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ON POLYNOMIAL FUNCTORS
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This is a survey of the last results of the author on classification of polynomial functors,

especially quadratic and cubic.

Key words: polynomial functors, tame and wild algebras, string and band modules.

Polynomial functors appeared in algebraic topology [8] and proved themselves use-
ful in various questions of this theory, especially in studying homotopy types. So
their classification is of a definite interest. Some time ago the author noticed that
at least the quadratic case can be treated in more or less usual framework of the
representation theory. It gave possibility to obtain their complete description [6].
Unfortunately, this is the last case when such a description can be given. The cubic
case is already wild in the sense of the representation theory [7]. Nevertheless, some
special types of cubic functors can be classified. Perhaps, the most important seems
the 2-divisible case, which is completely analogous to the quadratic one [7]. As a con-
sequence, a conjecture appears that the situation is the same for polynomial functors
of degree p (prime) if we invert all smaller primes. This survey is mainly devoted
to these results. Other special types of cubic functors that have been classified are
“cubic vector spaces,” weakly alternative and torsion free functors, but we only give
a brief outlook of their description, since its proper place is still unclear. The author
is grateful to Professor H.-J.Baues for his enthusiastic support of this research.

1. Generalities.

We suppose all categories pre-additive, i.e. all morphism sets endowed with abelian
group structure. On the other hand, the functors are not supposed additive, though
we always suppose that they map zero objects to zero. If F : A → B is any functor,
we can measure its non-additivity by its polarizations (or cross-effects). The latter
are constructed as follows. Let A be additive (i.e. having finite direct sums) and
B be fully additive, i.e. additive category such that every idempotent corresponds
to a direct decomposition. For any objects A1, . . . , An from A consider their direct
sum A =

⊕n

k=1 Ai together with the embeddings ik : Ak → A and projections
pk : A → Ak .

Then ek = ikpk are orthogonal idempotent endomorphisms of A , hence f(k) =
F (ek) are orthogonal idempotent endomorphisms of F (A) . Define recursively endo-
morphisms f(k1 . . . km) for each m 6 n, 1 6 k1 < · · · < km 6 n setting

f(k1 . . . km) = F (ek1
+ · · · + ekm

) −
∑

l<m

∑

j1<···<jl

f(j1 . . . jl),
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for instance f(kl) = F (ek + el)−F (ek)−F (el) . Set Fn(A1| . . . |An) = Imf(12 . . . n).
Then

F (A) =
⊕

m6n

⊕

k1<···<km

Fm(Ak1
| . . . |Akm

).

The functor F is called polynomial if there is an integer d such that Fn = 0 for
n > d . The smallest d with this property is called the degree of F . Certainly
functors of degree 1 are just additive; those of degree 2 are called quadratic and of
degree 3 cubic.

In what follows we consider the case when A = fab , the category of finitely
generated free abelian groups, and B = R-Mod , the category of modules over a
ring R . As any additive functor F : fab → R-Mod can be identified with the
R-module F (Z) , we call polynomial functors F : fab → R-Mod polynomial R-
modules. Moreover, as a rule we only deal with finitely generated polynomial modules,
i.e. polynomial functors F : fab → R-mod , the category of finitely generated R-
modules. If R = Z , we simply say “polynomial modules” not precising the ring.

One can show (see [1]) that a polynomial module M of degree d is completely
defined by the values Mn = Mn(Z| . . . |Z) (n times) for n 6 d and the homomor-
phisms Hn

m : Mn → Mn+1, Pn
m : Mn+1 → Mn for each n < d, m 6 n , which are

defined as the following compositions:

Hn
m : Mn → M(Zn) → M(Zn+1) → Mn+1,

where the first mapping is just the embedding of the direct summand, the last one is
the projection onto the direct summand, and the middle one equals M(δm) , where

δm : Z
n → Z

n+1, δm(z1, . . . , zn) = (z1, . . . , zm−1, zm, zm, zm+1, . . . , zn);

and
Pn

m : Mn+1 → M(Zn+1) → M(Zn) → Mn,

where the first mapping is the projection, the last one is the embedding, and the
middle one equals M(γm) , where

γm : Z
n+1 → Z

n, γm(z1, . . . , zn+1) = (z1, . . . , zm−1, zm + zm+1, zm+2 . . . , zn).

Certainly, these mappings must satisfy some relations (cf. [1]), which we shall not
write in general case.

Important examples of polynomial modules are:
• tensor powers T n : A 7→ A⊗n ,
• symmetric powers Sn : A 7→ SnA ,
• exterior (skew-symmetric) powers Λn : A 7→ ΛnA .
In particular, tensor power T n and its polarizations T n,k : A → T n

k (A| . . . |A) ( k
times) are just indecomposable projectives in the category of all polynomial modules
of degree n .
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2. Quadratic modules

For quadratic modules the previous construction gives two R-modules M1, M2 ,
and two mappings H : M1 → M2 and P : M2 → M1 , such that PHP = 2P and
HPH = 2H .

We consider the “absolute” case, when R = Z (it is the most important for
topology). Then one can easily see that a quadratic module can be considered as
a module over a special ring A , which is the subring in the direct product Z ×
Mat(2, Z) × Z consisting of the triples

(a, b, c), where b =

(

b1 2b2

b3 b4

)

, b1 ≡ a, b4 ≡ c (mod 2).

Namely, if M is an A-module, in the corresponding quadratic module M1 =
e1M, M2 = e2M , H is the multiplication by h and P is the multiplication by
p , where

e1 = (1, e11, 0), e2 = (0, e22, 1), h = (0, e21, 0), p = (0, 2e12, 0)

( eij are the matrix units in Mat(2, Z) ). Fortunately, this ring belongs to the class
considered by the author in [5]. In particular, it is tame; moreover, its representations
can be described in a rather usual language of “strings” and “bands.” Indeed, this
classification is a special case of the so-called representations of bunches of chains (cf.
[2]). For details of the calculations we refer to [6]; here we only formulate the result
in a bit more convenient form.

First, using the common tool of adèles groups, like in [4], we establish a sort of
“Hasse principle” for quadratic modules. Remind that we always suppose our modules
finitely generated.

2.1. Proposition. Two quadratic modules M and N are isomorphic if and only if
there localizations Mp and Np are isomorphic for each prime number p .

If p > 2 , Ap = Zp × Mat(2, Zp) × Zp , so the description of Ap-modules is
quite simple: there are three indecomposable torsion free modules (direct summands
of Ap ), and every other indecomposable module is isomorphic to P/pkP for some
positive integer k and one of these modules P . The description in case p = 2 is more
interesting. First introduce some configurations of integers called strings and bands.
Namely, define two symmetric relations on the set {1, 2, 3, 4} : an equivalence relation
− such that the only non-trivial equivalence is 2 − 3 , and ∼ (not an equivalence!)
such that 1 ∼ 2 and 3 ∼ 4 . Now a string is a configurations of one of the following
sorts:

(i)
j1 j2j3 j2n−2j2n−1

k1 k2 k3 · · · k2n−1

i1i2 i3i4 i2n−1

or

(ii)
j2j3 j2n−2j2n−1

k2 k3 · · · k2n−1

i2 i3i4 i2n−1

or
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(iii)
j1 j2j3 j2n

k1 k2 · · · k2n

i1i2 i2n−1i2n

where ir, jr ∈ {1, 2, 3, 4} , kr ∈ N satisfy the following conditions:
• i2r−1 ∼ i2r for each r = 1, 2, . . . , n . This condition is empty for types (i) and

(ii) if r = n and for type (ii) if r = 1 , but in these cases we define i2n , respectively
i1 so that it holds.

• j2r+1 ∼ j2r for each r = 1, 2, . . . , n − 1 .
• ir − jr for each r = 1, 2, . . . , 2n (again it is empty in some cases, but here we

do not define any extra values).
Consider now the following mappings acting in every quadratic module:

θ(11) = 2idM1
− PH, θ(22) = PH, θ(23) = H,

θ(32) = P, θ(33) = HP, θ(44) = 2idM2
− HP.

Set also ν{1, 2} = 1, ν{3, 4} = 2 . Then the quadratic string module M = MD

corresponding to a string diagram D is generated by the elements

g1,g2, . . . ,gn gr ∈ Mν{i2r−1,i2r}

subject to the relations:

2k2rθ(i2rj2r)gr = 2k2r+1θ(i2r+1j2r+1)gr+1 (r = 0, 1, . . . , n).

We set here g0 = g2n+1 = 0 and omit the case r = n for diagrams of types (i),(ii)
and the case r = 0 for diagrams of type (ii).

A band data is a pair (D, m, φ) , where D is a diagram of type (iii) and φ =
λ1 + λ2t + · · · + λmtm−1 + tm is a polynomial over the residue field Z/2 such that

• j2n ∼ j1 .
• D is non-periodic, i.e. cannot be written as a repetition D′D′ . . . D′ of a shorter

diagram D′ .
• φ is a power of an irreducible polynomial and λ1 6= 0 .
The quadratic band module M = MD,φ corresponding to a band data is generated

by the elements

grs (r = 1, 2, . . . , n, s = 1, 2, . . . , m) grs ∈ Mν{i2r−1i2r}

subject to the relations:

2k2rθ(i2rj2r)grs = 2k2r+1θ(i2r+1j2r+1)gr+1,s (r = 0, 1, . . . , n) if 1 6 r < n;

2k2nθ(i2nj2n)gns = 2k1θ(i1j1)g1,s+1 if 1 6 s < m;

2k2rθ(i2nj2n)gnm = −2k1θ(i1j1)
m

∑

s=1

λsg1s.

2.2. Theorem. (1) Every indecomposable quadratic module is isomorphic to one of
the string or band modules defined above, or to a module S2/pk, Λ2/pk, or Id/pk ,
where p is an odd prime.

(2) The only isomorphisms between these indecomposable modules are the following:

• MD ≃ MD∗

, where D is the symmetric diagram to a diagram D of type (ii)
or (iii).



ON POLYNOMIAL FUNCTORS 5

• MD,φ ≃ MDl,φ , where Dl denotes the l-th cyclic shift of the diagram of type
(iii), i.e. the configuration

j2l+1 j2l+2j2l+3 j2l

k2l+1 k2l+2 · · · k2l

i2l+1i2l+2 i2l−1i2l

• MD,φ ≃ MD∗l,φ∗

, where φ∗(t) = λ−1
1 tmφ(1/t) .

(3) Any quadratic module uniquely decomposes into a direct sum of indecomposable
ones.

2.3 Corollary.

• Every quadratic module M has a periodic projective resolution of period 4, namely

· · · → Pn
αn−→ Pn−1 → · · · → P1

α1−→ P0 → M → 0

with Pn+4 = Pn, αn+4 = αn for n > 2 .
• The projective dimension of a quadratic module is either 0, or 1, or ∞ . Hence

the finitistic projective dimension of the category of quadratic modules equals 1.

3. Cubic modules

A cubic module is given by 3 groups M1, M2, M3 and 6 mappings

H : M1 → M2, P : M2 → M1, Hm : M2 → M3, Pm : M3 → M2 (m = 1, 2)

subject to the conditions:

H1P2 = H2P1 = 0, H1H = H2H, PP1 = PP2,

HiPiHi = 2Hi, PiHiPi = 2Pi (i = 1, 2),

HPH = 2(H + (P1 + P2)P̄ ), PHP = 2(P + P̄ (H1 + H2)),

H̄P + H1 + H2 = H1P1H2P2H1 + H2P2H1P1H2,

HP̄ + P1 + P2 = P1H2P2H2P1 + P2H1P1H2P2,

where H̄ = H1H = H2H, P̄ = PP1 = PP2 .
We consider the ring B generated by three orthogonal idempotents e1, e2, e3 such

that e1 + e2 + e3 = 1 and 6 elements

H ∈ e2Be1, P ∈ e1Be2, Hm ∈ e3Be2, Pm ∈ e2Be3 (m = 1, 2)

subject to the above relations. Then any cubic module can be considered as B-
module. Set B1 = e1Be1 .

3.1. Proposition.

1. The ring B1 is generated by two elements a = PH − P̄ H̄, b = PH subject to
the relations a2 = 2a, b2 = 6b, ab = ba = 0 .

2. The ring B1 (all the more B ) is wild.

Proof. The first claim is verified by straightforward calculations [7]. To prove the
second, consider the free (non-commutative) algebra Σ = Z/4〈x, y〉 over the residue
ring Z/4 and the homomorphism σ : B1 → Σ mapping a 7→ 2x, b 7→ 2y . For
every Σ-module L denote by σL the B1-module obtained from L by the change
of rings. Then one easily verifies that for any Σ-modules L, L′ , which are free as
Z/4-modules,
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• σL ≃ σL′ if and only if L/2 ≃ L′/2 ;
• σL is indecomposable if and only if L/2 is indecomposable.
Hence the classification of B1-modules is at least as complicated as that of modules

over Σ/2 ≃ Z/2〈x, y〉 . It means that B1 is wild in the sense of the representation
theory.

It gives no hope to obtain a good classification of cubic modules. Nevertheless, the
situation becomes much better if we “invert 2,” that is consider cubic modules over
the ring Z

′ = Z[1/2] . We call them 2-divisible cubic modules. Then straightforward,
though rather cumbersome, calculations give the following result.

3.2. Proposition. The ring B[1/2] is Morita equivalent to the direct product Z
′ ×

Z
′ × B′ , where B′ is the subring of Z

′ × Mat(2, Z′) × Mat(2, Z′) × Z
′ consisting of

quadruples

(a, b, c, d), where b =

(

b1 3b2

b3 b4

)

, c =

(

c1 3c2

c3 c4

)

,

such that a ≡ b1, b4 ≡ c1, c4 ≡ d (mod3).

The cubic modules corresponding to the first two factor Z
′ are just S2/pk and

Λ2/pk for odd primes p (they are indeed quadratic modules). The description of
B′-modules can be given in the same frames as that of quadratic modules. The
corresponding string and bands only differs from those of the preceding section by
the features that now the indices ir, jr are taken from the set {1, 2, 3, 4, 5, 6} with
the relations 2−3, 4−5 , 1 ∼ 2, 3 ∼ 4, 5 ∼ 6 , polynomials φ are taken from Z/3[t] ,
and the mappings θ(ij) are defined as follows:

θ(11) = 3IdM1
− β1α1, θ(22) = β1α1, θ(23) = α1, θ(32) = β1, θ(33) = α1β1,

θ(44) = β2α2, θ(45) = α2, th(54) = β2, θ(55) = α2β2, θ(66) = 3IdM3
− α2β2,

where α1 : M1 → M2 corresponds to the quadruple (0, e21, 0, 0) , β1 : M2 → M1

to the quadruple (0, 3e12, 0, 0) , α2 : M2 → M3 to the quadruple (0, 0, e21, 0) , and
β2 : M3 → M2 to the quadruple (0, 0, 3e12, 0) .

So we get the following results.

3.3. Theorem. (1) Two cubic 2-divisible modules M, N are isomorphic if and only
if Mp ≃ Np for each odd prime p .

(2) Every indecomposable 2-divisible cubic module is isomorphic to one of the fol-
lowing:

• string or band module;
• S3/pk , S3∗/pk , Λ3/pk , Id/pk , where S3∗(A) = S2

3(A|A) and p > 3 is a
prime;

• S2/pk or Λ2/pk , where p is an odd prime.
(3) The only isomorphisms between these indecomposable cubic modules are:

• MD ≃ MD∗

, where D is the symmetric diagram to a diagram D of type (ii)
or (iii).

• MD,φ ≃ MDl,φ , where Dl denotes the l-th shift of the diagram of type (iii),
i.e. the configuration

j2l+1 j2l+2j2l+3 j2l

k2l+1 k2l+2 · · · k2l

i2l+1i2l+2 i2l−1i2l
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• MD,φ ≃ MD∗l,φ∗

, where φ∗(t) = λ−1
1 tmφ(1/t) .

(3) Any 2-divisible cubic module uniquely decomposes into a direct sum of inde-
composable ones.

3.4. Corollary.

• Every 2-divisible cubic module M has a periodic projective resolution of period
6, namely

· · · → Pn
αn−→ Pn−1 → · · · → P1

α1−→ P0 → M → 0

with Pn+6 = Pn, αn+6 = αn for n > 2 .
• The projective dimension of a 2-divisible cubic module is either 0, or 1, or ∞ .

Hence the finitistic projective dimension of the category of 2-divisible cubic modules
equals 1.

3.5. Conjecture. Let p be a prime, Z
(p) = Z[1/(p − 1)!] . Then the category

of polynomial Z
(p)-modules of degree p is equivalent to the category A(p)-modules,

where A(p) is a direct product of several copies of Z
(p) and of the subring of Z

(p) ×
Mat(2, Z(p))p−1 × Z

(p) consisting of (p + 1)-tuples (a, b1, . . . , bp−1, c) , where

bm =

(

bm
11 pbm

12

bm
21 bm

22

)

with bm
22 ≡ bm+1

11 (mod p) for m = 1, . . . , p − 2,

a ≡ b1
11, c ≡ bp−1

22 (mod p).

If this conjecture is true, the description of Z
(p)-modules of degree p (we call them

(<p)-divisible p-modules) becomes quite analogous to that of quadratic or 2-divisible
cubic modules. Namely:

• Two (<p)-divisible p-modules M, N are isomorphic if and only if Mq ≃ Nq for
all prime q > p .

• Indecomposable (<p)-divisible p-modules, except some “trivial” ones, are string
and band modules defined as above. Now ir, jr are taken from the set {1, 2, . . . , 2p}
with corresponding changes of −, ∼ and θ(ij) . The isomorphisms between these
modules are the same as in Theorems 2.2 and 3.3.

• Every (<p)-divisible p-module uniquely decomposes into a direct sum of inde-
composable ones.

• Every (<p)-divisible p-module has a periodic projective resolution of period
2p starting from α2 . Therefore a projective dimension of such a module is 0, 1 or
∞ . In particular, the finitistic projective dimension of the category of (<p)-divisible
p-modules equals 1.

4. Other classes of cubic modules

We shortly outline three other classes of cubic modules that allow an acceptable
description referring for details to [7].

A. Cubic vector spaces

They are functors fab → vectk , the category of vector spaces over a field k . The
interesting case is chark = 2 , because otherwise such functors are special cases of
2-divisible ones. Rewriting the relations for the mappings H, P, Hi, Pi for this special
case gives the following result.

4.1. Proposition. The category of cubic vector spaces is equivalent to the direct
product of a trivial k-linear category with one object (it corresponds to the functor Id⊗
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Λ2 ) and the category of modules over the k-algebra A generated by three orthogonal
idempotents e1, e2, e3 such that e1 + e2 + e3 = 1 and four elements

h ∈ e2Ae1, p ∈ e1Ae2, h1 ∈ e3Ae2, p1 ∈ e3Ae2

subject to the relations

hph = php = h1p1h1 = p1h1p1 = 0, h1p1 = h1hpp1.

We consider A-modules as diagrams of vector spaces

M1 ⇄ M2 ⇄ M3,

where Mi = eiM and the arrows correspond to the action of h, p, h1, p1 . As hph =
php = 0 , the fragment M1 ⇄ M2 decomposes into blocks of dimension at most 3
(the dimensions of M1, M2 at most 2, and only one of them can be 2-dimensional).

Hence the mappings h and p can be chosen in the form

h =















I 0 0 0 0 0
0 I 0 0 0 0
0 0 0 I 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















, p =















0 0 0 0 0 I
0 0 0 0 0 0
0 0 I 0 0 0
0 0 0 0 0 0
0 0 0 0 I 0
0 0 0 0 0 0















( I denotes the identity matrix). Now, if we reduce the matrix of h1 to the simplest
possible form, the matrix of p1 splits into 8 horizontal and 10 vertical stripes, which
we denote respectively by Ri (i = 1, . . . , 8) and Sj (j = 1, . . . , 10) . Moreover, one
can check that the admissible transformations of these stripes can be described as
representations of a bunch of semi-chains in the sense of [2], namely, we have two
semi-chains

E = {R1 > R2 > R3 > R4 > R6 > R7 > R8, R3 > R5 > R6},

F = {S1 < S2 < S3 < S4 < S5 < S7 < S8 < S9 < S10, S4 < S6 < S7}

with the involution σ such that σ(x) = x except for the cases:

σ(R1) = R8, σ(R2) = S8, σ(R6) = S4, σ(S2) = S9.

Hence, the description of cubic vector spaces fits again the frames of strings and
bands, though this time they are more complicated than before. We shall not precise
their shape (rather complicated) here, referring to [7].

B. Weakly alternative cubic modules

We call a cubic module M weakly alternative if M(Z) = 0 . Examples of such
modules are Λ3 and Λ2⊗ Id . For the corresponding diagram it means that M1 = 0 .
Then, reducing the relations with respect to the conditions h = p = 0 , one obtains
the following result.

4.2. Proposition. The category of weakly alternative cubic modules is equivalent to
the category of C-modules, where C is a semi-direct product C = (Z×C0)⋉D , where
C0 is the subring of Z×Mat(2, Z) consisting of pairs (a, b) such that a ≡ b11, b12 ≡
0 (mod 2) , D is an elementary abelian 2-group with three generators ξ, η, θ , with the
multiplication ξη = θ, ηξ = 0 and the C-action:

eξ = ξ, ηe = η, ξ(0, a, b) = aξ, (0, a, b)η = aη, where e = (1, 0, 0), (a, b) ∈ C0.
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The same observations as for quadratic and 2-divisible cubic modules imply

4.3. Proposition. Two weakly alternative cubic modules M, N are isomorphic if
and only if Mp ≃ Np for all p .

The only non-trivial cases are, of course, p = 2 and p = 3 . In the former case
(C0)2 ≃ Z2 × Mat(2, Z2) and the second factor acts trivially on D = D2 . So the
problem reduces to the classification of diagrams of Z2-modules

W1

ξ

⇄
η

W2

such that 2ξ = 2η = ηξ = 0 . Splitting each of Wi into direct sum of free modules
C∞ = Z2 and finite cyclic groups Ck = Z/2k , one can reduce ξ and η to a normal
form. Namely, consider (finite) words ω of the shape

. . . ξirηjr
ξir+1ηjr+1

. . . (ir, jr ∈ Z ∪ {∞}

not containing subwords ∞ξ, ∞η, η1ξ . Such a diagram gives rise to a weakly alter-
native module W = W (ω) . Namely,

W1 =
⊕

r

Cir
, W2 =

⊕

r

Cjr
, ξ(Cir

) ⊂ Cjr−1
, η(Cjr

) ⊂ Cir
,

and the induced mappings are non-zero of period 2. Note that such mappings are
unique; we denote them by γ (not precising indices). The modules W (ω) are called
string C2-modules. A band C2-module depends on a pair (ω, φ) , where

ω = jξ
i1ηj1ξ

i2ηj2 . . . inηj

and φ 6= tm is a power of an irreducible polynomial over Z/2 . The corresponding
band module W = W (ω, φ) is defined as follows:

W1 =
⊕

r

mCir
, W2 = mCj ⊕ (

⊕

r

mCjr
),

ξ(mCir
) ⊂ mCjr−1

, η(mCjr
) ⊂ mCir

, ξ(mCi1 ) ⊂ mCj , η(nCj) ⊂ mCin
,

where m = deg φ , and the induced mappings coincide with γId , except for mCj →
mCin

that is given by the matrix γΦ , where Φ is the Frobenius cell with the char-
acteristic polynomial φ . In the case p = 3 , D3 = 0 and we are in the situation
analogous to that of quadratic or 2-divisbile cubic modules. This time the values
ir, jr are taken from the set {1, 2, 3, 4} with 3− 4 and 2 ∼ 3 . Gluing C2- and C3-
modules gives the following

4.4. Theorem. Indecomposable weakly alternative cubic modules correspond to the
C-modules of the following types:

(1) Torsion modules: (a) 2-torsion: W (ω) and W (ω, φ) such that ξ∞ does
not occur in ω ; (b) 3-torsion: all band C3-modules and string modules of type
(iii); (c) p-torsion for p > 3 , which are P/pkP , where P is an irreducible
torsion free Cp-module.

(2) Torsion free modules, which are just irreducible modules and the projective
module C(0, 1, e11) .

(3) “Mixed” modules M , which are also of three possible shapes given by their
localization at p = 2 and p = 3 : (a) M2 = W (ω) , where ω contains ξ∞ ,
M3 = MD , where D is a string of type (i) or (ii) with i2n−1 = 2 or i2 = 2 ; if both
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occur, it gives two non-isomorphic modules; (b) M2 = W (ω)⊕W (ω′) , where both
ω and ω′ contains ξ∞ , M3 = MD , where D is of type (ii) with j2n−1 = j2 = 2 ;
(c) M3 = MD , where D is of type (i) or (ii), M2 is torsion free (hence uniquely
determined).

C. Torsion free cubic modules

They are such modules that all groups Mi (i = 1, 2, 3) are torsion free. As usually,
we study them locally. The only non-trivial case is p = 2 . Then the calculations
of subsection 4A imply that the corresponding (localized) ring is isomorphic to the
subring in Z

3
2 × Mat(2, Z2) × Mat(4, Z2)

2 consisting of all sextuples satisfying the
following congruences modulo 2:

(a1, a2, a3, b, c, d) with a1 ≡ b11 ≡ c11 , a2 ≡ b22 ≡ c22 ≡ c33 ,

a3 ≡ c44 , b12 ≡ 0 and cij ≡ 0 if i < j .

It is a Backström order, i.e. its radical coincides with the radical of a hereditary
order. Therefore we can apply the method of [9] that reduces the description of
torsion free modules to some diagrams of vector spaces. The precise shape of our ring
implies that in this case the corresponding diagram is a disjoint union of 4 diagrams
of types A2, A3, D4 and D̃4 . Hence the classification of such modules is again a
tame (and rather easy) problem (cf. [3]). Moreover, the specific form of this order
implies the following important corollary for all cubic modules, extending the claim
(1) of Theorem 3.3.

4.5. Corollary. Two cubic modules are isomorphic if and only if all their localiza-
tions are isomorphic.
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