting bimodule U[R,S, κ ]
(called a special bimodule) in the following way.

Consider the category A = Lt , L as defined above. Its indecom-
posable objects are in one-to-one correspondence with the pairs (n, i) ,
where n ∈ Z , 1 ≤ i ≤ t and we identify them with such pairs. If
some object of A decomposes into a direct sum: A = ⊕k(nk, ik) , put
|A| = ⊕kR(ik) considered as a projective module over the algebra
R . Note that the endomorphism ring of the object (n, i) coincides
with k and the complete set of morphisms in A is generated by the
morphisms xni, yni : (n, i) → (n + 1, i) originated in the morphisms
xn, yn of L . Then A is a shifting category with the group of shifts
Σ = Zt = 〈 σi | 1 ≤ i ≤ t 〉 : the shift σi maps (n, i′) to (n+ δii′ , i

′) .
Now let B = Pr S ≃

∏s

j=1 Pr Sj , the category of finitely generated
projective S-modules. Its indecomposable objects are in one-to-one
correspondence with the indices j = 1, . . . , s and we identify them.
Here the endomorphism ring of the object j is Sj and there are no
morphisms between different indecomposable objects. We consider B

5This condition, some sort of connectedness, is not restrictive indeed, but we
prefer to impose it to simplify the definitions. In any case, we never need “non-
connected” data.
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as a shifting category with the same groups of shifts Σ but with all
shifts acting trivially.

Definition 5.2. Define the special B-A -bimodule U = U[R,S, κ ] ,
shifted and bipartite, with the same group Σ of shifts in the following
way:

U(j, (n, i)) = HomS(Sj ,R(i)) for each n;

xnif(n) = ξif(n+ 1) ;

ynif(n) = ηif(n+ 1) ;

σi′f(n) = f(n+ δii′) .

Here f(n) denotes a homomorphism f ∈ HomS(Sj ,R(i)) considered
as an element of U(j, (n, i)) (and we regard such homomorphisms with
different indices n as different elements of U ). Note that if (i, j) /∈ J ,
we have U(j, (n, i)) = 0 .

One can easily check that replacing the pair (ξi, ηi) with (aξi +

bηi, cξi + dηi) , where

(
a b
c d

)
is an invertible matrix, leads to an iso-

morphic shifting bimodule. Especially, if the algebra R (hence, also
S ) is semi-simple, this bimodule, up to isomorphism, only depends on
the equivalence relation ∼ , the set J and the points κ(i, k) ∈ P1 , the
latter defined up to a collineation of the projective line.

Now let Λ be a k-algebra. The objects from A⊗Λ are direct sums
of the form A =

⊕
k Ak ⊗ Pk , where Ak ∈ Ob A , Pk ∈ Pr Λ . Put

|A| =
⊕

k |Ak| ⊗ Pk and consider it as a projective R ⊗ Λ-module.
On the other hand, objects from B ⊗ Λ are indeed projective S⊗ Λ-
modules. Hence, to each element u ∈ UΛ(B,A) we can associate an
homomorphism |u| ∈ HomS⊗Λ(B, |A|) .

Call an element u ∈ UΛ(B,A) correct if it satisfies the following
conditions:

(1) B ≃ F ⊗ P for some free S-module F and some P ∈ Pr Λ.
(2) Ker |u| ⊆ (radS)B .
(3) Coker |u| is flat as Λ-module.
(4) The induced homomorphism |u|R : R ⊗S B → |A| is an iso-

morphism.

If u satisfies the conditions 2 and 3 above and the following one:

4′. |u|R is an epimorphism,

we call it semi-correct. Note that condition 3 is empty if Λ = k (i.e.,
for elements of U themselves).

Denote by Elc(U,Λ) and Elsc(U,Λ) respectively the full sub-categories
of El(U,Λ) consisting of all correct and of all semi-correct elements.
Evidently, both families are correct families in the sense defined in Sec-
tion 3. Therefore, we have for the bimodule U the notion of correctly
(or semi-correctly) finite, tame (bounded or unbounded) or wild.
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Special bimodules do naturally arise when we apply the procedure
of Section 4 to rationally composed curves. Namely, let C be such a

curve, C̃ be its normalization and C1, C2, . . . , Ct be the irreducible

components of C̃ . Fix isomorphisms Ck ≃ P1 . Then VB(C̃) ≃ L
t .

Put R = F̃ = Õ/J and S = F = O/J . Let S = { p1, p2, . . . , ps } be

the set of singular points of C and S̃ = { q1, q2, . . . , qr } the pre-image

of S in C̃. Then S =
∏s

j=1 Sj , where Sj = Fpj
, R =

∏r

k=1 Rk , where

Rk = F̃qk
, and all algebras Sj, Rk are local. Note that in this case

(k, j) ∈ J means that π(qk) = pj . Define the equivalence relation
on the indices 1, 2, . . . , r by putting k ∼ l if and only if qk and ql
belong to the same component of C̃ . We fix homogeneous coordinates
(xi : yi) on each component Ci , consider them as global sections of the
sheaf OCi

(1) and take for ξi, ηi their images in R(i) = OCi
/JOCi

≃
OCi

(1)/JOCi
(1) (then, in particular, κ(i, k) = qk ). Now the following

result is quite obvious.

Proposition 5.3. In the situation above [R,S, κ] are special data,
the special bimodule U[R,S, κ] is isomorphic to the bimodule U(C)
corresponding to the curve C via Proposition 4.5 and the notions of
correct and semi-correct elements for these bimodules coincide.

Example 5.4. Suppose that C is a rational irreducible curve with
one simple node p = p1 . Then C̃ = P1 , S̃ = { q1, q2 } and we may
suppose that the homogeneous coordinates are chosen such that q1 =
(1 : 0), q2 = (0 : 1) . The normalization π : C̃ → C is an isomorphism

outside S̃ and π(q1) = π(q2) = p . In this case S = Fp = k(p) ,

R = F̃p = k(q1) × k(q2) , J = { (1, 1), (1, 2) } and 1 ∼ 2 under the
equivalence relation ∼ . Hence, there is only one equivalence class
c1 under ∼ with R(1) = R , so A = L , B = vect and U(j, n) ≃
R ≃ k × k (we write n instead of (n, 1) for the objects of A , since
t = 1 ). Thus, if A = ⊕nkn ·n and B is a vector space of dimension k ,
then U(B,A) ≃

⊕
n Hom(k ·k(p), kn ·k(q1))×Hom(k ·k(p), kn ·k(q2))

and an element u ∈ U(B,A) can be considered as a set of matrices
{Xn, Yn |n ∈ Z } , where Xn and Yn are both of size kn × k . It is
convenient to identify u with the pair of matrices (X, Y ) , where

(5) X =




...
X−1

X0

X1
...



, Y =




...
Y−1

Y0

Y1
...



.

Such an element is correct if and only if both matrices X, Y are in-
vertible. It is semi-correct if and only if rkX = rkY =

∑
n kn and

rk

(
X
Y

)
= k .
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Let u′ be another element described by the set of matrices {X ′
n, Y

′
n }

of size ln × l and let X ′, Y ′ be the corresponding matrices of the form
(5). A morphism ϕ in El(U) from u to u′ is given by three matrices,
TX , T Y , R , where R is of size l× k and TX , T Y are lower triangular
of the form

TX =




. . .
...

...
... · · ·

. . . T−1,−1 0 0 . . .

. . . TX
0,−1 T00 0 . . .

. . . TX
1,−1 TX

10 T11 . . .

· · ·
...

...
...

. . .




and

T Y =




. . .
...

...
... · · ·

. . . T−1,−1 0 0 . . .

. . . T Y
0,−1 T00 0 . . .

. . . T Y
1,−1 T Y

10 T11 . . .

· · ·
...

...
...

. . .



,

where TX
mn and T Y

mn are both of size lm ×kn , such that TXX = X ′R
and T Y Y = Y ′R . Note that the diagonal blocks of TX and T Y are
equal. Of course, ϕ is an isomorphism if and only if R and all diagonal
blocks Tnn are invertible.

6. Representation type of special bimodules

Now we are going to describe the representation types of special
bimodules and hence the VB-types of rationally composed curves. This
will accomplish the proofs of Theorems 2.8, 2.11 and 2.12. In what
follows, we always use Definitions 5.1 and 5.2, as well as the notations
introduced there.

Step 6.1. If the algebra R is non-semi-simple, then the shifting bi-
module U = U[R,S, κ ] is correctly (hence also semi-correctly) wild.

For a rationally composed curve C this means, whenever C is not
VB-wild, that for every singular point p , F̃p ≃ km where m is the
cardinality of the preimage π−1(p) . In other words, p is a simple
k-fold point, where k is the number of branches passing through p .

Proof. Note first that there are no morphisms in A from (i, n) to
(i, n′) if n > n′ . Hence, verifying the second condition of the definition
of a strict element from Section 3 we may always suppose that σ = 1 .

We consider in details the most complicated case when r = 1 (i.e.,
R and thus S are both local). In other cases the corresponding con-
structions are either analogous or even easier and we omit them. We
write (n) for the object (n, 1) ∈ A . In this case U(S, (n)) ≃ R and
we write â , where a : (n) → (m) , for a · 1 . Choose an element
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α ∈ radR such that αR is a minimal ideal. Then α radR = 0, and
dimk αR = 1 , therefore, α /∈ S . Decompose R = k ⊕ αR ⊕ W ,
S = k ⊕ J , where J = radS , W ⊂ radR . W need not be an ideal,
but Wα = 0 .

We are going to construct a correct and strict element from U
Γ ,

where Γ is the path algebra of the following quiver:

5
z5−−−→ 4

z4−−−→ 3

z3

y
yz2

2 −−−→
z1

1

which is wellknown to be wild [10, 31]. Indeed, a strict representation
M of Γ over the free algebra F = k〈 x1, x2 〉 can be given as follows:

M(1) = M(5) = 2F, M(2) = M(3) = 3F, M(4) = 5F;

M(z1) =

(
1 0 0
0 1 0

)
, M(z2) =

(
x1 x2 1
1 0 0

)
,

M(z3) =




1 0 1 0 0
0 1 0 1 0
0 0 0 0 1



 ,M(z4) =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1



 ,

M(z5) =




1 0
0 1
0 0
0 0
0 0



.

We denote by ek the idempotent in Γ corresponding to the vertex
k (the empty path starting and ending at this vertex), Pk = ekΓ . Any
arrow z : k → l defines a homomorphism Pk → Pl , namely, the left
multiplication by z . We denote this homomorphism by the same letter
z . Set:

A =(0, 1) ⊗ (P3 ⊕ P1) ⊕ (1, 1) ⊗ (P1 ⊕ P2)⊕

⊕ (2, 1) ⊗ (P3 ⊕ P4) ⊕ (3, 1) ⊗ P5,

B =S⊗ (P3 ⊕ P1 ⊕ P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ P5),

u ∈U
Γ(B,A) given by the matrix:



1 0 0 0 α 0 0
0 1 α 0 0 0 0
0 0 1 αz1 αz2 0 0
0 0 0 1 0 αz3 0
0 0 0 0 1 αz4 0
0 0 0 0 0 1 αz5
0 0 0 0 0 0 1
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(we write γb for the tensor product γ ⊗ b , where γ : S → R , b :
Pk → Pl ). It is obviously correct since |u| coincides modulo radical
with the natural embedding S2 ⊗P → R2 ⊗P , where P = P3 ⊕P1 ⊕
P1 ⊕ P2 ⊕ P3 ⊕ P4 ⊕ P5 We shall prove that it is strict.

Let N be a Γ-module, Nk = ekN , nk = dimkNk and Zm be
the matrices describing the multiplication by zm : k → l as a linear
mapping Nk → Nl . Then

A⊗Γ N ≃(0, 1)n3+n1 + (1, 1)n1+n2 + (2, 1)n3+n4 + (3, 1)n5,

B ⊗Γ N ≃Sn3+n1+n1+n2+n3+n4+n5

and u(N) can be identified with the matrix




I 0 0 0 αI 0 0
0 I αI 0 0 0 0
0 0 I αZ1 αZ2 0 0
0 0 0 I 0 αZ3 0
0 0 0 0 I αZ4 0
0 0 0 0 0 I αZ5

0 0 0 0 0 0 I




.

Suppose that another Γ-module N ′ is given by the matrices Z ′
m and

ϕ : u(N) → u(N ′) is given by a pair of block matrices, X = (Xkl)
and Y = (Ykl) , k, l = 1, . . . , 7 : X defines a homomorphism A ⊗Γ

N → A ⊗Γ N
′ , Y defines a homomorphism B ⊗Γ N → B ⊗Γ N

′ ,
so that Xu(N) = u(N ′)Y . Since A((n, 1), (n′, 1)) = 0 if n > n′ ,
Xkl = 0 if l > k + 1 or k is even and l > k . Moreover, if k = l or
{ k, l } ∈ { { 1, 2 } , { 3, 4 } , { 5, 6 } } , Xkl has entries from k .

Decompose X̂kl = X0
kl + αX ′

kl + X ′′
kl and Ykl = Y 0

kl + Y ′
kl , where

X0
kl, X

′
kl, Y

0
kl are with entries from k , X ′′

kl from W and Ykl from J .
Since u(N) ≡ u(N ′) ≡ I (mod α) , X0

kl = Y 0
kl . Consider the equalities

of the following blocks from Xu(N) and u(N ′)Y :

(14) : 0 = Y14 + αY54;

(24) : 0 = Y24 + αY34;

(16) : 0 = Y16 + αY56;

(21) : X0
21 = Y21 + αY31;

(34) : αX0
33Z1 +X0

34 = Y34 + αZ1Y44 + αZ2Y54;

(35) : αX31 + αX0
33Z2 = Y35 + αZ1Y45 + αZ2Y55;

(46) : αX0
44Z3 = Y46 + αZ3Y66;

(56) : αX54Z3 + αX0
55Z4 +X0

56 =;

(67) : αX0
66Z5 = Y67 + αZ5Y77.
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Remind that αW = αJ = 0 and αR ∩ W = αR ∩ J = { 0 } .
Therefore, the (14)-equation implies that Y 0

54 = X0
54 = 0 , the (24)-

equation implies that Y 0
34 = X0

34 = 0 , the (16)-equation implies that
Y 0

56 = X0
56 = 0 , and the (21)-equation implies that Y 0

31 = X0
31 = 0 .

Now the other equations give:

(34) : X0
33Z1 = Z1X

0
44;

(35) : X0
33Z2 = Z2X

0
55;

(46) : X0
44Z3 = Z3X

0
66;

(56) : X0
55Z4 = Z4X

0
66;

(67) : X0
66Z5 = Z5X

0
77.

It means that the set of matrices X0
kk with k = 3, 4, 5, 6, 7 defines a Γ-

homomorphism ψ : N → N ′ . If ϕ is isomorphism, all these matrices
must be invertible, hence, N ≃ N ′ ; if ϕ is a non-trivial idempotent, so
is ψ , hence, u(N) and N decompose simultineously. Therefore, the
element u is strict. Since the algebra Γ is wild, the same observation
as in Proposition 1.5 shows that the bimodule U is correctly wild. �

For the rest of the section suppose R (and hence S ) to be semi-
simple. In this case condition 2 from the definition of correct or semi-
correct elements means that |u| is a monomorphism. For each i =
1, . . . , t , let mi be the number of such j that (k, j) ∈ J for some k ∈
ci . On the other hand, for each j = 1, . . . , s , let lj be the number of
such k that (k, j) ∈ J . Note that we always have lj > 1 . Otherwise,
there is a unique index k such that (k, j) ∈ J with dimRk = 1 . But
then Sj ⊆ Rk , hence, Sj = Rk , which contradicts condition 1 of the
definition of special data. On the other hand, as SjSj′ = 0 for j 6= j′ ,
(k, j) ∈ J implies (k, j′) /∈ J for j 6= j′ .

Step 6.2. If lj0 > 2 for some j0 , the shifting bimodule U is correctly
(hence also semi-correctly) wild.

For a rationally composed curve C this means that, whenever C
is not wild, π−1(p) consists of two points for every singular point p .
In other words, p is a simple node, so it accomplishes the proof of
Proposition 2.5.

Proof. Suppose there are 3 indices k1, k2, k3 such that (kq, j0) ∈ J for
q = 1, 2, 3 . Put B = S4 ⊗ F and

A =

(
t⊕

i=1

⊕3
m=0(i, n+m)

)
⊗ F

for some (arbitrary) n ∈ Z . Note that now HomS(Sj,Rk) ≃ k for
(k, j) ∈ S . Hence, the elements from UF(B,A) can be regarded as sets
of 4 × 4 matrices { ukj | (k, j) ∈ J } , ukj having entries in Rk ⊗ F .
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Now take u such that all its components are identity matrices except
for the next two:

uk1j0 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

uk2j0 =




1 1 z1 z2
0 1 1 0
0 0 1 1
0 0 0 1


 .

Just as in Step 6.1, some easy straightforward calculation, which we
omit, shows that u is indeed a strict element. �

Steps 1 and 2 above accomplish the proof of Proposition 2.5. Indeed,
if the special bimodule U[R,S, κ] corresponds to a rationally composed
curve C as described in Section 5, page 35, then R is semi-simple if

and only if Õq/Jq = k for every preimage q ∈ C̃ of every singular
point p ∈ C . Furthermore, the condition lj ≤ 2 for all j holds if and

only if every singular point p ∈ C has at most 2 preimages in C̃ . But
altogether it means that all singular points are indeed simple double
points.

Suppose now that lj ≤ 2 (hence lj = 2 ) for each j . Then the pair
S ⊂ R , together with the equivalence relation ∼ , can be completely
described by its diagram ∆ = ∆[R,S,∼ ] . The vertices of ∆ are just
the indices i = 1, . . . , t , its edges are the indices j = 1, . . . , s and an
edge j is incident to a vertex i if and only if (k, j) ∈ J for some
k ∈ ci . In the case where j is incident to a unique i (then, of course,
dimRi = 2 ), consider j as a loop at the vertex i .

Of course, given any graph ∆ , non-oriented but possibly with loops
and (or) multiple edges, we can restore some pair S ⊂ R and an
equivalence relation ∼ (with semi-simple R and all lj = 2 ) such that
∆ is just their diagram. So, to obtain a special data of this kind, we
need only a graph and a function κ . Therefore, we call such data and
the corresponding bimodule graphical.

As we have already noted, graphical data correspond to line config-
urations (cf. Section 2). Moreover, if a graphical bimodule U with
the graph ∆ corresponds to a line configuration C , then ∆ coincides
with the dual graph of C . So the next Step accomplishes the proof of
Proposition 2.7 and hence of Theorem 2.8. Moreover, the description
of all indecomposable elements in Cases 1 and 2 below also gives a de-
scription of indecomposable sheaves on the corresponding curves. One
can easily see that this description coincides with Theorems 2.11 and
2.12.
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Step 6.3. Graphical data with the diagram ∆ are:

(1) Finite (hence also semi-correctly and correctly finite) if ∆ is a
Dynkin diagram of type A , i.e., a chain.

(2) Tame (hence also semi-correctly and correctly tame) if ∆ is an

extended Dynkin diagram of type Ã , i.e., a cycle (possibly, one
vertex with one loop). Moreover, in this case they are correctly
(hence, semi-correctly and “absolutely” 6 ) unbounded.

(3) Correctly (hence also semi-correctly and “absolutely”) wild oth-
erwise.

Note that in the first two cases mi ≤ 2 for each i = 1, 2, . . . , r (in
particular, each equivalence class ci consists of at most two elements).
Hence, the graph ∆ determines the bimodule U up to isomorphism
(as any pair of points of a projective line can be moved to any other
pair by a collineation).

Proof. Case 1 is very simple. Put Rkj = RkSj for (k, j) ∈ J . All
these spaces are one-dimensional, hence, we may identify them with
k . Moreover, s = t − 1 and we can arrange the indices in such a
way that the edge i is incident to the vertices i and i + 1 for each
i = 1, . . . , t−1 . Then one checks immediately that the indecomposable
elements of Elsc(U) are in one-to-one correspondence with the finite
sequences s of integers of the form:

s = (m, r; δ0, δ1; d1, d2, . . . , dr) ,

where 1 ≤ m ≤ t , 0 ≤ r ≤ t − m + 1 and both δ0 and δ1 are
either 0 or 1 , while di is arbitrary; moreover, if m = 1 , then δ0 = 1 ,
if r = t − m + 1 , then δ1 = 0 , and if r = 0 , then δ0 = δ1 = 1 .
Namely, the element u = u(s) corresponding to such a sequence lies
in U(B,A) , where

A = ⊕r
i=1(m+ i− 1, di) ,

B = ⊕r+δ1
i=δ0

Sm+i−1 ,
(6)

and all components of u are equal to 1 . Certainly, such an element

equals σd0

mσ
d1

m+1 . . . σ
dm+r−1

m+r−1 u
′ , where u′ corresponds to the sequence

s′ with the same values of m, r, δ0, δ1 but with all n′
i = 0 . So the

bimodule U is finite. Note that the element u(s) is semi-correct if
and only if either δ0 = 0 or m = 1 and, moreover, either δ1 = 1 or
r = t−m+1 . This element is correct if and only if m = 1 and r = t .

Case 2. Here s = t and we can arrange the indices in such a way
that the edge i is incident to the vertices i and i+ 1 (we define the
vertex t + k to be the same as the vertex k ). This case fits into the
framework of “bunches of chains” (cf. [6] or Appendix A).

6i.e., without any restrictions, cf. Definition 3.6, page 25
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Namely, in our case the underlying index set I is just the set of
pairs { (i, i), (i, i+ 1) | i = 1, 2, . . . , t } . We set, for each pair (i, j) ∈ I ,
Eij = Z (with natural ordering) and Fij = { oij } (a single element).
To distinguish the elements from different Eij we write them in the
form n(i, j) with n ∈ Z , (i, j) ∈ I . The equivalence relation on
the union of all Eij and Fij is given by the rule: n(i, j) ∼ n(i, j′)
and oij ∼ oi′j for all possible values of i, i′, j, j′ . Then one can verify
that the bimodule corresponding to this bunch of chains coincides with
the graphical bimodule corresponding to the graph ∆ . Hence, we can
use the results of [6] (cf. also Appendix B) to obtain a complete list of
indecomposable elements. Taking into account the shape of this bunch,
we can rearrange strings and bands defined in Appendix B as follows.

String representations are very similar to the representations of the
previous case. They correspond to string data, i.e., sequences of inte-
gers:

s = (m, r; δ0, δ1; d1, d2, . . . , dr) ,

where 1 ≤ m ≤ t , r ≥ 0 and both δ0 and δ1 is either 0 or 1 , while di

are arbitrary. The corresponding element u(s) lies in U(A,B) , where
A and B are defined by formulae (6) if we put (nt+ j, k) = (j, k) and
Snt+j = Sj for each n . The nonzero components of u are only those
belonging to U(Sm+i−1, (m + i − 1, di)) , except for i = 1 if δ0 = 1 ,
and U(Sm+i, (m + i − 1, di)) , except for i = r if δ1 = 0 . All these
components are equal to 1 . A string element is semi-correct if and
only if r > 0 and δ0 = 0, δ1 = 1 . It is never correct.

Band representations correspond to band data, which are triples
b = (d, n, λ), where n is a positive integer, λ ∈ k∗ and d is a se-
quence of integers (d1, d2, . . . , dtr) which is t-aperiodic, i.e., is not a
multiple self-concatenation of a shorter sequence whose length is also
divisible by t .

The corresponding element ub = u(d, n, λ) lies in U(A,B) for

A = ⊕tr
i=1n(i, di) ,

B = ⊕tr
i=1nSi ,

Its nonzero components are those belonging to U(Si, (i, di)) and
U(Si+1, (i, di)) , which are given by unit matrices of dimension n , and
the component belonging to U(S1, (tr, dtr)) , which is given by the Jor-
dan cell of dimension n with the eigenvalue λ . All band elements are
correct.

All string elements are pairwise non-isomorphic. The isomorphic
band elements are those corresponding to the triples (d, n, λ) and
(d′, n, λ) , where d′ is a t-cyclic permutation of d , i.e., d′ = (dtl+1, dtl+2,
. . . , dtl) .

As string and band elements exhaust all indecomposable elements of
U , this bimodule is tame. Moreover, the band elements u(d, 1, T ) ∈
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El(U,k[T, T−1]) form a parametrising family of elements of U . But
their number grows with r . For instance, consider the band elements
corresponding to sequences dr,l of length rt having all components
0 except the first and the (tl + 1)-st ones, which are equal to 1 . If
l ≤ [ r

2
] these band elements are pairwise non-isomorphic even up to

shift and there are [ r
2
] of them. Hence, U is correctly unbounded.

Example 6.4. We present here the explicit view of string and band
elements for the case s = 1 , which corresponds to the irreducible
rational curve with one simple node, see Example 5.4. We use the no-
tations of matrices Xn, Yn, X, Y from the latter example (page 35).
To simplify the shape, it is convenient to make common permutations
of rows of the matrices X, Y , even if they belong to different blocks
Xn, Yn . A semi-correct string element is completely defined by a se-
quence (d1, d2, . . . , dr) , since always m = 1 and δ0 = δ1 = 1 for a
semi-correct string. Then the corresponding matrices are the follow-
ing:

X =




1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0


 , Y =




0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1


 ,

where the ith row of X or Y belongs to Xdi
or Ydi

, respectively.
The matrix X corresponding to a band (d, n, λ) is the identity

matrix of size nr × nr and the matrix Y is the following:

Y =




0 0 0 . . . 0 J
I 0 0 . . . 0 0
0 I 0 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . I 0



,

where I is the identity matrix of size n×n and J is the Jordan matrix
of the same size with eigenvalue λ . The rows of the ith block of Y
and the corresponding rows of X belong to Ydi

and Xdi
, respectively.

Case 3. Suppose that ∆ is neither a chain nor a cycle. Then it
contains a vertex i0 incident either to at least three edges or to a loop
and to at least one more edge. We consider the former situation (the
latter can be treated in the same way). Let jk ( k = 1, 2, 3 ) be three
edges incident to the vertex i0 . Denote the second end of the edge jk
by ik (some of ik may be equal). We put again B = S⊗ F ,

A =

(
t⊕

i=1

⊕3
k=0(i, n + k)

)
⊗ F
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for some (arbitrary) n and take u , all of whose components are iden-
tity matrices except for the next three:

ui0j1 = ui0j2 =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0


 ,

ui0j3 =




0 0 0 1
0 0 1 1
0 1 1 z1
1 1 0 z2


 .

Again some easy straightforward calculation, which we omit, shows
that u is a strict element. �

Appendix A. Some problems

A.1. Classification of coherent sheaves. The question naturally
arises, whether it is possible to classify all coherent sheaves on VB–
finite and VB–tame curves, including both sky-scrapers and mixed
sheaves (i.e., non-trivial extensions of sky-scrapers with torsion-free
ones). It seems possible, as all singularities are just simple nodes, thus
the classification of sky-scrapers can be obtained from [23, 32]. It is
clear that no curve can be of finite type with respect to the classifica-
tion of all coherent sheaves, since support of a sky-scraper sheaf can
vary along the curve, which gives rise to a one-dimensional family of
non-isomorphic sheaves.

After this article was prepared for publication, I. Burban obtained a
description of the derived categories of coherent sheaves on line config-

urations of types A and Ã . It includes, in particular, information on
coherent sheaves and on the question mentioned above.

A.2. Simple and stable vector bundles. Another question is to
distinguish simple vector bundles B , i.e., such that EndB = k . It is
important, for instance, as such bundles provide new solutions of the
Yang–Baxter equations (cf. [34]). For VB–finite curves, all indecom-
posable vector bundles are obviously simple. On the other hand, for
VB–tame singular curves, only vector bundles B(d,1,λ) can be (although
not all of them are) simple: if n > 1 , the vector bundle B(d,n,λ) has
non-trivial endomorphisms corresponding to matrices commuting with
the Jordan cell.

If a vector bundle B is stable, it must be simple. Indeed, other-
wise there is a nonzero, non-invertible endomorphism α of B . Then
B′ = Imα is both a subsheaf and a factor-sheaf of B , hence, both
inequalities slopeB′ ≥ slopeB and slopeB′ < slopeB are impossible

if B is stable. Here slopeB =
degB

rkB
(cf. [30, 38]). We do not know
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whether all simple vector bundles are stable for VB–tame curves, nor
which vector bundles are stable. Some recent results on this problem
can be found in [39].

For n > 1 vector bundles B(d,n,λ) are multiple extensions of B(d,1,λ) .
Therefore, they are semi-stable if and only if the latter is stable. As
was mentioned before, B(d,n,λ) is never stable if n > 1 .

A.3. Semi-continuity. Let C be a projective curve, r a positive
integer and d some vector-degree of vector bundles over C (cf. Def-
inition 1.2). Consider a family of vector bundles M ∈ VB(C,Λ) with
DegM = d and rkM = r , where Λ is the coordinate ring of an affine
variety V . Denote by VB(C, r,d) the set of all such families (for all
possible V ). For any point v ∈ V , M(v) = M⊗Λ k(v) is a vector
bundle of rank r and vector-degree d over C . Set, for v ∈ V ,

V (v,M) = {w ∈ V |M(w) ≃ M(v) } , where v ∈ V.

It can be shown that V (v,M) is a constructible set, hence, the fol-
lowing definitions make sense:

Vk(M) = { v ∈ V | dimV (v,M) = k } ;

par(M) = max { dimVk(M) − k | k ≥ 0 } ;

and

par(C, r,d) = max { par(M) |M ∈ VB(C, r,d) } .

The latter number, the number of parameters, can be considered as
the maximal dimension of a family of non-isomorphic vector bundles
of rank r and vector-degree d over the given curve C .

The question arises, how the number of parameters varies if we de-
form the curve.

Conjecture. Suppose that C is a family of projective curves with base
X . Then the function x → par(C(x), r,d) is semi-continuous on X ,
i.e., all sets {x ∈ X | par(C(x), r,d) ≥ k } are closed in X .

Recall that such a semi-continuity was proved in [29] for Cohen–
Macaulay modules over curve singularities, in [17, 22] for representa-
tions of finite dimensional algebras and in [17] for Cohen–Macaulay
modules over non-commutative Cohen–Macaulay algebras of Krull di-
mension 1. The solution of this problem for vector bundles over pro-
jective curves is of interest, for instance, for investigation of Cohen–
Macaulay modules over surface singularities, in view of [28, 18].

A.4. Relation to finite dimensional algebras. There exists an amaz-
ing correspondence between rationally composed curves and some finite
dimensional algebras. Suppose C is a rationally composed curve such

that the algebra F̃ is semi-simple, i.e., all branches at every singular
point have different tangents. Then C can be completely described

by its normalization C̃ , the set S of its singular points (just a finite
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set), its pre-image S̃ ⊂ C̃ and the projection π : S̃ → S . Define the
corresponding algebra A = A(C) by its diagram Γ = Γ(C) (quiver)
and relations as follows.

Let C̃ = ∪t
i=1Ci , where Ci ≃ P1 , S = { p1, p2, . . . , ps } and π−1(pj)∩

Ci = { qijk | 1 ≤ k ≤ mij } for each j . Then Γ has 2t+ s vertices
{ ai, bi, cj | 1 ≤ i ≤ t, 1 ≤ j ≤ s } . There are two arrows xi, yi : ai → bi
and mij arrows zijk : cj → ai . The defining relations for these arrows
are:

ξijkxizijk = ηijkyizijk, where qijk = (ξijk : ηijk) .

Then the following theorem holds.

Theorem A.1. The algebra A(C) is tame (wild) if and only if the
curve C is VB-tame (VB-wild).

The proof is quite easy and straightforward, so we only sketch it. For
each i = 1, 2, . . . , t the sub-algebra generated by xi, yi is a Kronecker
algebra, for which all representations are known. So we can reduce
all these arrows and then get a bimodule problem for the remainder.
The observation is that this bimodule problem “almost coincides” to
that corresponding to the curve C , as in Section 5. At least, it is not
simpler, which implies the “only if” part of the theorem. But if C
is not VB-wild, the points qijk can always be chosen as (1 : 0) or
(0 : 1) . In this case the resulting algebra A is a string algebra, so its
representations are described in [40, 7].

Indeed, in the tame case the algebra A is a gentle algebra in the
sense of [1]. So, its derived category of modules is also tame as it has
been shown in [36, 5]. It is very plausible that there is some relation
between this derived category and the derived category of coherent
sheaves over the curve C , although these derived categories cannot be
equivalent, since the global dimension of the category A-mod is finite,
while that of Coh(C) is infinite. Perhaps further investigation of them
could give more a intrinsic explanation of Theorem A.1, which does
not involve explicit calculations.

Appendix B. Bunches of chains

Here we recall some definitions and results related to the bunches of
chains considered by Bondarenko in [6]. We rearrange the definitions
to make them more convenient for our purpose and consider only the
case of chains (not semi-chains) as we need only this one and it is
technically much easier. Note that almost the same class of matrix
problems was considered in [9] as “representations of clans,” though
both the encoding of the problem and the form of the answer from [6]
is more convenient for our purpose.

Definition B.1. A bunch of chains C = { I, Ei, Fi,∼} is defined by
the following data:

(1) A set I of indices.
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(2) Two chains (i.e., linear ordered sets) Ei and Fi given for each
i ∈ I .
Put E =

⋃
i∈I
Ei , F =

⋃
i∈I
Fi and |C| = E ∪ F .

(3) An equivalence relation ∼ on |C| such that each equivalence
class consists of at most 2 elements.

We also write a − b if a ∈ Ei , b ∈ Fi or vice versa (with the same
index i ). Moreover, we consider the ordering on |C| , which is just
the union of all orderings on Ei and Fi (i.e., a < b means that a, b
belong to the same chain Ei or Fi and a < b in this chain).

If a bunch of chains C = { I, Ei, Fi,∼} is given, define the cor-
responding category A = A(C) and the corresponding A-bimodule
U = U(C) as follows:

• The objects of A are the equivalence classes of |C| with respect
to ∼ .

• If x, y are two such equivalence classes, a basis of the morphism
space A(x, y) consists of elements pab with b ∈ x, a ∈ y, b < a
and, if x = y , the identity morphism 1x .

• The multiplication is given by the rule: pabpbc = pac if c < b <
a , while all other possible products are zeros.

• A basis of U(x, y) consists of elements uab with a ∈ y ∩ E ,
b ∈ x ∩ F .

• The action of A on U is given by the rule: pcauab = ucb if
a < c ; uabpbd = uad if d < b , while all other possible products
are zeros.

The category of representations of the bunch C is then defined as
the category El(U) of the elements of this bimodule. In other words,
a representation is a set of block matrices

Mi =




. . . . . . . . . . . . .
. . . Mab . . .
. . . . . . . . . . . . .



 , i ∈ I, a ∈ Ei, b ∈ Fi, Mab ∈ Mat(na×nb,k).

such that x ∼ y implies nx = ny . Two representations are isomorphic
if and only if they can be obtained from one another by a sequence of
the following elementary transformations:

• elementary transformations of rows (columns) in each horizon-
tal (vertical) stripe; it means that they are performed simulti-
neously in all matrices Mab with fixed a ( b ); moreover, if
x ∼ y , the transformations of the x-stripe must be the same
as those of y-stripe (if one of them is horizontal and the other
is vertical, then “the same” certainly means “contragredient”);

• if x < y , then scalar multiples of rows (columns) of the x-stripe
can be added to rows (columns) of the y-stripe.
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For instance, the matrix problem arising from the rational curve with
one simple double point (Example 5.4) coincides with the representa-
tions of the following bunch of chains:

I = { 1, 2 } ,

E1 = { an |n ∈ Z } , E2 = { bn |n ∈ Z } ,

the order in both Ei coincides with the natural order for indices,

F1 = { 1 } , F2 = { 2 } ,

ai ∼ bi for all i ∈ Z, 1 ∼ 2.

In particular, this definition coincide with that from [6]. Note that
in [6] a more general situation was investigated, but we need only this
case, which is essentially simpler than the general one. The following
result is the specialization of the description of the representations
given in [6] to our case, although it can be obtained directly using
the same recursive procedure. First define some combinatorial objects
called “strings” and “bands.”

Definitions B.2. Let C = { I, Ei, Fi,∼} be a bunch of chains.

(1) A C-word is a sequence w = a0r1a1r2a2 . . . rmam , where ak ∈
|C| and each rk is either ∼ or − , such that, for all possible
values of k :
(a) ak−1rkak in |C| .
(b) ak 6= ak+1 and rk 6= rk+1 .
Possibly m = 0 , i.e., w = a for some a ∈ C .

(2) If am = a0 , r1 =∼ and rm = − call the word w a C-cycle.
Note that in this case m is always even.

(3) Call a C-word full if, whenever a0 is not a unique element in
its equivalence class, then r1 =∼ and whenever am is not a
unique element in its equivalence class, then rm =∼ .

(4) Call a C-cycle w = a0r1a1r2a2 . . . rmam aperiodic if the se-
quence a0r1a1r2a2 . . . rm cannot be written as a multiple self-
concatenation vv . . . v of a shorter sequence v .

(5) We say that an equivalence class x occurs in a word w if w
contains a sub-word a in case x = { a } is a singleton, or either
a sub-word a ∼ b or a sub-word b ∼ a in case x = { a, b }
with a 6= b . In the former case we say that this occurrence
corresponds to the occurrence of a , while in the latter case we
say that it corresponds to both the occurrence of a and to the
occurrence of b . Denote by ν(x, w) the number of occurrences
of x in w .

Definition B.3. For a C-word w = a0r1a1r2a2 . . . rmam call its ∼-
sub-word any sub-word of the form v = a ∼ b as well as that of the
form v = a , where a ∈ C is unique in its equivalence class. In the
latter case put |v| = { a } , while in the former case put |v| = { a, b } .
Denote by [w] the collection of all ∼-sub-words of w .
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Note that if w is a cycle it contains no entries a ∈ C such that a
is unique in its equivalence class.

Definition B.4. For any full C-word w = a0r1a1r2a2 . . . rmam define
the corresponding string representation u = us(w) of the bunch C as
follows.

(1) u ∈ U(A,A) , where A =
⊕

v∈[w] |v| .

(2) Suppose there is a sub-word v1 − v2 in w with vi ∈ [w] . Let
a be the right end of the word v1 and b be the left end of the
word v2 . Then U(A,A) has a direct summand U(|v1|, |v2|) ⊕
U(|v2|, |v1|) and we define the corresponding components of u
to be (0, uab) if a ∈ E and (uba, 0) if a ∈ F .

(3) All other components of u are defined to be zero.

Definition B.5. For any triple (w, d, λ) , where w is an aperiodic
C-cycle, d is a positive integer and λ ∈ k∗ = k \ { 0 } , define the
corresponding band representation u = ub(w, d, λ) of the bunch C as
follows.

(1) u ∈ U(A,A) , where A =
⊕

v∈[w] d|v| .

(2) Suppose there is a sub-word v1 − v2 in w with vi ∈ [w] . Let
a be the right end of the word v1 and b be the left end of the
word v2 . Then U(A,A) has a direct summand

U(d|v1|, d|v2|) ⊕ U(d|v2|, d|v1|) ≃

Mat (d× d,U(|v1|, |v2|)) ⊕ Mat (d× d,U(|v2|, |v1|))

and we define the corresponding components of u to be (0, uabI)
if a ∈ E and (ubaI, 0) if a ∈ F , where I denotes the identity
matrix.

(3) Now let v1 be the last and v2 be the first ∼-sub-word in w
(they may coincide), a be the right end of the word v1 and
b be the left end of the word v2 . Again U(A,A) has a direct
summand

U(d|v1|, d|v2|) ⊕ U(d|v2|, d|v1|) ≃

Mat (d× d,U(|v1|, |v2|)) ⊕ Mat (d× d,U(|v2|, |v1|))

and we define the corresponding components of u to be (0, uabJ)
if a ∈ E and (ubaJ, 0) if a ∈ F , where J denotes the Jordan
cell of dimension d with the eigenvalue λ .

(4) All other components of u are defined to be zero.

Now the main result of [6] is the following.

Theorem B.6. (1) All representations us(w) and ub(w, d, λ) de-
fined above are indecomposable and each indecomposable repre-
sentation of C is isomorphic to one of these representations.

(2) The only possible isomorphisms between these representations
are the following:
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(a) us(w) ≃ us(w
′) if w = a0r1a1 . . . rmam and w′ = amrmam−1

. . . r1a0 , the reversed word.
(b) ub(w, d, λ) ≃ ub(w

′, d, λ′) if w = a0r1a1 . . . rmam , w′ =
a2k r2k+1a2k+2 . . . r2ka2k is a cyclic permutation of w, and
λ′ = λ for k even, while for k odd λ′ = λ−1 .

(c) ub(w, d, λ) ≃ ub(w
′, d, λ′) if w = a0r1a1 . . . rmam , w′ =

a2k+1 r2k+1a2k . . . r2k+2a2k+1 is a cyclic permutation of the
reversed word, and λ′ = λ for k odd, while for k even
λ′ = λ−1 .

Corollary B.7. For any bunch of chains C the bimodule U(C) is
tame (finite if there are no C-bands at all). Moreover, a parametrising
set for its elements consists of all band representations ub(w, 1, T ) ∈
El(U,k[T, T−1]) .
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(1987) 269–290.
[2] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc. 7

(1957) 414–452.
[3] M. Auslander and I. Reiten, Almost split sequences in dimension two, Adv.

Math., 66 (1987) 88–118.
[4] R. Bautista, P. Gabriel, A. V. Roiter, L. Salmerón, Representation–finite alge-

bras and multiplicative basis, Invent. Math., 81 (1985) 217–285.
[5] V. I. Bekkert and H. Merklen, Indecomposables in derived categories of gentle

algebras, to appear in Algebras and Representation Theory.
[6] V. V. Bondarenko, Representations of bundles of semi-chained sets and their

applications, Algebra i Analiz 3, #5 (1991) 38–61 (English translation: St. Pe-
tersburg Math. J. 3 (1992) 973–996).

[7] M. C. R. Butler and C. M. Ringel, Auslander–Reiten sequences with few middle

terms and applications to string algebras, Commun. Algebra, 15 (1987) 145–179.
[8] P. M. Cohn, Free Algebras and Their Relations, Academic Press, London, 1985.
[9] W. Crawley-Boevey, Functorial filtrations, II. Clans and the Gelfand problem,

J. Lond. Math. Soc., 1 (1989) 9–30.
[10] P. Donovan and M.-R. Freislich, The representation theory of finite graphs and

associated algebras, Carleton Lecture Notes in Math., 5, Ottawa, 1973.
[11] Yu. A. Drozd, Matrix problems and categories of matrices, Zapiski Nauchn.

Semin. LOMI 28 (1972) 144–153 (English translation: J. Soviet Math., 3 (1975)
692–699).

[12] Yu. A. Drozd, Representations of commutative algebras, Funkc. Anal. Prilozh.,
6:4 (1972) 41–43 (English translation: Funct. Anal. Appl., 6 (1972) 286–288).

[13] Yu. A. Drozd, Tame and wild matrix problems, In: “Representations and
Quadratic Forms,” Inst. Math., Kiev, 1979, 39–74 (English translation: Amer.
Math. Soc. Transl. (2) 128, 1986, 31–55).

[14] Yu. A. Drozd, Representations of bocses and algebras, In: Proc. International
Conference on Algebra (Novosibirsk, 1989). Contemp. Math. 131, p.2 (1992)
301–316.

[15] Yu. A. Drozd and G.-M. Greuel, Tame-wild dichotomy for Cohen–Macaulay

modules, Math. Ann. 294 (1992) 387–394.
[16] Yu. A. Drozd and G.-M. Greuel, Cohen–Macaulay module type, Compositio

Math., 89 (1993) 315–338.



TAME AND WILD CURVES 51

[17] Yu. A. Drozd and G.-M. Greuel, Semi-continuity for Cohen–Macaulay modules,
Math. Ann., 306 (1996) 371–389.

[18] Yu. A. Drozd, G.-M. Greuel and I.Kashuba, On Cohen–Macaulay modules on

surface singularities, Preprint MPI 00-76, Max-Planck-Institut für Mathematik,
Bonn, 2000.

[19] Yu. A. Drozd and V. V. Kirichenko, Finite Dimensional Algebras. Springer–
Verlag, Berlin–Heidelberg–New York, 1994.

[20] P. Gabriel and A.V. Roiter, Representation of Finite-Dimensional Algebras.
Encyclopaedia of Mathematical Sciences, vol. 73 (Algebra VIII). Springer–
Verlag, Berlin—Heidelberg—New York, 1992.

[21] W. Geigle and H. Lenzing, A class of weighted projective curves arising in

representation theory of finite dimensional algebras, In: “Singularities, Rep-
resentation of Algebras, and Vector Bundles,” Lecture Notes in Math. 1273,
Springer-Verlag, 1987, 265–297.

[22] C. Geiß, On degenerations of tame and wild algebras, Arch. Math. 64 (1995)
11-16.

[23] I. M. Gelfand and V. A. Ponomarev, Indecomposbale representations of the

Lorentz group, Uspehi mat. Nauk, 23, No.2 (1968) 3–60 (English translation:
Russ. Math. Surv., 23, No.2 (1968) 1–58).

[24] G.-M. Greuel and H. Knörrer, Einfache Kurvensingularitäten und torsionfreie
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