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REPRESENTATION TYPE OF NODAL ALGEBRAS OF TYPE D

Yu. A. Drozd and V. V. Zembyk UDC 512.552.8

We establish the representation types (finite, tame, or wild) of nodal algebras of type D.

The present paper is a continuation of paper [1] in which nodal algebras are introduced and the representation
types (finite, tame, or wild) of nodal algebras of type A, i.e., algebras obtained by blowing up and gluing of
quivers of type A (or of type Ã) are established. In the present paper, we determine the representation types
of nodal algebras of type D, i.e., algebras obtained by blowing up and gluing of quivers of type D (or D̃) that are
not nodal algebras of type A.

1. Nodal Algebras

We fix an algebraically closed field k and consider only finite-dimensional k-algebras. We now recall the
definition and structure of nodal algebras [1, 2].

Definition 1.1. An algebra A is called nodal if there exists a hereditary algebra H ⊃ A such that:

(1) radA = radH;

(2) lengthA(H ⌦A U)  2 for any simple left A-module U.

We say that the nodal algebra A is connected with the hereditary algebra H.

Recall that an algebra A is called base [3] if its quotient algebra Ā = A/ radA is isomorphic to the direct
product of fields. Since we consider algebras over an algebraically closed field k, in the analyzed case, we have
A/ radA ' km for some m. By the Morita theorem [3], the algebra and its base algebra have the same repre-
sentation type. In [1], we show that if an algebra A is nodal and connected with the hereditary algebra H, then
its base algebra is nodal and connected with a hereditary algebra Morita-equivalent to H. For this reason, in what
follows, we consider only base nodal algebras.

We now recall the structure that gives all base nodal algebras [1, 2]. We define nodal data as a collection
including

(1) a quiver Q;

(2) a binary symmetric relation s on the set Q0 (vertices of the quiver Q) such that, for each vertex i 2 Q0,

there exists at most one vertex j 2 Q0 for which i s j.

These data are used construct a base nodal algebra A(Q,s) in the following way:

1. Consider a hereditary algebra H with a quiver Q and the multiplicities of the vertices

mj =

8

<

:

1 if j ⌧ j,

2 if j s j.
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2. In a quotient algebra

H̄ = H/ radH =
s
Y

j=1

Mat(mj ,k),

we consider a subalgebra Ā formed by collections (a1, . . . , as) such that

aj = ak if j s k and k 6= j; in this case, we say that A is obtained from H by gluing the vertices j
and k of the quiver Q;

aj is a diagonal matrix if j s j; in this case, we say that A is obtained from H by blowing up
the vertex j of the quiver Q.

3. Consider a subalgebra A = A(Q,s) ⇢ H obtained as the preimage of the subalgebra Ā ⇢ H̄; by con-
struction, this subalgebra is a base algebra.

In [1, 2], it is proved that each base nodal algebra A is isomorphic to an algebra obtained from the base
hereditary algebra H with quiver Q as a result of a certain sequence of operations of gluing and blowing up of
vertices of this quiver.

Recall that the gluing of vertices i and j of the quiver Q is called inessential if there are no arrows entering
the vertex i (resp., leaving the vertex i) and arrows leaving the vertex j (resp., entering the vertex j). It is known
that these gluings do not affect the representation type of the algebra A [1]

2. Nodal Algebras of Type D

If Q is a quiver of type A (or Ã), then we say that the nodal algebra A is a nodal algebra of type A. In this
case, the representation type of the algebra A (finite, tame, or wild) is determined in [1]. We are interested in
the case where Q is a quiver of type D (or eD) :

1
↵

Dn+3 : 3
γ1

4
γ2

. . . (n+ 3)
γn

2 β

1
↵

10↵0

eDn+3 : 3
γ1

4
γ2

. . . (n+ 2)
γn−1

2 β 20β0

(2.1)

with arbitrary orientation of the edges. In what follows, we use the notation of vertices and arrows presented
in (2.1).

By Q0, we denote a quiver obtained from Q by removing vertex 2 and the edge β. If Q is a quiver of type D,

then Q0 is a quiver of type A; if Q is a quiver of type eD, then Q0 is a quiver of type D.

Remark 2.1. Assume that vertices 1 and 2 do not participate in gluings. If both arrows ↵ and β originate
(or end) at the vertex 3, then the algebra A can be obtained from the quiver Q0 by the same of operations of gluing
and blowing up supplemented with the operation of blowing up of vertex 1. Assume that one of these arrows
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originates at vertex 3 and the other arrow terminates at this vertex. If ↵ (or β ) does not belong to the relations of
the algebra A, then we can apply the operation of reflection from[4] to vertex 1 (resp., to vertex 2) in order to get
a representation of the algebra that differs from A solely by the orientation of the arrow ↵ (reap., β ). It is easy to
see that, for any operations of gluing in which vertices 1 and 2 do not participate and any operations of blowing
up of vertices other than3, at least one of the arrows (↵ or β ) is not contained in the relations. Hence, this case is
reduced to the previous case. Clearly, the same is true for vertices 10 and 20 in the case of a quiver of type eD.

This remark enables us to introduce the following definition:

Definition 2.1. A nodal algebra A is called a nodal algebra of type D if, in the corresponding nodal data,
the quiver Q has the type D or eD and, in addition, either one of vertices 1 and 2 takes part in gluing or vertex 3

is blown up. In the case of a quiver of type eD, it is additionally supposed that either one of vertices 10 and 20 takes
part in gluing or vertex (n+ 2) is blown up.

The theorems presented in what follows describe the representation types of nodal algebras of type D. More-
over, the direction of arrows omitted in the diagrams is arbitrary and does not affect the representation type.

Theorem 2.1. Let a nodal algebra A be isomorphic or antiisomorphic to an algebra obtained from a quiver
of type D by certain inessential gluings and one of the following operations:

(1) gluing of vertices 1 and 3 in the quiver

1
↵

%%

3
γ1

// 4
γ2

. . .
γn

(n+ 3)

2 β

99

(2.2)

for n  2;

(2) gluing of vertices 1 and 3 in the quiver

1
↵

%%

3

β
yy

4
γ1

oo

γ2
. . .

γn
(n+ 3)

2

(2.3)

for n  4;

(3) gluing of vertices 1 and (n+ 2) in the quiver

1
↵

%%

3
γ1

. . .
γn−1

// (n+ 2)
γn

// (n+ 3)

2 β

(2.4)

for 2  n  4.

Then A has a finite representation type.
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Theorem 2.2. Let a nodal algebra A be isomorphic or antiisomorphic to an algebra obtained from a quiver
of type D or eD by certain inessential gluings and one of the following operations:

(1) gluing of vertices 1 and 3 in quiver (2.3) for n = 5;

(2) gluing of vertices 1 and 3 in the quiver

1 ↵

&&

3
γ1

//

β
xx

4

2

;

(3) gluing of vertices 1 and 4 in the quiver

1 ↵

&&

3
γ1

// 4
γ2

// 5
γ3

6

2 β

;

(4) gluing of vertices 1 and (n+ 2) in quiver (2.4) for n = 5;

(5) blowing up of vertex 3 in the quiver

1 ↵

&&

3

β
xx

4
γ

oo

2

; (2.5)

(6) blowing up of vertex 3 in the quiver

1 ↵

&&

4γ

xx

3

δ
&&

β
xx

2 5

. (2.6)

Then A is a time algebra of infinite representation type.

Theorem 2.3. If a nodal algebra A of type D is neither isomorphic nor antiisomorphic to an algebra from
the families of algebras described in Theorems 1 and 2, then it is wild.

3. Proof of the Theorems

We simultaneously prove Theorems 2.1–2.3. Moreover, we consider special cases of gluing and blowing up.
To within the isomorphism or antiisomorphism, we can assume that the arrow ↵ is directed from vertex 1 to
vertex 3, furthermore, either vertex 1 takes part in gluing or blowing up of vertex 3 occurs.
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Case 3.1. Gluing of vertices 1 and 3 in quiver (2.2).

We obtain a quiver of the form

2
β

// 3

↵

✓✓ γ1
// 4

γ2
. . .

γn
(n+ 3)

with relations ↵2 = 0, ↵β = 0.

As a result of the reduction

↵ 

0

B

@

0 0 I

0 0 0

0 0 0

1

C

A

,

the rows β are split into three parts, furthermore, by virtue of the condition

↵β = 0,

the last row is zero. We reduce β to the form

β  

0

B

B

B

B

B

B

B

B

B

B

@

0 I 0

0 0 0

0 0 I

0 0 0

0 0 0

0 0 0

1

C

C

C

C

C

C

C

C

C

C

A

.

Then γ1 is split into six columns. In this case, columns 1 and 2 and columns 5 and 6 are connected, i.e., they are
subjected to the same transformations. As a result of the reduction of arrows γ2, . . . , γn, the rows of the matrix γ1
are split into n parts, furthermore, they are linearly ordered. As a result of the reduction of the first two columns of
this matrix, each column 5 and 6 is split into n+ 1 parts. For columns 3–6, we obtain 2n+ 4 nonzero columns.

The addition of these columns is specified by a partially ordered set S of the form

1

2 3

4
...

... 2n+ 3

2(n+ 2)

.
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It follows from [5] that our problem is equivalent to the problem of representation of a partially ordered set
that is a cardinal sum S and a set that is linearly ordered and has n − 1 elements. It follows from [5, 6] that this
problem is finite for n  2 and wild for n > 2. Hence, the same statement is true for the algebra A. This gives
the first assertion of Theorem 2.1.

Any additional essential gluing or blowing up additionally divides the matrix β or γ1, and the problem be-
comes wild. As an example, consider the case of additional gluing of vertices 4 and 5 under condition that the
arrow γ2 is directed to vertex 5 (otherwise, this gluing is inessential). The resulting quiver with relations contains
the subquiver

2
β

// 3
γ1

//

↵

✓✓

4

γ2

✓✓

with relations ↵2 = 0, ↵β = 0, γ22 = 0.

As a result of the reduction of ↵ and γ2 to the form

0

B

@

0 0 I

0 0 0

0 0 0

1

C

A

,

the matrices β and γ1 are reduced to the form

β =

0

B

@

B1

B2

0

1

C

A

x

?

?

?

?

?

?

γ1 =

−−−−−−−−−−−−−−!
0

B

@

G⇤
11 G12 G⇤

13

G21 G22 G23

G⇤
31 G32 G⇤

33

1

C

A

x

?

?

?

?

?

?

?

.

The arrows indicate the direction of transformations, furthermore, transformations of rows in the matrix β

and columns in the matrix γ1 are contragradient1 and matrices with asterisks have common transformations of
rows and columns. Consider representations for which B1 = 0, B2 = I, the matrix γ1 does not have the second

horizontal strip

 

i.e., γ2 =

 

0 I

0 0

!!

, G33 = I, and the matrices G31, G32, and G13 are null matrices. It is

easy to see that this representation is isomorphic to a similar representation with matrices G0
11 and G0

12 in the
corresponding places if and only if there exist nondegenerate matrices C1 and C2 such that

G0
11 = C1G11C

−1
1

and

G0
12 = C1G12C2.

In other words, the matrices G11 and G12 define the representation of a wild quiver

•
##

// • .

1This means that if the matrix β is multiplied from the left by a nondegenerate matrix C, then the matrix γ1 is multiplied from the right
by C−1.
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Hence, the algebra A is wild. For other additional operations of gluing or blowing up, the proof of wildness
is similar (and, as a rule, even simpler). This proves Theorem 2.3 in the case of gluing of vertices 1 and 3 in
quiver (2.2).

Case 3.2. Gluing of vertices 1 and 3 in quiver (2.3).

As a result, we obtain the quiver

2 3
β

oo

↵

✓✓

4
γ1

oo

γ2
. . .

γn
(n+ 3)

with relations ↵2 = 0, ↵γ1 = 0.

As a result of the reduction

↵ 

0

B

@

0 0 I

0 0 0

0 0 0

1

C

A

,

the columns β and, respectively, the rows γ1 are split into three parts, furthermore, by virtue of the condition
↵γ1 = 0, the last part in γ1 is zero. By performing transformations that do not change the form of the matrix ↵,

we reduce the matrix β to the form

β  

0

B

B

B

B

B

B

B

B

B

B

B

B

@

0 0 I 0 0 0 0 0 0 0

0 0 0 I 0 0 0 0 0 0

0 0 0 0 0 I 0 0 0 0

0 0 0 0 0 0 0 I 0 0

0 0 0 0 0 0 0 0 0 I

0 0 0 0 0 0 0 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

A

.

Correspondingly, the matrix γ1 is split into ten horizontal parts but only the first six parts are nonzero. As a result
of the reduction of the matrices γ2, . . . , γn, the matrix γ1 is additionally split into n vertical parts, i.e., γ1 contains
six nonzero rows and n columns. It is easy to see that addition of rows is defined by a partially order set S of
the form

•

• •

• •

•

,

and addition of columns is defined by a linearly ordered set that consists of n elements. Thus, according to [5], our
problem is equivalent to the problem of representation of a partially ordered set that is a cardinal sum S and a set
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that is linearly ordered and has n− 1 elements. According to [5, 6], for n  4, this problem has a finite type, for
n = 5, it is tame (of infinite type), and for n > 5, it is wild. Hence, the same statements are true for the algebra A.

This gives the second assertion of Theorem 2.1 and the first assertion of Theorem 2.2. Any additional essential
gluing or blowing up gives a wild matrix problem. This proves Theorem 2.3 in the case of gluing of vertices 1

and 3 in quiver (2.3).

Case 3.3. Gluing of vertices 1 and 3 in the quiver

1
↵

%%

3
γ1

//

β
yy

4
γ2

. . .
γn

(n+ 3)

2

. (3.1)

We obtain the quiver

2 3
β

oo

γ1

//

↵

✓✓

4
γ2

. . .
γn

(n+ 3)

with relation ↵2 = 0. We reduce the matrix ↵ in the same way as in the previous cases. The columns of the
matrices β and γ1 are split into three parts that can be added from left to right, furthermore, transformations of
the first and third parts must the same. As a result of the reduction of the matrices γ2, . . . , γn, the rows of the
matrix γ1 are split into n parts in which transformations are defined by a linearly ordered set. If n = 1, then we
obtain the problem of representation of a bundle of chains

E = { e } , F = { f1 < f2 < f3 }

with relation ⇠ such that e ⇠ e and f1 ⇠ f3
2. This problem is tame (of infinite type). The same is true for the

algebra A. If n > 1, then we consider representations in which γ3 = . . . = γn = 0, the second vertical part of

the matrices β and γ1 is absent

 

i.e., ↵ =

 

0 I

0 0

!!

, and the first and third vertical parts are reduced to the form

0

B

B

B

B

B

B

B

B

B

B

B

@

0 0 G1 G2

I 0 0 0

0 0 G3 G4

0 0 G5 G6

0 I 0 0

1

C

C

C

C

C

C

C

C

C

C

C

A

.

Here, the double horizontal line is the line of separation between the matrices β and γ1 and the single horizon-
tal line corresponds to the separation between the parts of the matrix γ1 formed as a result of the reduction of
2We use the definition of a bundle of chains in [7]. In [8], for the same problems, the author used the term “bundle of semichains” and
another coding.
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the matrix γ2. It is easy to see that the matrices Gi form representations of a pair of partially ordered sets

S =
•

• •
and T = • • .

It follows from [9] that this problem and, hence, the algebra A are wild. This proves the second assertion of
Theorem 2.2 and Theorem 2.3 in the case of gluing of vertices 1 and 3 in quiver (3.1).

Case 3.4. Gluing of vertices 1 and (m+ 3) (1  m < n) in the quiver

1
↵

%%

3
γ1

. . .
γm

// (m+ 3)
γm+1

// (m+ 4) . . .
γn

(n+ 3)

2 β

. (3.2)

Note that, if the arrow γm is directed from vertex (m + 3), then even for m = n , in the algebra A, we get
the following wild subquiver without relations:

2
β

3
γ1

tt

↵

. . . (m+ 3)
γm

oo

.

If the arrows directed from the vertex (m+3) are absent, then gluing of 1 and (m+3) is inessential. Hence,
we can assume that, for n > m, the arrow γm is directed to vertex (m+ 3) and the arrow γm+1 is directed from
this vertex. The direction of the arrow β does not affect the representation type because this arrow is definitely not
contained in the relation and, hence, it is possible to perform a reflection (according to [4]) at point 2 and change
its direction. In what follows, we assume that β : 2 ! 3.

As a result, we obtain the quiver

2
β

// 3
γ1

tt

↵

. . .
γm

// (m+ 3)
γm+1

// (m+ 4)
γm+2

. . .
γn

(n+ 3)

with relation ↵γm = 0.

As a result of the reduction of the matrices β and γi, which form a quiver of the type An+2, the matrix ↵ is
split into 2(n+1) horizontal strips and several vertical strips. It follows from the relation ↵γ2 = 0 that the nonzero
strips in the matrix ↵ are exhausted by the vertical strips corresponding to the representations of the subquiver

(m+ 3)
γ3

// (m+ 4)
γ4

. . .
γn

(n+ 3)

nonzero at the vertex (m + 3). The number of these strips is equal to n − m + 1. Moreover, their addition is
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controlled by a linearly ordered set. The addition of horizontal strips is controlled by a partially ordered set S :

1

2 3

4
...

... 2n+ 1

2n+ 2

.

According to [5], the obtained problem is equivalent to the problem of representation of a partially ordered
set, i.e., of a cardinal sum S, and a linearly ordered set containing n − m elements. According to [5, 6], this
problem and, hence, the algebra A have finite types for m  3, n = m + 1, and are tame for m = 1, n = 3

or m = 4, n = 5 and wild, otherwise. This proves the second assertion of Theorem 2.1 and the third and fourth
assertions of Theorem 2.2. Any additional operations of gluing or blowing up give wild algebras, which proves
Theorem 2.3 in the case of gluing of vertices 1 and (m+ 3) (m > 0) in quiver (3.2).

Case 3.5. Blowing up of vertex 3 in quiver (2.6).

As a result, we obtain the quiver

1

↵0

✏✏

↵00

""

4

γ00

✏✏

γ0

||

30

β0

✏✏

δ0
""

300

β00||

δ00

✏✏

2 5

with the following relations: β0↵0 = β00↵00, δ0γ0 = δ00γ00, β0γ0 = β00γ00, and δ0↵0 = δ00↵00. In [10], it is proved that
this algebra is tame. This gives the sixth assertion of Theorem 2.2 and the fifth assertion of this theorem because
quiver (2.5) is a subquiver of quiver (2.6).

Hence, Theorems 2.1 and 2.2 are completely proved. To prove Theorem 2.3, it remains to show that the fol-
lowing operations give a wild algebra:

(1) gluing of the end vertices under the condition that this operation is essential, i.e., the arrow leaves one of
the vertices and enters the other vertex;

(2) blowing up of vertex 3 in a quiver of type Dn+3 or eDn+3 if either n > 1 or at least three arrows enter
this vertex or leave it;

(3) essential gluings with participation of at least one of vertices 1 and 2 and at least one of vertices 10 and 20

in a quiver of the type D̃.
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It is easy to see that operations (1) and (2) give a wild subquiver without relations. Operation (3) is split into
the cases similar to Cases 3.1–3.4 considered above. It is easy to see that, in all cases, we observe an additional
partition of the matrices. This partition transforms the corresponding problems into wild. This completes the proof
of Theorem 2.3.
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