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Abstract. This paper is a survey of applications of the reduction
algorithm for boxes to the representation theory of finite dimen-
sional algebras. The topic seems important in two respects. First
of all, the main advantage of the notion of box is just the possibil-
ity to study representations inductively, reducing the correspond-
ing matrices step by step. Second, there are several principal facts
in the representation theory that cannot be proved (at least have
never been proved till now) without using representations of boxes
and the reduction algorithm. I have chosen for the presentation
here three main results. They are:

• tame–wild dichotomy [12, 6];
• relation between tameness and generic modules [7];
• coverings of tame boxes and algebras [14].

Since there is a certain prejudice to the notion of box and especially
to the reduction algorithm, I have decided to give some technical
details of the main constructions and to sketch proofs. I hope that
they are not so complicated and understandable well enough, and
the astonishing resemblance of these proofs is itself a good publicity
for the techniques of boxes.
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1. Categories and functors

In this article we consider linear categories (in particular, algebras,
which we identify with the categories with one object) over a fixed
field k .1 It means that the sets of morphisms A(A, B) between two
objects of such a category A are vector spaces over k and the mul-
tiplication of morphisms is k-bilinear. All functors (bifunctors) be-
tween such categories are also supposed k-linear (bilinear). We de-
note by Vec (vec) the category of vector spaces (respectively finite
dimensional vector spaces) over k . A module over a category A
is, by definition, a (linear) functor M : A → Vec ; an A-B-bimodule
is, by definition, a (bilinear) functor A◦ × B → Vec , where A◦ de-
notes the opposite (or dual) category to A . We often say A-bimodule
instead of A-A-bimodule. In particular, any A-module can be con-
sidered as an A-k-bimodule. We write dim, Hom, ⊗, etc. instead
of dimk, Homk, ⊗k, etc., and denote by DV the dual vector space
Hom(V,k) . If V is an A-B-bimodule, we write bva instead of V (a, b)v
for v ∈ V (A, B), a ∈ A(A′, A), b ∈ B(B, B′) (it is an element from
V (A′, B′) ). Every category A (rather its set of morphisms) can be
considered as an A-bimodule, which we call the regular A-bimodule.

An additive category A is said to be fully additive if every idem-
potent in it splits, i.e. corresponds to a decomposition of the object
into a direct sum (equivalently, every idempotent has a kernel). For
any category A , there is a unique (up to equivalence) fully additive
category add A containing A . It can be defined either as the category
of matrix idempotents over A or as the category of finitely generated
projective A◦-modules. Every functor F : A → B prolongs uniquely
(up to isomorphism) to a functor add A → add B , which we denote
by the same letter F . In particular, the categories of A-modules and
add A-modules are equivalent.

Just as for usual bimodules over rings, one can define operations
such as Hom or ⊗ . Formally, if M is an A-B-bimodule and N
is an C-A-bimodule, we define their tensor product M ⊗A N as the
C-B-bimodule such that (M ⊗A N)(C, B) is the factor space of the
direct sum

⊕
A∈Ob A M(A, B) ⊗ N(C, A) modulo the subspace gen-

erated by all differences ua ⊗ v − u ⊗ av , where u ∈ M(A, B) ,
v ∈ N(C, A′) and a ∈ A(A′, A) for some objects A, A′ ∈ Ob A . On
the other hand, for an A-B-bimodule M and an A-C-bimodule N , the
B-C-bimodule HomA(M, N) has the values (HomA(M, N))(B, C) =
HomA(M( , B), N( , C)) , the right side being the space of morphisms

1Further we shall mostly suppose that k is algebraically closed, but it is not
essential for the first definitions.
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of functors A → Vec . One can easily check that the usual identities
(cf. [5, Chapter IX, § 2]) for ⊗ and Hom hold, especially:

L⊗B (M ⊗A N) ' (L⊗B M)⊗A N, where DLB, BMA, ANC ;

HomB(M ⊗A N, L) ' (HomA(M, HomB(N, L)), where DLB, CMA, ANB

(both are isomorphisms of C-D-bimodules). We shall freely use these
isomorphisms as well as the analogous ones established for bimodules
over rings in [5, 19].

If F : A → B is a functor and V is a B-C-bimodule (or a C-B-
bimodule), one can define the A-C-bimodule V F such that V F (A, C) =
V (FA, C) (respectively the C-A-bimodule F V such that F V (C, A) =
V (C, FA) ). We often omit the superscript F if the sense of the no-
tation is quite clear. Especially one can consider the A-B-bimodule
BF , or the B-A-bimodule F B , or the A-bimodule F BF . Certainly, if
M : B → Vec is a B-module, the A-module F M is just the composi-
tion MF . It is easy to see that V F ' HomB(F B, V ) ' V ⊗B BF for
every B-C-bimodule V (respectively F V ' HomB(BF , V ) ' F B⊗B V
for every C-B-bimodule V ). Therefore, in particular,

HomA-C(W1, V
F ) ' HomB-C(W1 ⊗A

F B, V ),

HomC-A(W2,
F V ) ' HomC-B(BF ⊗A W2, V ),

HomA-A(W, F V F ) ' HomB-B(BF ⊗A W ⊗A
F B, V ),

where W1 (respectively W2 and W ) is a A-C-bimodule (respectively
C-A-bimodule and A-bimodule).

Let Γ be an oriented graph (or a quiver), perhaps with multiple ar-
rows and loops. Remind that the (linear) category kΓ freely generated
by Γ is defined as follows:

• The objects of kΓ are the vertices of the graph Γ .
• The vector space of morphisms from a vertex A to another

vertex B has a basis consisting of all paths starting from A
and ending at B , that is words p = an . . . a2a1 , where ai are
arrows of the graph Γ , the source of ai+1 coincide with the
target of ai for i = 1, . . . , n−1 , the source of a1 is A and the
target of an is B . We write p : A → B . If A = B , we allow
an “empty” path ιA (i.e. with n = 0 ) starting and ending at
A .

• The product of two paths p = an . . . a2a1 : A → B and q =
bm . . . b2b1 : C → A is defined as their concatenation pq =
an . . . a1bm . . . b1 . Certainly, if q = ιA (or p = ιA ), one has
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pq = p (respectively pq = q ). The products of any morphisms
are defined by linearity.

A category A is called free if it is isomorphic (not simply equivalent!) to
a category of the form kΓ for some graph Γ . The images of the arrows
of Γ under an isomorphism kΓ → A are called a set of free generators
of the category A . Just as for free algebras, one can check that kΓ '
kΓ′ if and only if Γ ' Γ′ , hence, there is a one-to-one correspondence
between isomorphism classes of graphs and of free categories. On the
other hand, there can be plenty of sets of free generators in the same
free category (it is always the case if there are oriented cycles in Γ or
there is an arrow a : A → B and a path p : A → B such that p 6= a ).
We denote by add Γ the fully additive category addkΓ .

Especially, if the graph Γ is trivial, i.e. has no arrows, the category
kΓ is the trivial category whose set of objects equals the set of vertices
of the graph Γ . It means that there are no morphisms between different
objects and the endomorphism ring of every object coincides with k .

We shall also use semi-free categories defined as follows. Let Γ be
an oriented graph, S be the set of loops from Γ and g : a 7→ ga be
a mapping S → k[t] such that neither of ga is zero. The category
A = kΓ[ga(a)−1 | a ∈ S] is called a semi-free category, the arrows of
Γ are called a set of semi-free generators of A . Evidently, we can
(and shall always) suppose that all polynomial ga are unital (with
the leading coefficient 1). The polynomial ga is called the marking
polynomial of the loop a . The set of arrows of Γ is called a set of
semi-free generators of A . If ga 6= 1 the loop a is called a marked
loop of A . Especially, if Γ only contain loops and there is at most
one loop a : A → A for every object A , the corresponding semifree
category is called a minimal category.

A free module over a category A is, by definition, a module isomor-
phic to a direct sum of representable (or principal) modules, i.e. those
of the form A(A, ) . If M '

⊕
i A(Ai, ) , the images in M of the

identity morphisms 1Ai
are called a set of free generators of M . Just

in the same way, a free A-B-bimodule is a bimodule V isomorphic to a
direct sum

⊕
i B(Bi, )⊗A( , Ai) and the images in V of the elements

1Bi
⊗ 1Ai

are called a set of free generators of V .
A category A is said to be skeletal if:

• there are no nontrivial idempotents in A(A, A) for each A ∈
Ob A ;

• each object from add A decomposes into a direct sum of objects
from A ;
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• if
⊕n

i=1 Ai '
⊕m

j=1 Bj in add A , where Ai, Bj ∈ Ob A , then
n = m and there is a permutation σ such that Ai ' Bσi for
all i = 1, . . . , n .

For instance, if the category A is local, i.e. all algebras A(A, A) are
local, and has no isomorphic objects, it is skeletal (cf. [1, Theorem
3.6]). Each semi-free category is skeletal too (in a bit different setting
it is proved in [20]).

2. Boxes and their representations

A coalgebra over a category A is defined as an A-bimodule V to-
gether with homomorphisms of A-bimodules ∆ : V → V⊗A V (comul-
tiplication) and ε : V → A (counit) such that the following diagrams
are commutative:

V
∆−−−→ V ⊗A V

∆

y y∆⊗1

V ⊗A V −−−→
1⊗∆

V ⊗A V ⊗A V

V
∼−−−→ A⊗A V

∆

y y1

V ⊗A V −−−→
ε⊗1

A⊗A V

V
∼−−−→ V ⊗A A

∆

y y1

V ⊗A V −−−→
1⊗ε

V ⊗A A

(the first rows of the last two diagrams are the natural isomorphisms).
A box is defined as a pair A = (A, V) , where A is a category and

V is an A-coalgebra. The kernel V = Ker ε of the counit is called the
kernel of the box A . If v ∈ V(A, B) , we often write v : A · · ·>B . If
C is a category, we define the category of representations Rep(A, C) of
the box A in the category C in the following way:

• The objects of this category are functors M : A → C .
• A morphism from M to N in Rep(A, C) is a homomorphism

of A-bimodules f : V → HomC(MC, NC) . We denote the set of
all morphisms from M to N by HomC-A(M, N) .

• The product of two morphisms, f ∈ HomC-A(M, N) and g ∈
HomC-A(L, M) , is defined as the composition

V
∆−−−→ V ⊗A V

f⊗g−−−→ HomC(MC, NC)⊗A HomC(LC, MC)
mult−−−→ HomC(LC, NC),

where mult denotes the multiplication of morphisms of func-
tors.
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• The identity morphism of a representation M is defined as
the composition V

ε→ A → HomC(MC, MC) , where the second
homomorphism maps a : A → B to C( , M(a)) : C( , MA) →
C( , NB) .

One can easily check that in this way we obtain indeed a category. If
C = Proj-R , the category of right projective modules over an algebra
R , we write Rep(A,R) instead of Rep(A, C) and HomR-A(M, N) in-
stead of HomC-A(M, N) . If R = k , we omit it at all and write Rep(A)
and HomA(M, N) .

Sometimes it is convenient to identify HomA-A(V, HomC(MC, NC))
with HomC-A(V ⊗A

MC, NC) and we shall do it freely.

A principal box is one of the form A = (A, A) , where the coalgebra
is the regular bimodule with identity comultiplication and counit. It is
easy to see that the category of representations of this box coincide with
that of the category A ; in particular, Rep(A) = A-Mod . We always
identify a principal box with the corresponding category; it allows to
consider (formally) the representation theory of algebras as a partial
case of that of boxes.

A morphism of boxes Φ : A → B , where A = (A, V) and B =
(B, W) , is a pair (Φ0, Φ1) , where Φ0 : A → B is a functor and
Φ1 : V → Φ0WΦ0 is a morphism of A-bimodules compatible in the
evident sense with comultiplication and counit. We usually omit in-
dices and write Φ(a) both for a ∈ A and for a ∈ V . Such a morphism
induces the inverse image functor Φ∗ : Rep(B, C) → Rep(A, C) for
each category C : it maps a representation M to the composition
MΦ0 and a morphism f ∈ HomC-B(M, N) , i.e. a homomorphism
of bimodules W → HomC(MC, NC) , to the morphism MΦ0 → NΦ0 ,
i.e. the homomorphism Φ∗f : V → HomC(MΦ0C, NΦ0C) , such that
Φ∗f(v) = f(Φ1v) .

Suppose given a box A = (A, V) and a functor F : A → B . We
define the new box AF = (B, W) in the following way:

• W = BF ⊗A V ⊗A
F B .

• The comultiplication W → W ⊗B W ' BF ⊗A V ⊗A
F BF ⊗A

V ⊗A
F B maps a ⊗ v ⊗ b to

∑
i a ⊗ v

(1)
i ⊗ 1 ⊗ v

(2)
i ⊗ b , where

∆(v) =
∑

i v
(1)
i ⊗ v

(2)
i .

• The counit W → B maps a⊗ v ⊗ b to aF (ε(v))b .

The functor F can be prolonged to the morphism A → AF , which
we denote by F too, setting, for v ∈ V(A, B) , F (v) = F (1B) ⊗ v ⊗
F (1A) ∈ W(FA, FB) .
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Theorem 2.1. Let A = (A, V) be a box, F : A → B be a func-
tor and AF be the above defined box. The inverse image functor
F ∗ corresponding to the morphism of boxes F : A → AF induces
an equivalence of the category Rep(AF , C) onto the full subcategory
Rep(A, C |F ) ⊆ Rep(A, C) consisting of all representations that are
isomorphic to the composition MF for some functor M : B → C .
In particular, if every representation is isomorphic to such a composi-
tion, the functor F ∗ establishes an equivalence between Rep(A, C) and
Rep(AF , C) .

Proof. It follows immediately from the isomorphism

HomA-A(V, HomC(MF C, NF C)) ' HomA-A(V, F HomC(MC, NC)F )

' HomB-B(BF ⊗A V ⊗A
F B, HomC(MC, NC)).

�

We shall often use the following corollary of this theorem.

Corollary 2.2. Let A = (A, V) be a box, A′ be a subcategory of A and

F ′ : A′ → B′ be a functor. Denote by B = A
∐A′

B′ the amalgamation
(or pullback) of A and B′ under A′ and by F : A → B the natural
functor. Then F ∗ induces an equivalence between Rep(AF , C) and the
full subcategory Rep(A, C |A′, F ′) ⊆ Rep(A, C) consisting of all repre-
sentations M such that the restriction of M onto A′ can be factored
through F ′ .

For every box A = (A, V) we denote by add A the box (add A, V)
(we denote by the same letter V the prolongation of V onto add A ).
For every fully additive category C (e.g. for Vec ) there is an equiva-
lence Rep(A, C) ' Rep(add A, C) and we shall identify these categories.

A box A = (A, V) is called skeletal if so is the category A . Then a
representation M ∈ Rep(A,R) , where R is an algebra, is said to be
finite (or of finite rank) if:

• For any object A ∈ Ob A , MA ∈ proj-R , the category of
finitely generated projective (right) R-modules.

• The support of M , i.e. the set supp M = {A ∈ Ob A |MA 6= 0 },
is finite.

If R = k (hence, proj-R = vec ), they also call finite representations
finite dimensional. The category of all finite representations of A
over R is denoted by rep(A,R) ( rep(A) if R = k ). Let |proj-R|
be the set of isomorphism classes of finitely generated projective R-
modules. The function dimM : Ob A → |proj-R| mapping A to the
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isomorphism class of MA is called the vector dimension of M . If
all projective R-modules are free of unique rank (e.g. if R = k ), we
identify |proj-R| with N , the set of nonnegative integers. If, moreover,
the set Ob A is finite, we consider dimM just as a vector with entries
from N . We denote by ind(A,R) the set of isomorphism classes of
indecomposable finite representations of A over R and by indd(A,R)
the subset of ind(A,R) consisting of the classes of representations of
vector dimension d . Note that there are boxes such that indd(A) ∩
indd′(A) 6= ∅ for some vector dimensions d 6= d′ .

If d, c are two vector dimensions, we write d ≤ c if d(A) ≤ c(A)
for all objects A .

3. Types of boxes

In the representation theory (especially over algebraically closed fields),
as well as in most other applications, they mainly use the so-called nor-
mal free boxes in the following sense.

A section of a box A = (A, V) is, by definition, a set of elements
ω = {ωA ∈ V(A, A) |A ∈ Ob A } such that ε(ωA) = 1A . This section
is said to be normal if ∆ωA = ωA ⊗ ωA for all objects A . A box
is called normal if it has a normal section. Evidently, the element
∂a = ωBa − aωA belongs to the kernel V of the box A . Moreover,
if v ∈ V(A, B) , the element ∂v = µ(v) − v ⊗ ωA − ωB ⊗ v belongs
to V ⊗A V . We call ∂ the differential of the (normal) box A . Note
that it depends on the section. We prolong ∂ to the tensor square

V
⊗2

= V ⊗A V setting ∂(u ⊗ v) = ∂u ⊗ v − u ⊗ ∂v ∈ V
⊗3

. We often
omit the sign ⊗ and set a = 0 for a ∈ Mor A , v = 1 for v ∈ V .
Then the mapping ∂ has the following properties:

• ∂(xy) = (∂x)y + (−1)xx(∂y) (Leibniz rule);
• ∂2 = 0 .

Note that if ϕ is an isomorphism of representations of a normal box,
then ϕ(ωA) is an isomorphism for each object A . Especially, the
vector dimensions of isomorphic finite representations coincide.

A normal box A = (A, V) is called free (semi-free) if A is a free
(semi-free) category, ∂a = 0 for each marked loop of A and the kernel
V is a free A-bimodule. If Σ0 is a set of free (semi-free) generators of
the category A and Σ1 is a set of free generators of the A-bimodule
V , their union Σ = Σ0∪Σ1 is called a set of free (semi-free) generators
of the box A . The elements of Σ0 are usually called solid arrows and
those of Σ1 dotted arrows of the box A . Thus, to a semi-free box
we associate a bigraph, i.e. a graph whose arrows are of two types:
solid and dotted. The marked loops and the marking polynomials of
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a semi-free box A are just those of the semi-free category A . The

morphisms from A(A, B) , or the elements from V(A, B) , or from V
⊗2

can be considered as linear combinations of paths of the arrows of the
corresponding bigraph and the inverse morphisms a∗ = ga(a)−1 for the
marked loops a such that all arrows of the paths are solid, respectively,
each path contains exactly one, or exactly two dotted arrows.

A semi-free box A = (A, V) is called so-trivial if the category A is
trivial. If A is a minimal category, we call the box A so-minimal.

We fix a section ω : V → A and consider the differential ∂ with
respect to this section. A semi-free box A is called triangular if there
is a set of semi-free generators Σ and a function ν : Σ → N such
that, for every arrow a ∈ Σ , its differential ∂a is a linear combination
of paths only containing the arrows b with ν(b) < ν(a) . Such a set
of generators is also called triangular. Triangular semi-free boxes have
a lot of good features that are not valid in general. Especially, the
following important results hold.

Proposition 3.1 (cf. [18]).2 Let A = (A, V) be a triangular semi-free
box with normal section ω and a triangular set of semi-free generators
Σ .

(1) A morphism f : M → N of representations from Rep(A, C)
is an isomorphism if and only if f(ωA) is an isomorphism for
every object A .

(2) If the category C is fully additive, so is Rep(A, C) .
(3) Suppose that M ∈ Rep(A, C) , {NA |A ∈ Ob A } is a set of ob-

jects from C , for each in Ob A an isomorphism γA : MA →
NA and for each dotted arrow v : A · · ·>B from Σ1 a mor-
phism γv : MA → NB are given. There is a representation
N ∈ Rep(A, C) and an isomorphism γ : M → N such that
NA = NA , γ(ωA) = γA for each object A and γ(v) = γv for
each dotted arrow v .

Usually we impose additional conditions on the considered boxes.
Namely, we say that a box A = (A, V) is locally finitely generated if
for every object A ∈ Ob A the A-modules A(A, ), V(A, ) as well as
A◦-modules A( , A), V( , A) are finitely generated. If the box A is
semi-free, it means that in the corresponding bigraph there are finitely
many arrows ending or starting at each vertex. Denote by s0

AB and
s1

AB respectively the number of solid and dotted arrows starting at A

2In [18] these properties are proved for free differential graded categories, but it
is well known that this setting is quite equivalent to that of free boxes. Moreover,
the proofs for semi-free boxes are the same as for free ones
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and ending at B and set, for every function d : Ob A → R with finite
support suppd = {A |d(A) 6= 0 } ,

Q+
A(d) =

∑
A∈Ob A

d(A)2 +
∑

A,B∈Ob A

s1
ABd(A)d(B),

Q−
A(d) =

∑
A,B∈Ob A

s0
ABd(A)d(B),

QA(d) = Q+
A(d)−Q−

A(d).

They call QA the Tits form of the box A .

Corollary 3.2. Let A be a locally finitely generated semi-free box.
The set of representation M ∈ rep(A) of vector dimension d can be
identified with the points of an affine variety repd(A) of dimension
Q−

A(d) over the field k (actually, with a principal open subset in the

affine space AQ−
A(d)

k ). The isomorphism classes of representations are
connected locally closed subsets in repd(A) of dimensions d ≤ Q+

A(d) .

Actually, in most applications they only deal with free boxes. Nev-
ertheless, semi-free ones seem unavoidable in the reduction algorithm
described in Section 6, especially when we study tame boxes.

4. Boxes, bimodules and algebras

Let A be a category, U be an A-bimodule. Define the new category
El(U) of elements of the bimodule U (or matrices over U ) as follows:

• Ob El(U) =
⋃

A∈Ob add A U(A, A) .
• A morphism from u ∈ U(A, A) to u′ ∈ U(A′, A′) is a morphism

a ∈ A(A, A′) such that au = u′a (both elements are from
U(A, A′) ).

This category is fully additive. The zero elements 0 ∈ U(A, A) form a
fully additive subcategory El0(U) . If the category A is skeletal, each
zero element decomposes uniquely into a direct sum of indecomposable
zero elements, which belong to U(A, A) , where A ∈ Ob A .

We call a category A locally finite dimensional if all morphism
spaces A(A, B) are finite dimensional and for every object A the
set {B |A(A, B) 6= 0 or A(B, A) 6= 0 } is finite. A skeletal locally fi-
nite dimensional category is called basic. For every locally finite di-
mensional category A there is a unique basic category A0 such that
add A ' add A0 . Therefore, in the representation theory of locally fi-
nite dimensional categories we may restrict ourselves by basic ones. A
bimodule U over a category A is called locally finite dimensional if all
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spaces U(A, B) are finite dimensional and for every object A the set
{B |U(A, B) 6= 0 or U(B, A) 6= 0 } is finite.

Theorem 4.1. Suppose that the field k is algebraically closed. Let U
be a locally finite dimensional bimodule over a locally finite dimensional
category C . There is a free triangular locally finitely generated box A
such that El(U) ' rep(A) .

Proof. Without loss of generality we suppose C basic. Then the set
R = rad C of all noninvertible morphisms is an ideal of C called its
radical. Moreover, it is easy to check that

⋂∞
n=1 Rn = 0 . For every

nonzero morphism c ∈ C set ν(c) = max {n | c ∈ Rn } . Define sub-
bimodules Un setting U0 = U, Un+1 = RUn + UnR , and set, for every
nonzero u ∈ U , ν(u) = max {n |u ∈ Un } (again

⋂∞
n=1 Un = 0 ). For

each two objects A, B and each n ≥ 0 choose a basis E0
n(A, B) of

Rn(A, B) modulo Rn+1(A, B) and a basis E1
n(A, B) of Un(A, B) mod-

ulo Un+1(A, B) . Then E0(A, B) =
⋃∞

n=1 E0
n(A, B) and E1(A, B) =⋃∞

n=0 E1
n(A, B) are bases respectively of R(A, B) and U(A, B) . Con-

sider the dual spaces DR(A, B) and DU(A, B) with bases F1(A, B)
and F0(A, B) dual respectively to E0(A, B) and E1(A, B) . For f ∈
Fi(A, B) (i = 0, 1) set ν(f) = ν(e) , where e is the element from E1−i

dual to f . Let a ∈ Ei(A, B), b ∈ Ej(C, A) , where (i, j) is (0, 0) ,
or (0, 1) , or (1, 0) , and k = i + j . Then the elements λ(a, b, c) for
∈ Ek(C, B) are uniquely determined such that

(1) ab =
∑

c∈Ek(C,B)

λ(a, b, c)c.

For elements a′ ∈ F1−i(A, B), b′ ∈ F1−j(C, A), c′ ∈ F1−k(C, B) dual
respectively to a, b, c set λ(a′, b′, c′) = λ(a, b, c) .

Consider the free normal box A with the set of vertices Ob C ,
the solid (dotted) arrows from A to B being F0(A, B) (respectively
F1(A, B) ) and the differential:

∂a =
∑

C

 ∑
b∈F0(C,B),v∈F1(A,C)

λ(b, v, a)bv −
∑

b∈F0(A,C),v∈F1(C,B)

λ(v, b, a)vb


for a ∈ F0(A, B),

∂v =
∑

C

∑
u∈F1(C,B),w∈F1(A,C)

λ(u, w, v)u⊗ w for v ∈ F1(A, B).
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On can easily check that A is triangular with respect to the function
ν defined above, representations of A are in a natural one-to-one cor-
respondence with the objects from El(U) and their morphisms are in
one-to-one correspondence with the morphisms from El(U) . �

It is often useful to consider an A-B-bimodule U as an (A × B)-
bimodule setting U ((A, B), (A′, B′)) = U(A, B′) . Then we call U a
bipartite bimodule. In particular, every A-bimodule (e.g. every ideal
of the category A ) can be considered as a bipartite (A×A)-bimodule.
Such bimodules are especially used in relation with the following result.

Theorem 4.2. Let A be a locally finite dimensional category, R =
rad A considered as bipartite A×A-bimodule. There is a functor Cok :
El(R) → rep(A) with the following properties:

• Cok is full and dense.
• The set Ker Cok = {u ∈ ind(R) | Cok u = 0 } only consists of

some zero elements.
• The restriction of Cok onto the full subcategory El∗(R) consist-

ing of the objects that have no direct summands from Ker Cok
maps nonisomorphic objects to nonisomorphic ones.

They often say that the restriction of Cok onto El∗(R) is a represen-
tation equivalence.

Proof. We suppose the category A basic and identify add A with the
category dual to that of finitely generated left projective A-modules.
Then R(P ◦, Q◦) can be identified with HomA(Q,PR) . For every finite
A-module M there is a minimal projective presentation, i.e. a short

exact sequence Q
ϕ−→ P → M → 0 with Im ϕ ⊆ RP, Ker ϕ ⊆ RQ .

We can consider ϕ as an element from R(P ◦, Q◦) . Moreover, any two
minimal projective presentations give isomorphic elements from El(R) .
Conversely, if ϕ ∈ R(P ◦, Q◦) , we can consider it as a homomorphism
Q → RP ; thus, setting Cok ϕ = Coker ϕ , we get a full and dense
functor El(R) → rep(A) . Note that if the condition Ker ϕ ⊆ RQ
does not hold, one can decompose Q = Q0 ⊕Q1 so that Q0 ⊆ Ker ϕ
and Ker ϕ ∩ Q1 ⊆ RQ1 . Therefore, as an element from El(R) , ϕ
decomposes as ϕ0 ⊕ ϕ1 , where ϕ1 arises from a minimal projective
presentation of Cok ϕ while ϕ0 is a zero morphism Q0 → 0 . �

We denote by RA the box corresponding to the bipartite A × A-
bimodule R via Theorem 4.1 and by the same symbol Cok the func-
tor rep(RA) → rep(A) that is the composition of the equivalence
rep(RA) ' El(R) and the functor Cok from Theorem 4.2. We also
denote by rep∗(RA) the image in rep(RA) of El∗(R) ; thus, the re-
striction of Cok onto rep∗(RA) is a representation equivalence. Note
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that El∗(R) consists of all representations that have no zero direct
summands from R(A, 0) (A ∈ Ob A) .

5. Representation types

From now on we suppose the field k algebraically closed, though
in the definition of representation finite type it is not necessary and
in the definition of representation discrete type we only need that k
be infinite. Moreover, we suppose that all boxes are locally finitely
generated.

Let A = (A, V) be a skeletal box. We say that it is representation
(locally) finite if there is a set M ⊆ rep(A) of its indecomposable
representations such that add M = rep(A) and for every object A ∈
Ob A the set MA = {M ∈ M |MA 6= 0 } is finite. If A is finitely
generated, it just means that the set M is finite. (We usually omit the
word “locally” and say that A is representation finite.)

We say that A is representation discrete if there is a set M ⊆ rep(A)
such that add M = rep(A) and for each vector dimension d the set
{M ∈ M | dimM = d } is finite.

Note that if the category rep(A) is fully additive (hence, Krull–
Schmidt), one can always take for M the set ind(A) of all nonisomor-
phic indecomposable representations.

A deep and difficult theorem proved in [2, 3] claims that for finite
dimensional algebras over an algebraically closed (hence, over an infi-
nite perfect) field representation discrete implies representation finite
(it had been known before as the Second Brauer–Thrall conjecture).
On the other hand, the free category defined by the graph

· · · −→ A−1 −→ A0 −→ A1 −→ A2 −→ · · ·

is representation discrete but not finite. A problem remains whether
a finite free box (i.e. with finite bigraph) is representation discrete if
and only if it is representation finite.

The following result follows evidently from Corollary 3.2.

Corollary 5.1. If a free box A is representation discrete, its Tits form
QA is weakly positive, i.e. QA(d) > 0 for each nonzero vector d with
nonnegative entries.

A representation M ∈ rep(A,R) is said to be strict if, for any finite
dimensional representations N, N ′ of the algebra R ,

• if M ⊗R N ' M ⊗R N ′ , then N ' N ′ ;
• if N is indecomposable, so is also M ⊗R N .
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Figuratively, it means that the classification of representations of the
box A “contains” that of algebra R . They often say that the functor
M ⊗R : rep(R) → rep(A) is a representation embedding.

Example 5.2. Let a : A → A be a minimal loop of a semi-free box A
such that there are no marked loops b : A → A, b 6= a . The following
representation Ja ∈ rep(A,R) , where R = k[t, ga(t)

−1] , is strict:

Ja(A) = R, Ja(B) = 0 if B 6= A,

Ja(a) = t, Ja(b) = 0 if b 6= a

(here t is identified with the multiplication by t in R ). We denote by
Ja

n(λ) the representation Ja ⊗R R/(t− λ)n , where ga(λ) 6= 0 . All of
them are indecomposable and pairwise nonisomorphic. In particular, if
there is a minimal loop in a semi-free box, it is representation strongly
infinite, i.e. the set of vector dimensions d : Ob A → N such that
indd(A) is infinite is infinite itself.

A box A is called (representation) wild if, for any finitely generated
algebra R , there is a strict representation M ∈ rep(A,R) . The fol-
lowing easy (and well known, cf. [17, 10, 12]) results show that to prove
the wildness it is enough to construct a strict representation over one
test algebra.

Proposition 5.3. Suppose that an algebra R0 is wild and there is a
strict representation of a box A over R0 . Then A is also wild.

Corollary 5.4. A box A is wild if and only if there is a strict repre-
sentation M ∈ rep(A,R0) , where R0 is one of the following algebras:

k〈x, y 〉, the free algebra in 2 generators;

k[x, y], the polynomial algebra in 2 variables;

k[[x, y]], the power series algebra in 2 variables;

k[x, y]/(x2, y3, xy2);

kΓ2 or kΓ0
2, where Γ2 is the quiver:

Aa 77
b // B ;

kΓ5 or kΓ◦5, where Γ5 is the quiver:

A0

a1
vvnnnnnnnnnnnnnnnn

a2 ~~||
||

||
||

a3 �� a4  B
BB

BB
BB

B

a5
((QQQQQQQQQQQQQQQ

A1 A2 A3 A4 A5 .
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A rational algebra is, by definition, an algebra of the form R =
k[t, g(t)−1] , where g(t) is a nonzero polynomial. A strict representa-
tion M of a box A over such an algebra is called a rational family
of its representations. They say that the representations M ⊗R L ,
where L ∈ ind(R) , belong to the rational family M . (Note that any
indecomposable representation of a rational algebra R = k[t, f(t)−1]
is of the form Jm(λ) = R/(t− λ)m , where f(λ) 6= 0 .)

Suppose that a box A is skeletal. We call it (representation) tame
if there is a set M of its representations such that:

• each M ∈ M is a strict representation of A of finite rank over
a rational algebra RM (it may depend on M );

• for each vector dimension d : Ob A → N there is only finitely
many M ∈ M with dimM = d ;

• for each vector dimension d almost all representations from
indd A (i.e. all but a finite number of them) are isomorphic
to M ⊗RM

N for some M ∈ M and some finite dimensional
representation N of RM .

Such a set M is called a parametrizing set of representations of the box
A . We denote by |M| the set {M ⊗RM

N |M ∈ M, N ∈ ind(RM) } .
Note that the set M may be empty; thus all representation discrete
boxes are by definition also tame.

Let M runs through all possible parametrizing sets and µA(d) be
the minimum number of elements in the set {M ∈ M | dimM = d } .
Call a tame box A bounded if there is a constant such that µA(d) ≤ C
for all d and unbounded otherwise.

If a box A = (A, V) is tame, then for every dimension d : Ob A → N
of its finite dimensional representations there is a constructible subset
Rd ⊆ repd(A) of dimension at most |d| =

∑
A∈Ob A d(A) such that Rd

intersects all isomorphism classes from repd(A) . Some easy geometrical
considerations imply the following result [11].

Proposition 5.5. Neither skeletal box can be both tame and wild.

Again, Corollary 3.2 together with some elementary geometrical ob-
servations (cf. [11]) implies the following result.

Corollary 5.6. If a semi-free box A is tame, its Tits form QA is
weakly nonnegative, i.e. QA(d) ≥ 0 for every vector d with nonneg-
ative entries.

The relation between the representations of a locally finite dimen-
sional category C and the box RC corresponding to the bipartite C×C-
bimodule R = rad C (cf. Section 4) implies the following
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Corollary 5.7. The representation type of a locally finite dimensional
category C coincides with that of the box RC .

Let R = k[t, g(t)−1] be a rational algebra and A = (A, V) be a skele-
tal box with a generating set G of morphisms from A (for instance,
A is semi-free and G is a set of its solid arrows). A representation
M ∈ rep(A,R) is said to be linear if a basis can be chosen in each MA
(it is a free R-module) such that all entries of matrices corresponding
to the homomorphisms Ma (a ∈ G) with respect to these bases are
linear polynomials in t . We shall see later that each tame semi-free
box or tame locally finite dimensional category has a parametrizing
family consisting of linear representations.

6. Reduction algorithm

Theorem 2 and especially Corollary 2.2 are used for the so-called
“reduction algorithm.” The existence of this algorithm is the main
advantage of boxes in the representation theory.

Suppose that A = (A, V) is a semi-free triangular box with a semi-
free triangular set of generators Σ = Σ0∪Σ1 with respect to a function
ν : Σ → N . Let a : A → B be an element from Σ0 with the smallest
value of ν(a) . There are three possibilities:

(1) ∂a 6= 0 ; then ∂a is just a linear combination of elements from
Σ1 : ∂a =

∑
i λivi , where λi ∈ k , vi ∈ Σ1 and ν(vi) < ν(a) .

If λj 6= 0 , we can replace vj by ∂a getting a new triangular
semi-free set of generators that contains ∂a . In this case we
call a a superfluous arrow and always suppose that ∂a ∈ Σ1 .3

(2) ∂a = 0 and A 6= B . Then we call a a minimal edge.
(3) ∂a = 0 and A = B . Then we call a a minimal loop.

Certainly, these notions depend on the chosen set of generators and the
function ν . We often call a a superfluous arrow, or a minimal edge,
or a minimal loop if there is a set of generators containing a and a
function ν such that a is so with respect to this set and this function.

The following result explains the term “superfluous.”

Theorem 6.1 (cf. [18, 12, 6]). Let a be a superfluous arrow, B =
A/(a) and F : A → B be the natural projection. Then:

(1) F ∗ : Rep(A, C) → Rep(AF , C) is an equivalence for any cate-
gory C .

(2) The box AF is again semi-free (free if so is A ) triangular.

3In [18, 12] they call such an arrow nonregular, but the word “superfluous” seems
more appropriate to the situation.
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(3) The bigraph of the box AF can be obtained from that of the box
A by deleting the solid arrow a and the dotted arrow ∂a .

(4) The differential of the box AF can be obtained from that of the
box A by omitting all terms containing a or ∂a .

(5) If M ' F ∗N and MA 6= 0, MB 6= 0 , then Q−
B(dimN) <

Q−
A(dimM) .

Suppose now that a is a minimal edge and there are no marked loops
in A(A, A) ∪ A(B, B) . Consider the subcategory A′ ⊆ A consisting of
two objects A, B and one arrow a . Denote by B′ the trivial category
with three objects A0, B0, AB and consider the functor F ′ : A′ →

add B′ that maps A 7→ A0 ⊕ AB , B 7→ B0 ⊕ AB and a 7→
(

0 0
0 1

)
:

A0 ⊕ AB → B0 ⊕ AB . We often write A1 or B1 for AB .

Proposition 6.2. The category B̃ = add(A
∐A′

B′) is equivalent to
add B , where B is again a semi-free (free if so is A ) category.

Proof. The category B̃ can be defined up to equivalence as a fully
additive category with the following universal property:

• There is a commutative diagram

(2)

A′ F ′
−−−→ add B′

em

y Ẽ

y
A

F̃−−−→ B̃,

where em is the embedding, such that for any pair of functors
G : A → C, H ′ : B′ → C , where C is fully additive and G·em =

H ′E , there is a unique functor H : B̃ → C such that G = HF
and H ′ = HE .

Consider the semi-free category B and the functors F : A → add B, E :
add B′ → add B defined as follows:

• Ob B = (Ob A \ {A, B }) ∪ {A0, B0, AB } .
• The set of arrows of B consists of:

– the arrows b : C → D from A such that {C, D } ∩
{A, B } = ∅ ;

– for each arrow b : C → D (or D → C ), where C ∈
{A, B } , D /∈ {A, B } , two arrows b0 : C0 → D and
b1 : C1 → D (respectively b0 : D → C0 and b1 : D → C1 );

– for any arrow b : C → D , where C, D ∈ {A, B } and
b 6= a , four arrows bij : Cj → Di ( i, j = 0, 1 ).
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• The marking polynomials for loops in B are the same as in A .
(Here we use the assumption that there are no marked loops at
A and B ).

• E is induced by the natural embedding B′ → B .
• F (A) = A0 ⊕ AB, F (B) = B0 ⊕ AB, F (C) = C if C /∈
{A, B } .

• F (a) =

(
0 0
0 1

)
, while F (b) for an arrow b 6= a, b : C → D ,

is defined as follows:
– if {C, D } ∩ {A, B } = ∅ , then F (b) = b ;
– if C ∈ {A, B } , D /∈ {A, B } (or D ∈ {A, B } , C /∈

{A, B } ), then F (b) =
(
b0 b1

)
(respectively F (b) =

(
b0

b1

)
);

– if C, D ∈ {A, B } , then F (b) =

(
b00 b01

b10 b11

)
.

Obviously, the diagram

A′ F ′
−−−→ add B′

em

y E

y
A

F−−−→ add B

commutes and has the same universal property as the diagram (2).

Hence, B̃ ' add B . �

Evidently, every functor M : A′ → Vec can be factored through
F ′ . Namely, if M0 = Ker Ma , M1 is a complement of M0 in MA
and M2 is a complement of Im Ma in MB , then M ' NF ′ , where
NA0 = M0, NB0 = M2, NAB = M1 . Therefore, Corollary 2.2 implies
the first claim of the following theorem.

Theorem 6.3. In the above situation

(1) F ∗ : Rep(AF ) → Rep(A) is an equivalence.
(2) The box AF is equivalent to add B , where B = (B, W) is

again a semi-free (free is so is A ) triangular box.

We denote by F̂ the induced equivalence Rep(B) → Rep(A) .

(3) If M ' F̂N and MA 6= 0, MB 6= 0 , then Q−
B(dimN) <

Q−
B(dimM) .

Proof. Certainly, we can take for W the restriction onto B of the
coalgebra VF = (add B)F ⊗A V ⊗A

F (add B) . We only have to show
that the box B is indeed semi-free triangular. For every element v ∈
V(C, D) , consider the matrix presentation of Fv with respect to the
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decomposition of FC and FD into a direct sum of objects from B .
If v runs through a set of generators of V , the matrix elements of
such presentations form a set of generators of W . We take the natural
set of generators of V consisting of the dotted arrows from Σ and of
the elements ωC (C ∈ Ob A) . There are the following possibilities for
v : C · · ·>D :

(1) {C, D } ∩ {A, B } = ∅ . Then Fv : C → D coincides with its
own matrix presentation and we denote it by the same letter
v .

(2) C ∈ {A, B } , D /∈ {A, B } (or D ∈ {A, B } , C /∈ {A, B } ).
Then the matrix presentation of Fv is

(
v0 v1

)
with v0 :

C0 · · ·>D, v1 : C1 · · ·>D (respectively

(
v0

v1

)
with v0 : C · · ·>D0,

v1 : C · · ·>D1 ).
(3) C, D ∈ {A, B } but v 6= ωC . Then the matrix presentation of

Fv is

(
v00 v01

v10 v11

)
, where vij : Cj · · ·>Di .

(4) v = ωA or v = ωB . Then we denote its matrix presentation

by

(
ξ00 ξ01

ξ10 ξ11

)
, respectively by

(
η00 η01

η10 η11

)
.

The relations for these generators of W are just the corollaries of those
from V , which are only

(3) ωDb− bωC = ∂b,

where b runs through the solid arrows from Σ , b : C → D . Therefore,
there are no relations at all for the matrix elements originated from the
dotted arrows from Σ . For b = a the relation (3) becomes(

η00 η01

η10 η11

) (
0 0
0 1

)
=

(
0 0
0 1

) (
ξ00 ξ01

ξ10 ξ11

)
,

that is η01 = ξ10 = 0, η11 = ξ11 . Note that εωA = 1A implies
εξii = 1Ai, εξij = 0 if i 6= j and the same is valid for η . Denote
η10 = η, ξ01 = ξ, ξ00 = ωA0 , η00 = ωB0 , ξ11 = η11 = ωAB . Moreover,
the matrix equality µ(ξij) = (ξij) ⊗ (ξij) means that µωA0 = ωA0 ⊗
ωA0 , µωAB = ωAB⊗ωAB, µξ = ωA0ξ + ξωAB , and µ(ηij) = (ηij)⊗ (ηij)
means that µωB0 = ωB0 ⊗ ωB0 , µη = ωABη + ηωB0 . Hence, ω is a
normal section, so B is a normal box. As there are no relations for ξ
and η , the kernel W of this box is free as B-bimodule with a set of
free generators consisting of the matrix elements originated from the
dotted arrows from Σ and the elements ξ, η . Moreover, ∂ξ = ∂η = 0 .

If b : C → D and {C, D } ∩ {A, B } = ∅ , the relation (3) remains
unaltered for the corresponding elements from B . If, b : A → D, D /∈
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{A, B } , it becomes

ωD

(
b0 b1

)
=

(
b0 b1

) (
ωA0 ξ
0 ωAB

)
or ωDb0 = b0ωA0 , ωDb1 = b1ωAB + b0ξ , i.e. ∂b0 = 0, ∂b1 = b0ξ . Just
in the same way one can calculate the differentials of the other solid
arrows from B . For instance, if b : B → A , then ∂b11 = 0, ∂b01 =
−ξb11, ∂b10 = b11η, ∂b00 = b01η − ξb10 .

On the other hand, the equations µ(Fv) = Fv ⊗ ωC + ωDFv +
∂(Fv) give the values of ∂w for the matrix components w of Fv .
For instance, if v : C · · ·>B , we get ∂v0 = 0, ∂v1 = ηv0 , etc. These
calculations imply immediately that the constructed set of generators
of the box B is triangular. �

Suppose now that a : A → A is a minimal loop and there is no
marked loop c 6= a in A(A, A) . Let X be a finite subset of k and n be
a positive integer. Denote by A′ the subcategory of A with the unique
object A and the algebra of morphisms k[a, ga(a)−1] . Consider the
minimal category B′ with the set of objects {A0, Amλ | 1 ≤ m ≤ n, λ ∈ X }
and the unique loop a0 : A0 → A0 with the marking polynomial
ga0(t) = ga(t)

∏
λ∈X(t − λ) . Define the functor F ′ : A′ → B′ setting

F ′(A) = A0⊕
(⊕

m,λ mAmλ

)
, F ′(a) =

(
a0 0
0 J

)
, where the matrix J

is a direct sum of Jordan cells

Jm(λ) =


λ 1 0 . . . 0 0
0 λ 1 . . . 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . λ 1
0 0 0 . . . 0 λ

 (m×m matrix).

For any linear mapping ϕ : V → V of a finite dimensional vector
space V , one can consider the Fitting decomposition V = V0⊕V1 such
that both V0 and V1 are invariant under ϕ , the restriction ϕ|V0 has
no eigenvalues from X and the minimal polynomial of the restriction
ϕ|V1 is of the form

∏
λ∈X(t− λ)kλ(ϕ) . Let M : A → vec be a functor.

Then the restriction of M onto A′ can be factored through F ′ if and
only if kλ(Ma) ≤ n for all λ ∈ X . In particular, it is the case if
dim MA ≤ n .

Now the calculations quite analogous (though more cumbersome) to
those used in the proofs of Proposition 6.2 and Theorem 6.3 give the
following result.
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Theorem 6.4. In the above situation, there is a functor F : A →
add B , where B is a semi-free category such that:

(1) The functor F ∗ : rep(AF ) → rep(A) induces an equivalence
between rep(AF ) and the full subcategory of rep(A) consisting
of all representation M such that kλ(Ma) ≤ n for all λ ∈ X .
Especially, the image of F ∗ contains all representation M with
dim MA ≤ n .

(2) The box AF is equivalent to add B , where B = (B, W) is
again a semi-free triangular box.
We denote by F̂ the induced functor rep(B) → rep(A) .

(3) If M ' F̂N and Ma has an eigenvalue from X , then Q−
B(dimN) <

Q−
A(dimM) .

Note that in this case the box B is no more free even if so was the box
A . Actually, it was the reason why semi-free boxes were introduced in
[12].4

One more variant of reduction occurs in studying coverings (cf. Sec-
tion 10) and deals with minimal lines. By definition, a minimal line
L in a semi-free box A = (A, V) is a set of pairwise different vertices
{An |n ∈ Z } and of arrows { an : An → An+1 } with ∂an = 0 for all
n . Denote by Mmn (m,n ∈ Z, m ≤ n) the following functor L → vec :

MmnA =

{
k if A = Ak, m ≤ k ≤ n,

0 otherwise;

Mmna =

{
1 if a = ak, m ≤ k < n,

0 otherwise.

Fix an integer r . Let B′ be the trivial category with the set of objects
{Bmn | |m− n| ≤ r } and F ′ : L → add B′ be the functor such that:

• F ′Ak =
⊕

m≤k≤n, |m−n|≤r Bmn ,

• with respect to this decomposition, F ′ak :
⊕

m≤k≤n Bm′n′ →⊕
m′≤k+1≤n′ Bm′n′ is the matrix with the entries

αmn,m′n′ =

{
1 if m = m′, n = n′

0 otherwise.

The same observations as before give the following result [14].

Theorem 6.5. Let L be a minimal line in a semi-free box A such
that there are no marked loops at the objects An belonging to this line.

4Their definition in [12] was a bit different and more complicated. The present
one is a combination of [12] and [6].
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There is a functor F : A → add B , where B is a semi-free category,
such that:

(1) The functor F ∗ : Rep(AF ) → Rep(A) induces an equivalence
between Rep(AF ) and the full subcategory of Rep(A) consisting
of all representation M such that the restriction of M onto
L decomposes into a direct sum of representations Mmn with
|m− n| ≤ r .

(2) The box AF is equivalent to add B , where B = (B, W) is
again a semi-free triangular box.
We denote by F̂ the induced functor Rep(B) → Rep(A) .

(3) If M ' F̂N and MAn 6= 0, MAn+1 6= 0 for some n , then
Q−

B(dimN) < Q−
A(dimM) .

The following immediate observation is sometimes useful.

Proposition 6.6. Let F̂ be one of the functors from Theorems 6.1,
6.3, 6.4 or 6.5, M be a linear representation of B over a rational
algebra R . Then F̂M is a linear representation of A over R .

7. Finite type

The first application of the reduction algorithm is that to the rep-
resentation discrete boxes. The following result was proved in [18] (it
had been known before as the First Brauer–Thrall conjecture).

Theorem 7.1. Suppose that a semi-free triangular box A is not rep-
resentation discrete.5

(1) A is representation strongly infinite.
(2) A has an indecomposable infinite dimensional representation

with finite support.

Proof. Let the set indd(A) be infinite for some vector dimension d .
We prove the theorem using the induction on q = Q−

A(d) . Obviously,
one can suppose that this vector dimension is sincere, i.e. d(A) 6= 0
for each object A (especially, A only has finitely many objects). If
q = 0 , there are no solid arrows at all, i.e. the box is so-trivial and
has finitely many representations of any vector dimension. Thus, the
claim is true for q = 0 . Suppose that it is true for each semi-free box
B and each vector dimension c such that Q−

B(c) < q . If q > 0 ,
there are solid arrows, hence, there is either a superfluous arrow, or a
minimal edge, or a minimal loop a : A → A . In the latter case the
box is representation strongly infinite (cf. Example 5.2). Moreover, we

5As we have already seen, a representation discrete semi-free box is actually free.
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can define an indecomposable infinite dimensional representation J∞
setting

J∞A = k(t), J∞B = 0 if B 6= A,

J∞a is the multiplication by t, J∞b = 0 if b 6= a.

If a : A → B is a minimal edge, consider the functor F̂ from Theo-
rem 6.3. For any representation M ∈ indd(A) there is a representation

N ∈ indd(B) such that M ' F̂N . Set c = dimN . There is finitely
many possibilities for c , therefore, there is at least one such dimension
with infinite set indc(B) . Since Q−

B(c) < q , the box B , hence also
A , is representation strongly infinite and has an indecomposable infi-
nite dimensional representation. Just the same observation works for
a superfluous arrow (use Theorem 6.1). �

Corollary 7.2. If the Tits form of a semi-free triangular box A is not
weakly positive, the box A is representation strongly infinite.

Theorem 7.1 and Corollary 5.7 immediately imply the following re-
sult.

Corollary 7.3. If a locally finite dimensional category is not represen-
tation discrete, it is representation strongly infinite and has an infinite
dimensional representation with finite support.6

Theorem 7.4. Suppose that a semi-free triangular box A is represen-
tation (locally) finite. Then every representation M ∈ Rep(A) with a
finite support is a direct sum of finite dimensional representations.

Proof. Obviously, we may suppose that A only has finitely many ob-
jects, hence, finitely many indecomposable finite dimensional represen-
tations. Then we can just follow the proof of Theorem 7.1 using the
induction on q = max

{
Q−

A(dimN) |N ∈ ind(A)
}

. �

Corollary 7.5. Suppose that a locally finite dimensional category C is
representation (locally) finite. Then every representation M ∈ Rep(C)
with a finite support is a direct sum of finite dimensional representa-
tions.

6It follows from [2, 3] that one can replace here “representation discrete” by
“representation finite.”
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8. Tame and wild type

Theorem 8.1 (Tame–wild dichotomy, cf. [12]). If a semi-free trian-
gular box is not wild, it is tame. Moreover, it has a parametrizing set
consisting of linear representations.7

Proof. We shall prove that if A = (A, V) is not wild, then for every
dimension d : Ob A → N there is a finite set Md such that

• each M ∈ Md is a strict linear representation of A of vector
dimension dM ≤ d over a rational algebra RM (it may depend
on M );

• if d′ ≤ d , almost all representations from indd′ A (i.e. all
but a finite number of them) are isomorphic to M ⊗RM

N for
some M ∈ Md and some finite dimensional representation N
of RM ;

• if d ≤ c then Md ⊆ Mc .

Certainly, then one can put M =
⋃

d Md .
We suppose d sincere and use induction on q = Q−

A(d) . Again the
case q = 0 is trivial, so we may suppose that q > 0 and the claim is
true for all boxes B and all dimensions of their representations c with
Q−

B(c) < q . If there is a minimal edge or a superfluous arrow in A ,
the proof just repeats that of Theorem 7.1 (using Proposition 6.6 for
linearity). Hence, we may suppose that there are neither minimal edges
nor superfluous arrows in A , only minimal loops. Note that if there is
a minimal loop a : A → A and a solid arrow b : A → B or b : B → A
with ∂b = 0 , the box A is wild due to Corollary 5.4. If every solid
arrow from A is a minimal loop, set M = { Ja | a is a minimal loop } ,
where Ja has been defined in Example 5.2. Evidently, |M| = ind(A)
and all representations Ja are linear.

If there are solid arrows that are not minimal loops, the triangular-
ity implies that there is one of them, say b : A → B , such that ∂b
only contains minimal loops (and dotted arrows). First suppose that
there is a (unique) minimal loop a : A → A and no minimal loops

c : B → B (or vice versa). Then ∂b =
∑k

i=1 vifi(a) for some dotted
arrows vi and some nonzero polynomials fi(t) , and, choosing a new
set of generators, we may suppose that k = 1 , i.e. ∂b = vf(a) . Use
Theorem 6.4 for the set X = {λ ∈ k | f(λ) = 0 } and n = d(A) . Note
that indd(A) = R1∪R2 , where R1 consists of representations N such
that NA has eigenvalues from X and R2 of all other representations.

7The latter property was first noticed in [15], though it easily follows from the
reduction algorithm.
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Theorem 6.4 and the induction conjecture implies that almost all rep-
resentations from R1 can be obtained from a finite set of strict linear
representation over rational algebras. All representations from R2 are
isomorphic to G∗N , where G : A → A[f(a)−1] . The box AG is also
semi-free with the same sets of objects and arrows, but the arrow b
is superfluous in AG . Hence, we can use again the induction hypoth-
esis and claim that almost all representations from R2 (thus almost
all representations from indd(A) ) can be obtained from a finite set of
strict linear representations over rational algebras.

Suppose now that there is both a minimal loop a ∈ A(A, A) and a
minimal loop c ∈ A(B, B) , both unique since A is not wild (perhaps
A = B , then a = c ). We consider V(A, B) as k[x, y]-bimodule: for
v ∈ V(A, B) and f(x, y) =

∑
ij λijx

iyj set f(x, y)v =
∑

ij λijc
jvai .

Then ∂b =
∑

k fk(x, y)vk for some dotted arrows vk : A · · ·>B) . Let
d(x, y) be the greatest common divisor of all fk(x, y) . There are poly-
nomials gk(x, y) and h(x) such that h(x)d(x, y) =

∑
k gk(x, y)fk(x, y) .

Using Theorem 6.4 for the loop a and the set X = {λ ∈ k |h(λ) = 0 } ,
we are able to reduce the situation, just as in the preceding paragraph,
to the case when h(a) is invertible. Then, changing the set of dotted
arrows, we can suppose that ∂b = d(x, y)v for some dotted arrow v .
If d(x, y) = 1 , b is superfluous, so we can use the inductive procedure.
Otherwise the following lemma accomplishes the proof.

Lemma 8.2. Let A0 be a triangular semi-free box with the bigraph

Aa 77

v
++

b

33 B chh or Aa 77

v

��
bgg

such that ∂a = 0, ∂c = 0 and b is not superfluous. Then A0 is wild.

The proof of this lemma is just an explicit construction of strict
representations of the given boxes over the wild algebra kΓ5 from
Corollary 5.4. For instance, if A0 is free with the first of the given
bigraphs and ∂b = va− cv (it is a typical case), a strict representation
M from rep(A0,kΓ5) can be defined as follows. We denote by Pi the
indecomposable projective module corresponding to the vertex Ai of
the graph Γ5 , identify the arrows ai with homomorphisms P0 → Pi )
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and set:

MA = 9P0,

MB =
5⊕

i=1

(2i− 1)Pi,

Ma = J9,

Mc =
5⊕

i=1

J2i−1,

Mb =



a1 0 . . . 0
0 0 . . . 0
a2 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
a3 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
a4 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
a5 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0
0 0 . . . 0



,

where Jm denotes the m×m nilpotent Jordan cell. �

Corollary 8.3. If a locally finite dimensional category is not wild, it
is tame and has a parametrizing family that consists of linear represen-
tations.

Corollary 8.4. If the Tits form of a semi-free triangular box is not
weakly nonnegative, this box is wild.
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Remark 8.5. One can easily see from the proof of Theorem 8.1 that if
a semi-free triangular box A is wild, it has a strict representation over
any free algebra k〈x1, x2, . . . , xm 〉 that is also linear, i.e. all entries of
matrices corresponding to the homomorphisms Ma ( a runs through
solid arrows) with respect to some bases chosen in all modules MA
(which are free [1, Chapter IV, § 5]) are linear in x1, x2, . . . , xn . The
same is true for locally finite dimensional categories.8

Indeed, the proof of Theorem 8.1 also gives the following results that
are sometimes useful.

Proposition 8.6. Suppose that a semi-free triangular box A is not
wild, a is a minimal loop from A and d is a vector dimension of
representations of A .

(1) There is a finite subset X ⊆ k such that, for each M ∈
indd(A), M 6' Ja

n(λ) , the set of eigenvalues of Ma is con-
tained in X .

(2) There is a morphism Φ : A → add T , where T is a so-minimal
box, such that the functor Φ∗ : rep(T) → rep(A) is full and
faithful and its image contains all representations of dimensions
d′ ≤ d .

9. Generic modules

Let A = (A, V) be a normal box, M ∈ Rep(A) and E = HomA(M, M) .
For each object A ∈ Ob A and each element α ∈ E , α(ωA) is an en-
domorphism of the vector space MA and αβ(ωA) = α(ωA)β(ωA) .
Hence, we can consider MA as E-module setting αu = α(ωA)u . Sup-
pose that A is skeletal. They say that M is of finite endolength
if supp M is finite and lengthE MA < ∞ for each object A . Let
fel(A) be the category of all representations from Rep(A) of finite en-
dolength. A representation M ∈ fel(A) is said to be generic if it is
indecomposable and infinite dimensional (i.e. dim MA = ∞ for at
least one object A ). We denote by e-lenM and call the vector en-
dolength of M the function Ob A → N mapping A to lengthE(MA)
and set e-len M =

∑
A∈Ob A lengthE(MA) . Let gen(A) denote the set

of isomorphism classes of all generic representations of A and gend(A)
those of generic representations with vector endolength d . In particu-
lar, these definitions are valid if we consider a locally finite dimensional
category instead of a box. Thus it contains, in particular, representa-
tions of finite dimensional algebras.

8It was also first observed in [15].
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Example 9.1. Let M be a strict representation of A over a ratio-
nal algebra R . Denote by Mm(t) the representation M ⊗R Jm(t) ,
where Jm(t) is the k(t)-R-bimodule such that its underlying right
k(t)-module is mk(t) and the left multiplication by t is given by the
matrix 

t 1 0 . . . 0 0
0 t 1 . . . 0 0
. . . . . . . . . . . . . . . . . .
0 0 0 . . . t 1
0 0 0 . . . 0 t

 .

Then Mm(t) is a generic representation of the box A with e-lenMm =
mdimM . Moreover, its endomorphism algebra E is a finite dimen-
sional k(t)-algebra.9

If a box (or an algebra) is representation finite, it has no generic
modules (cf. Corollary 7.5). Moreover, the following result can be
obtained just following the proof of Theorem 7.1.

Proposition 9.2. If a semi-free triangular box (or a locally finite di-
mensional category) has a generic representation, it is representation
strongly infinite.

The following refined version of tame–wild dichotomy was actually
proved in [7] (though the original formulation was a bit different there).

Theorem 9.3. For a semi-free triangular box A = (A, V) the following
conditions are equivalent:

(1) A is not wild.
(2) A is tame.
(3) For each vector dimension d : Ob A → N the set gend(A) is

finite.
(4) There is a parametrizing set M of representations of A such

that every generic representation N ∈ gen(A) is isomorphic to
Mm(t) for some M ∈ M .

Moreover, the representations from M can be chosen linear.

Proof. (1) ⇔ (2) is already known. (4) ⇒ (3) is trivial.
(3) ⇒ (1) : Consider a strict representation M of A over k[x, y] .

Denote by N(λ) (λ ∈ k) the k(t)-k[x, y]-bimodule such that the un-
derlying k(t)-module is just k(t) , x acts as multiplication by λ and
y as multiplication by t . Then M ⊗k[x,y] N(λ) are generic pairwise
nonisomorphic representations of A .

9Certainly, it is a mistake: only M1(t) is indecomposable, so generic!



REDUCTION ALGORITHM AND REPRESENTATIONS 29

(1) ⇒ (4) . Using induction on Q−
A(d) , we find finite sets of rational

families Md such that

• dimM ≤ d for each M ∈ Md ;
• every generic representation of vector endolength d′ ≤ d is

isomorphic to Mm(t) for some M ∈ Md ;
• if d < c then Md ⊆ Mc .

Certainly, then one can put M =
⋃

d Md . The inductive procedure
uses again the reduction algorithm and is quite analogous to that of
the proof of Theorem 8.1. The main new ingredient is to check that
vector endolength behave during the reduction in the same way as
vector dimension. It follows easily from the fact that if F : A →
add B is one of the morphisms of boxes described in Section 6 and
FA =

⊕
i Bi , one can arrange indices so that the image FωA be

a triangular matrix with the diagonal entries ωBi
. Hence, if M =

F ∗N and E = HomA(M, M) ' HomB(N, N) , then lengthE(MA) =∑
i lengthE(NBi) We refer to [7] for details. �

Theorem 9.3 together with the results from Section 4 implies imme-
diately its analogue for algebras [7].

Corollary 9.4. Let C be a locally finite dimensional category (for
instance, a finite dimensional algebra). The following conditions are
equivalent:

(1) C is not wild.
(2) C is tame.
(3) For every n there is only finitely many generic C-modules of

endolength n (up to equivalence).
(4) There is a parametrizing set M of representations of C such

that every generic representation N ∈ gen(A) is isomorphic to
Mm(t) for some M ∈ M .

Moreover, the representations from M can be chosen linear.

10. Coverings

Let A = (A, V) be a box, G be a group. We say that G acts on
A if it acts on the sets of objects and morphisms of A as well as on
the set of elements of V so that

• if A, B ∈ Ob A, a ∈ A(A, B), v ∈ V(A, B) and g ∈ G , then
ga ∈ A(gA, gB), gv ∈ V(gA, gB) ;

• g(ab) = (ga)(gb) , g(a + b) = ga + gb , g(λa) = λ(ga) , where
g ∈ G , λ ∈ k and a, b are elements from Mor A or V such
that the left parts of the corresponding equations are defined;

• µ(gv) = gµ(v) , where g(u1 ⊗ u2) = (gu1 ⊗ gu2) ;
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• ε(gv) = gε(v) .

If, moreover, A is skeletal and gA 6= A for each A ∈ Ob A, g ∈
G, g 6= 1 , we say that G acts freely on A .

If G acts freely on A , the orbit box G\A = (G\A,G\V) is defined
in the following way:

• Ob(G\A) is the set of orbits of G on Ob A ;
• (G\A)(GA,GB) =

⊕
g,h∈G A(gA, hB)/UA , where UA is the

subspace generated by all differences a− ga (g ∈ G) ;
• (G\V) = (GA,GB)

⊕
g,h∈G V(gA, hB)/UV , where UV is the

subspace generated by all differences v − gv (g ∈ G) ;
• (Ga)(Gb) = (Gab′) , where b′ is the unique element from Gb

such that its target coincide with the source of a ;
• ε(Gv) = Gε(v) ;
• µ(Gv) = Gµ(v) .

Let Π : A → G\A be the natural projection. It defines the inverse
image functor Rep(G\A, C) → Rep(A, C) for each category C . On the
other hand, if C is additive, the direct image functor Π∗ : rep(A, C) →
rep(G\A, C) is induced by the tensor product (G\A)Π⊗A . Moreover,
if G is finite or C has infinite direct sums, the functor Π∗ is defined
for all representations, not only finite. The following description of Π
and Π∗ is straightforward.

Proposition 10.1. For every objects Â, B̂ from G\A and for each

representatives A0 ∈ Â, B0 ∈ B̂ ,

(G\A)(Â, B̂) '
⊕
A∈Â

A(A, B0) '
⊕
B∈B̂

A(A0, B);

(G\V)(Â, B̂) '
⊕
A∈Â

V(A, B0) '
⊕
B∈B̂

V(A0, B);

(Π∗M)Â '
⊕
A∈Â

MA.

If a group G acts freely on a box A and A ' G\A , they say that
A is a Galois covering of A with Galois group G .

The construction from Section 4 immediately implies the following
result.

Proposition 10.2. If a group G acts freely on a basic category C and
RC is the box corresponding to the radical of C via Theorem 4.1, then
G acts freely on RC and there is a natural equivalence G\(RC) '
RG\C , which commutes with the functors Cok .
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Any action of a group G on a box A induces an action of G on its
representation categories: for any M ∈ Rep(A, C) and g ∈ G , gM
is the representation such that (gM)A = M(g−1A) . In general, this
action is not free even if so is the action of G on A ; nevertheless, it
is free on the categories of finite representations if G is torsion free.

For representation finite and sometimes for tame boxes there are
good relations between the representations of a box and those of its
Galois coverings.

Theorem 10.3. Let a group G acts freely on a semi-free triangular
box A .

(1) A is representation locally finite if and only if so is A = G\A .
(2) If these boxes are representation locally finite, G acts freely on

rep(A) and the functor Π∗ induces an equivalence G\ rep(A) '
rep(A) .

Corollary 10.4 (cf. [4]). Let a group G acts freely on a locally finite
dimensional category C .

(1) C is representation locally finite if and only if so is C = G\C .
(2) If these categories are representation locally finite, G acts freely

on rep(C) and the functor Π∗ induces an equivalence G\ rep(C) '
rep(C) .

Remark 10.5. If A is representation discrete, it may not be the case
for A . The easiest example is the free category with the graph

· · · −→ A−1 −→ A0 −→ A1 −→ A2 −→ · · ·
and the obvious action of the group Z . The orbit category consists of
one loop, hence, is representation strongly infinite.

If A is tame, G\A may not be so. The easiest example is perhaps
that of finite dimensional category C = kΓ/I , where Γ is the graph

A1
a1 //

c1

&&NNNNNNNNNNNNN B1
b1 //

d1

&&NNNNNNNNNNNNN C1

A2 a2

//
c2

88ppppppppppppp
B2

b2

//d2

88ppppppppppppp
C2

and I is the ideal generated by the set

{ d1a1 − b2c1, d2a2 − b1c2, b1a1 − d2c1, b2a2 − d1c2 } ,

with the evident free action of the group G of order 2. It is not difficult
to check that C is tame, but if chark = 2 the orbit category G\C is
wild [16].
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Nevertheless, the situation becomes much better if the group G is
torsion free.

Theorem 10.6 (cf. [14]). Suppose that a torsion free group G acts
freely on a semi-free triangular box A .

(1) A is tame if and only if so is A = G\A .
(2) If these boxes are tame, then:

(a) ind(A) = ind0 t ind1 , where ind0 = Π∗(ind(A)) ' G\ rep(A)
and ind1 = |N| , where N is a set of strict linear represen-
tations of A over the algebra T = k[t, t−1] .

(b) HomA(M, M ′) ⊆ rad∞(A) if M ∈ ind0, M ′ ∈ ind1 , or
vice versa, or M, M ′ belong to different rational families
from N .

(c) If M ' N ⊗T L, M ′ ' N ⊗T L′ for some N ∈ N and
L, L′ ∈ ind(T) , then HomA(M, M ′) = 1⊗ HomT(L, L′)⊕
H , where H = HomA(M, M ′) ∩ rad∞(A) .

Here rad∞ denotes the intersection of all powers of the radical
of the category of representations.

Corollary 10.7. 10 Suppose that a torsion free group G acts freely on
a locally finite dimensional category C .

(1) C is tame if and only if so is C = G\C .
(2) If these boxes are tame, then

(a) ind(C) = ind0 t ind1 , where ind0 = Π∗(ind(C)) ' G\ rep(C)
and ind1 = |N| , where N is a set of strict linear represen-
tations of C over the algebra T = k[t, t−1] .

(b) HomC(M, M ′) ⊆ rad∞(C) if M ∈ ind0, M ′ ∈ ind1 , or vice
versa, or M, M ′ belong to different rational families from
N .

(c) If M ' N ⊗T L, M ′ ' N ⊗T L′ for some N ∈ N and
L, L′ ∈ ind(T) , then HomC(M, M ′) = 1 ⊗ HomT(L, L′) ⊕
H , where H = HomC(M, M ′) ∩ rad∞(C) .

Proof. The proofs of Theorems 10.3 and 10.6 are based on the proce-
dure of “equivariant reduction.” Namely, we find a solid arrow a of
the box A that is either superfluous, or a minimal edge, or a minimal
loop. In the first two cases one can lift a to a set ã of superflu-
ous arrows, respectively minimal edges of the box A . Then we ap-
ply the corresponding step of the reduction algorithm (cf. Section 6)
both to the arrow a and to all arrows of the set ã . As the result,
we obtain a new box B with a free action of the same group G

10Partial cases of this theorem were proved in [8, 9]
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and functors F : A → add B, F : B → add B , where B = G\B ,
such that F (gA) = g(FA) and both F and F induce equivalences
rep(B) ' rep(A), rep(B) ' rep(A) so that the diagram

rep(B)
∼−−−→ rep(A)

Π∗

y yΠ∗

rep(B)
∼−−−→ rep(A)

is commutative. Therefore, we can proceed inductively as in the proofs
of Sections 7 and 8.

If a is a minimal loop, there are two possibilities: either a is lifted to
A as a set of minimal loops or as a set of minimal lines (cf. Section 6).
In the former case we again use equivariant reduction and induction,
while in the latter case the following lemma works.

Lemma 10.8. If the box A is not wild and a minimal loop a of A is
lifted to minimal lines, then, for every indecomposable representation
M ∈ ind(A) , either Ma is nilpotent or M ' M ′ such that M ′b = 0
for each arrow b 6= a .

The representations of the second kind belong to the rational family
Ja ∈ rep(A,T) . For those of the first kind we again use an equivariant
reduction, namely, apply Theorem 6.4 to the loop a (setting X = { 0 } )
and Theorem 6.5 to the minimal lines that form the preimage of a .

The proof of Lemma 10.8 is the most intricate. Here we use a new
class of boxes called quasi-triangular. Roughly speaking, a box is quasi-
triangular if it becomes semi-free triangular after making invertible the
arrows of several lines that become minimal after this procedure. Ac-
tually, in [14, Lemma 8.4] we prove a generalization of Lemma 10.8 for
a quasi-triangular box A using a generalized version of reduction algo-
rithm to arrange an equivariant reduction (we refer to [14] for technical
details). �

As we have already noticed, if G has elements of finite order, there
is not a simple relation between representations of A and G\A . Nev-
ertheless, there is evidence that the following result might hold.

Conjecture 10.9. Suppose that a group G , which has no elements of
order equal to chark , acts freely on a semi-free triangular box A .

(1) A is tame if and only if so is A = G\A .
(2) If these boxes are tame, then

(a) ind(A) = ind0 t ind1 , where ind0 consists of direct sum-
mands of images {Π∗M |M ∈ ind(A) } and ind1 = |N| ,
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where N is a set of strict representations of A over the
algebra T = k[t, t−1] .

(b) HomA(M, M ′) ⊆ rad∞(A) if M ∈ ind0, M ′ ∈ ind1 , or
vice versa, or M, M ′ belong to different rational families
from N .

(c) If M ' N ⊗T L, M ′ ' N ⊗T L′ for some N ∈ N and
L, L′ ∈ ind(T) , then HomA(M, M ′) = 1⊗ HomT(L, L′)⊕
H , where H = HomA(M, M ′) ∩ rad∞(A) .

The same is true for representations of locally finite dimensional cate-
gories.

(For instance, these properties always hold if chark = 0 .)
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