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Abstract

In this article we classify indecomposable objects of the derived categories of finitely-gen
modules over certain infinite-dimensional algebras. The considered class of algebras (which
nodal algebras) contains such well-known algebras as the complete ring of a double noda
k[[x, y]]/(xy) and the completed path algebra of the Gelfand quiver. As a corollary we o
a description of the derived category of Harish-Chandra modules overSL2(R). We also give an
algorithm, which allows to construct projective resolutions of indecomposable complexes.
appendix we prove the Krull–Schmidt theorem for homotopy categories.
 2004 Elsevier Inc. All rights reserved.

Keywords:Derived categories; Tame matrix problems; Harish-Chandra modules; Krull–Schmidt theorem

1. Introduction

LetA be apure noetherian complete algebra, i.e., an associativek-algebra such that:

(1) Its centerC is a complete local noetheriank-algebra.
(2) A is finitely generatedC-module without minimal submodules.

Denote byr the radical ofA. It was shown in [14] thatA is tame if and only if it satisfies
the following conditions:
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(1) The algebraÃ= EndA(r) is hereditary.
(2) rad(Ã)= r.
(3) For any simple leftA-moduleU the length of the leftA-moduleÃ⊗A U is at most 2

and for any simple rightA-moduleV the length of the rightA-moduleV ⊗A Ã is at
most 2.

We call algebras satisfying these conditionsnodalalgebras.
Our description of the derived category of a nodal algebra shows that it is tame a

in “pragmatic” sense, i.e., one can obtain a list of its indecomposable objects as a u
one-dimensional families and some discrete set of objects staying apart. Unfortunat
definition of derived tameness proposed in [21] can be only applied to finite-dimen
algebras of finite global dimension and nodal algebras usually satisfy neither of
conditions.

The methods developed in this article can be also applied to finite-dimensional
and skew-gentle algebras considered in [3,4,20,27,28], as well as to some other alge
and to some derived categories of coherent sheaves [10]. An advantage of these m
is that they also work in cases, when an algebra has infinite homological dime
and describe the derived category of bounded from theright complexes. The develope
technique allows to write down projective resolutions of indecomposable complexes

For the sake of simplicity we suppose that the fieldk is algebraically closed. Let u
rewrite the definition of nodal algebras in a more transparent form. LetU be a simple
A-module,P −→ U its projective covering. Then we have an exact sequence

0 −→ rP −→ P −→ U −→ 0.

Apply the functorÃ⊗A to this sequence. We get

Ã⊗A rP −→ Ã⊗A P −→ Ã⊗A U −→ 0.

But r = rad(Ã), hence Im(Ã⊗A rP −→ Ã⊗A P)= r ⊗A P = rad(Ã⊗A P). So we have
an exact sequence

0 −→ rad
(
Ã⊗A P

)−→ Ã⊗A P −→ Ã⊗A U −→ 0.

ThereforeÃ⊗A U is a direct sum of simplẽA-modules. LetU1,U2, . . . ,Um be the set of
all non-isomorphic simpleA-modules,V1,V2, . . . , Vn the set of all non-isomorphic simp
Ã-modules. Consider the graphΓ with verticesUi,Vj , i = 1, . . . ,m, j = 1, . . . , n. There
is an arrow fromUi toVj if and only ifVj is a direct summand of̃A⊗A Ui . Then, as it was
shown in [14], the last condition in the criteria of tameness is equivalent to the follo
condition: all connected components ofΓ are of the form:

(1) V ′ ←−U −→ V ′′.
(2) U ′ −→ V ←−U ′′.
(3) U −→ V .
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Let us consider some examples.

Example 1.1. Let A = k[[x, y]]/(xy), m = (x, y) be its maximal ideal. ThenÃ =
EndA(m)= k[[x]] × k[[y]]. Let U be the unique simpleA-module,V1,V2 be simpleÃ-
modules. Then the graphΓ has the form

V1 ←− U −→ V2.

Example 1.2. Let

A=
{(

f11 tf12
f21 f22

)∣∣∣fij ∈ k[[t]], 1 � i, j � 2; f11(0)= f22(0)

}
⊆ Mat2

(
k[[t]]).

As one can easily observe,A is just the algebrak〈〈x, y〉〉/(x2, y2) (k〈〈x, y〉〉 is the algebra
of formal power series in two non-commutative variables). The endomorphism alge
its radical is just{(

f11 tf12
f21 f22

)∣∣∣fij ∈ k[[t]], 1 � i, j � 2

}
⊆ Mat2

(
k[[t]]).

It is easy to see that it is just the completed path algebra of the quiver

Indeed, an isomorphism is given by

x �→
(

0 t

0 0

)
, y �→

(
0 0
1 0

)
.

The graphΓ again has the form

V1 ←− U −→ V2.

Here and further on we consider the natural completion of path algebras, namely,J -
adic one, whereJ is the ideal generated by all arrows.

Example 1.3. LetA be the completed path algebra of the Gelfand quiver
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uiver
As one can easily see,

A∼=
{(

f11 tf12 tf13
f21 f22 tf23
f31 tf32 f33

)∣∣∣fij ∈ k[[t]], 1 � i, j � 3

}
⊆ Mat3

(
k[[t]]).

An isomorphism is given by

α+ �→
(0 0 0

1 0 0
0 0 0

)
, β+ �→

(0 0 0
0 0 0
1 0 0

)
,

α− �→
(0 t 0

0 0 0
0 0 0

)
, β− �→

(0 0 t

0 0 0
0 0 0

)
.

The endomorphism algebrãA= End(rad(A)) is

Ã∼=
{(

f11 tf12 tf13
f21 f22 f23
f31 f32 f33

)∣∣∣fij ∈ k[[t]], 1 � i, j � 3

}
⊆ Mat3

(
k[[t]]).

and is Morita equivalent to{(
f11 tf12
f21 f22

)∣∣∣fij ∈ k[[t]], 1� i, j � 2

}
⊆ Mat2

(
k[[t]]),

which is the completed path algebra of the quiver

Note thatÃ is isomorphic to the completed path algebra of the following (non-basic) q

Let U1, U2, U3 be simpleA-modules,V , W simpleÃ-modules. Our graphΓ has the
form

U1 −→ V ←− U2, U3 −→W.
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2. The main construction

Let A be a semi-perfect associativek-algebra (not necessarily finite-dimensiona
A⊂ Ã be an embedding such thatr = rad(A)= rad(Ã). Let I ⊂A be a two-sidedÃ-ideal
containingr. It means thatr ⊆ I = IÃ= ÃI , thusA/I andÃ/I are semi-simple algebra

Let Ã⊗A be the derived functor of the tensor product. We want to describe the fib
the map

Ob
(
D−(A-mod)

)−→ Ob
(
D−(Ã-mod

))
.

Remark 2.1. A-mod denotes the category offinitely-generatedA-modules. We alway
consider objects of derived categories as complexes of projective modules.

Definition 2.2. Consider the following category of triples of complexes TCA

(1) Objects are triples(P̃•,M•, i), where
P̃• ∈D−(Ã-mod),
M• ∈D−(A/I -mod),
i :M• −→ Ã/I ⊗Ã P̃• a morphism inD−(A/I -mod), such thatĩ : Ã/I ⊗A

M• −→ Ã/I ⊗Ã P̃• is an isomorphism inD−(Ã/I -mod).
(2) Morphisms(P̃•1,M•1, i1)−→ (P̃•2,M•2, i2) are pairs(Φ,ϕ),

P̃•1

Φ−→ P̃•2, M•1

ϕ−→ M•2,

such that

Ã/I ⊗
Ã
P̃•1

Φ⊗id

M•1

i1

ϕ

Ã/I ⊗Ã P̃•2
M•2

i2

is commutative.

Remark 2.3. If an algebraA has infinite homological dimension, then we are forced to d
with the derived category of right bounded complexes (in order to define the left de
functor of the tensor product). In caseA has finite homological dimension we can supp
that all complexes above areboundedfrom both sides.

Theorem 2.4. The functor

D−(A-mod)
F−→ TCA,
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P• −→ (Ã ⊗A P•,A/I ⊗A P•, i :A/I ⊗A P• −→ Ã/I ⊗A P•) has the following
properties:

(1) F is dense(i.e., every triple(P̃•,M•, i) is isomorphic to someF(P•)).
(2) F(P•)∼= F(Q•)⇐⇒ P• ∼= Q•.
(3) F(P•) is indecomposable if and only if so isP• (note that this property is an eas

formal consequence of the previous two properties).
(4) F is full.

Remark 2.5. F is not faithful. So it is not an equivalence of categories. A functoF
satisfying the properties (1)–(4) is calleddetecting functor(see [2]).

Proof. The main point to be clarified is: having a tripleT = (P̃•,M•, i) how can we
reconstructP•? The exact sequence

0 −→ I P̃• −→ P̃• −→ Ã/I ⊗Ã P̃• −→ 0

of complexes inA-mod gives a distinguished triangle

I P̃• −→ P̃• −→ Ã/I ⊗Ã P̃• −→ I P̃•[−1]

in D−(A-mod). The properties of triangulated categories imply that there is a morp
of triangles

I P̃• P̃• Ã/I ⊗Ã P̃• I P̃•[−1]

I P̃•

id

P•

Φ

M•

i

I P̃•[−1],
id

whereP• = cone(M• −→ I P̃•[−1])[1]. SetG(T )= P•. Taking a cone is not a functoria
operation. It gives an intuitive explanation why the functorF is not an equivalence. Th
properties of triangulated categories immediately imply that the constructed map
functor!)

G : Ob(TCA)−→ Ob
(
D−(A-mod)

)
sends isomorphic objects into isomorphic ones andGF(P•)∼= P•. Now we have to show
thatFG(P̃•,M•, i)∼= (P̃•,M•, i). ✷
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Lemma 2.6. In the above notations, let̃P be a projectiveÃ-module,M be anA/I -
module,i :M −→ P̃ /I P̃ be anA/I -module monomorphism such that the induced m
ĩ : Ã/I ⊗A/I M −→ P̃ /I P̃ is an isomorphism. Consider the pull-back diagram

0 I P̃

id

P M

i

0

0 I P̃ P̃
π

P̃ /I P̃ 0.

ThenP is a projectiveA-module andÃ⊗A P −→ P̃ is an isomorphism.

Consider the imagēI of the idealI in Ã/r. SinceÃ/r is semi-simple, we can find a
ideal J̄ in Ã/r such thatĪ + J̄ = Ã/r, Ī ∩ J̄ = 0. By the Chinese remainder theorem
haveÃ/r = Ã/I × Ã/J .

Let P̃ = P̃ /rP̃ . Then P̃ = P̃ 1 ⊕ P̃ 2, whereP̃ 1 is an Ã/I -module andP̃ 2 an Ã/J -

module. But theñP also decomposes into a direct sum:P̃ = P̃1 ⊕ P̃2, whereP̃ i = P̃i/rP̃i ,
i = 1,2 (we use the fact that there is a bijection between projective and semi-s
modules:P̃ ←→ P̃ /rP̃ ).

Then we have:

I P̃1 = rP̃1, I P̃2 = P̃2.

Indeed,P̃1/rP̃1 is anA/I -module, soI P̃1 ⊆ rP̃1. But r ⊆ I , hencerP̃1 ⊆ I P̃1. So,

I P̃ 1 = rP̃ 1. Analogously,J P̃2 ⊆ rP̃2. But I + J = Ã, so

P̃2 = I P̃2 + J P̃2 ⊆ I P̃2 + rP̃2 ⊆ P̃2.

Hence, by Nakayama’s lemmaI P̃2 = P̃2.
Our diagram has now the form:

0 P̃2 ⊕ rP̃1

id

P M

i

0

0 P̃2 ⊕ rP̃1 P̃1 ⊕ P̃2
π

P̃1/rP̃1 0.

SinceP −→ P̃1 ⊕ P̃2 is a monomorphism,̃P2 is a direct summand ofP . Moreover,P̃2
is a projectiveA-module. Indeed, let̃Q be any projectiveÃ-module satisfyingIQ̃ = Q̃.
Without loss of generality suppose thatQ̃ is a direct summand of̃A. Then

Q̃= IQ̃⊆ IÃ⊆A⊆ Ã.

But if the embedding̃Q −→ Ã splits, thenQ̃ −→ A splits too. Hence,̃Q is a projective
A-module.
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Note that the canonical map̃A⊗A P̃2 −→ P̃2 is an isomorphism. Indeed,

Ã⊗A P̃2 = Ã⊗A IP̃2 = ÃI ⊗A P̃2 = I ⊗A P̃2.

But P̃2 is a flatA-module, hence

I ⊗A P̃2 = I P̃2 = P̃2.

So we get

0 rP̃1

id

P1 M

i

0

0 rP̃1 P̃1
π

P̃1/rP̃1 0.

We know thatĩ : Ã/I ⊗A/I M −→ P̃1/I P̃1 is an isomorphism. But theñA/r ⊗A/r

M −→ P̃1/rP̃1 is an isomorphism, too. IndeedIM = 0, sinceM is a submodule o
P̃1/I P̃1. But I + J =A, henceJM =M andÃ/J ⊗A/r M = 0. Therefore

Ã/I ⊗A/I M = Ã/I ⊗A/r M ∼= (Ã/I ⊕ Ã/J
)⊗A/r M ∼= Ã/r ⊗A/r M.

Now we have to show thatP1 is projective andÃ⊗A P −→ P̃1 is an isomorphism. Le
P(M) be a projective covering ofM.

P(M)

ψ

0 rP̃1

id

P1 M

i

0

0 rP̃1 P̃1 P̃1/rP̃1 0.

Apply the functorA/r⊗A to the first row of this diagram. We get:ψ :P(M)/rP (M)−→
P/rP is an isomorphism. Hence by Nakayama’s lemmaψ is an epimorphism. Conside
the composition mapP(M) −→ P̃1. The induced mapÃ ⊗A P(M) −→ P̃1 is an iso-
morphism modulor. Since both modules are projective, it is indeed an isomorphism
get:P(M) −→ Ã⊗ P(M) −→ P̃1 is a monomorphism. But thenψ :P(M) −→ P1 is a
monomorphism too. So it is an isomorphism. And we have shown also thatÃ⊗AP −→ P̃1
is an isomorphism.

We finish now the proof of the theorem. Let(P̃•,M•, i) be a triple. Without loss
of generality, suppose that̃P• is a minimal complex andM• a complex with zero
differentials. TheñP•/rP̃• is a complex with zero differentials too and the mapi :M• −→
P̃•/I P̃• has the property that̃i : Ã/I ⊗A/I M• −→ P̃•/I P̃• is an isomorphism o
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complexes. Consider now the pull-back diagram in the abelian category of complex
A-modules.

0 I P̃•

id

P•
Ψ

Φ

M•

i

0

0 I P̃• P̃•
π

P̃•/I P̃• 0.

From Lemma 2.6 follows that:

(1) P• is a complex of projectiveA-modules;
(2) (id⊗Φ, id⊗Ψ ) : (Ã⊗AP•,A/I⊗AP•,A/I⊗AP• −→ Ã/I⊗AP•)−→ (P̃•,M•, i)

is an isomorphism in the category of triples.

It remains to show thatF is full.
Let (Φ,ϕ) : (P̃•1,M•1, i1) −→ (P̃•2,M•2, i2) be a morphism in TCA, whereM•1

andM•2 are complexes with zero differentials. Since we are dealing with comp
of projective objects,Φ andϕ can be represented by morphisms of complexes. Le
moreover supposẽP•1 andP̃•2 to be minimal. ThenÃ/I ⊗Ã P̃•1, i = 1,2, are complexe
with zero differentials, too.

M•1
ϕ

i1

M•2

i2

P̃•1/I P̃•1
Φ

P̃•2/I P̃•2

is commutativein the category of complexes. The properties of pull-back imply th
existence of a morphism of complexesP•1 −→ P•2 such that

P•2 M•2

P•1 M•1

P̃•2 P̃•2/I P̃•2

P̃•1 P̃•1/I P̃•1

is commutative. Hence it gives a lift of a morphism(Φ,ϕ) we are looking for. So the
functorF is full, which accomplishes the proof of the theorem.
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3. The case of D−(k〈〈x,y〉〉/(x2, y2))

Consider the embedding of completed path algebrasA−→ Ã:

TakeI = (x, y), thenA/I = k, Ã/I = k × k andA/I −→ Ã/I is just the diagonal map.
As we have seen in the previous section, a complexP• of the derived categor

D−(A-mod) is defined by some triple(P̃•,M•, i). SinceA/I -mod can be identified with
the category ofk-vector spaces, the mapi :M• −→ P̃•/I P̃• is given by a collection o
linear maps

Hk(i) :Hk(M•)−→Hk
(
P̃•/I P̃•

)
.

The mapHk(i) is ak-linear map of ak-module into ak × k-module. Hence it is given b
two matricesHk(i|1) andHk(i|2). From the non-degeneracy condition of the categor
triples it follows that both of these matrices are invertible.

The algebraÃ has homological dimension 1. Moreover, it is an order. By a theore
Dold (see [13]), an indecomposable complex fromD−(Ã-mod) is isomorphic to

· · · −→ 0 −→ M︸︷︷︸
i

−→ 0 −→ · · · ,

whereM is an indecomposablẽA-module. ButÃ is a hereditary order overk[[t]]. Hence
(see [15]) an indecomposable finitely-generatedÃ-module is isomorphic in the derive
category to a shift ofPi , i = 1,2, or to

Pi
ϕ−→ Pj (i, j = 1,2),

wherePi = Ãei (ei is the idempotent corresponding to the pointi of the graph),ϕ is a
morphism given by a path going fromj to i and Im(ϕ)⊆ rPj , thus

Ã/I ⊗Ã

(
Pi

ϕ−→ Pj
)= ki

0−→ kj .

Let

P̃• =
⊕

P̃ni•i

be a decomposition of̃P• into a direct sum of indecomposables. This decompos
implies a division of matricesHk(i|1) andHk(i|2) into horizontal stripes.

The next question is: which transformations can we perform with the matricesHk(i|1)
andHk(i|2)?
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We can do simultaneously any elementary transformation of columns ofHk(i|1) and
Hk(i|2) (they correspond to the automorphisms ofM•). From the definition of the
category of triples it follows that row transformations are induced by morphism
D−(Ã-mod).

Let us now describe the morphisms between indecomposable complexes
D−(Ã-mod), which are non-zero after applying̃A/I . Due to [15] they are just

P2
·x

P1

P1
·yx

·y

P1

P2
·xyx

·x

P1

P1
·yxyx

·y

P1

· · · · · ·

P1
·y

P2

·x

P1
·yx

P1

·y

P1
·yxy

P2

·x

P1
·yxyx

P1

· · · · · ·

P1
·y

P2

P2
·xy

·x

P2

P1
·yxy

·y

P2

P2
·xyxy

·x

P2

· · · · · ·

P2
·x

P1

·y

P2
·xy

P2

·x

P2
·xyx

P1

·y

P2
·xyxy

P2

· · · · · ·

0 Pi

Pj
ϕ

Pi
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Pj
ϕ

Pi

Pj 0

Moreover, we always have a morphism

0 Pi

λ·id

Pj

Pk Pi 0

Now note that we have the following cases:
(1) A morphism

0 Pi

λ·id

Pj

Pk Pi 0

induces

0 ki

λ

0
kj

kk
0

ki 0

(2) A morphism

Pj

ϕ

Pi

λ·id

Pk Pi

whereϕ ∈ rad(Ã), induces

kj

0

kj

λ

kk
0

ki
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(3) Analogously we have that

Pi

λ·id

Pj

ϕ

Pi Pk

whereϕ ∈ rad(Ã), induces

ki

λ

0
kj

0

ki
0

kk

(4) In the same way

0 Pi

λ·id

Pj Pi

induces

0 ki

λ

kj
0

ki

and

Pj
ϕ

λ·id

Pi

Pj 0

induces

kj
0

λ

ki

kj 0
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(5) And finally an endomorphism

Pj
ϕ

λ·id

Pi

λ·id

Pj
ϕ

Pi

induces

ki

λ

0
kj

λ

ki
0

kj

and the same forPi , i = 1,2.
From what has been said we observe that the matrix problem describing the d

categoryD−(A-mod) is given by the following partially ordered set (bunch of chai
see [5] or Appendix B [16]).

In this picture we assume that complexes are shifted in such a way that allHk(i)= 0
for i < 0. Small circles correspond to the horizontal stripes, small rectangles corresp
the vertical stripes, dotted lines between circles show the related stripes (i.e., those
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finite
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-

come from the same object of the derived category), vertical arrows describe the p
transformations between different horizontal stripes:

Explicitly saying, we can do the following transformations with our matricesH•(i):

(1) We can do any simultaneous elementary transformations of the columns of the m
Hk(i|1) andHk(i|2), k ∈ Z.

(2) We can do any simultaneous transformations of rows inside conjugated blocks.
(3) We can add a scalar multiple of any row from a block with lower weight to any

of a block of a higher weight (inside the big matrix, of course). These transforma
can be proceeded independently insideHk(i|1) andHk(i|2), k ∈ Z.

This matrix problem belongs to the well-known representations of bunches of c
(see [5,7,26] and Appendix). From here we conclude that there are three typ
indecomposable objects: bands, finite strings (both correspond to complexes o
projective dimension) and infinite strings (which correspond to complexes of in
projective dimension). In Section 6 we shall explain, how the combinatoric of
and string representations can be used to write down explicit projective resolutio
complexes.

4. Gelfand quiver

In this section we shall see that our technique allows us to describe the derived ca
of representations of the completed path algebra of the quiver

The classification of indecomposable representations of this quiver can be redu
representations of bunches ofsemi-chains, see [5]. It is not surprising that the descripti
of the derived category is reduced to the problem of the same type. Consider the emb
given in Example 1.3. In this case we have:A/I = k × k, Ã/I =M2(k) andA/I −→ Ã/I

the diagonal mapping. Now we have to answer the following:

Question 4.1. LetM be ak × k-module,M ′ be aM2(k)-module,ϕ :M −→M ′ a map of
k×k-modules (M ′ is supplied withk×k-module structure using the diagonal embeddin
The map ofk × k-modules is given by two matricesϕ(1) andϕ(2). Which conditions
should satisfyϕ(1) andϕ(2) in orderĩ :M2(k)⊗k×k M −→M ′ to be an isomorphism?

Let M = 〈v1, v2, . . . , vm;w1,w2, . . . ,wn〉 = k(1)m ⊕ k(2)n. There is only one inde
composableM2(k)-module:k2. So,

M ′ = 〈u′
1, u

′′
1;u′

2, u
′′
2; . . . ;u′

N,u
′′
N

〉= (k2)N,
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if
where the action of matrix units are:

e11u
′
i = u′

i , e21u
′
i = u′′

i , e12u
′
i = 0, e22u

′
i = 0,

and, analogously,

e11u
′′
i = 0, e21u

′′
i = 0, e12u

′′
i = u′

i , e22u
′′
i = u′′

i .

Let

ϕ(vi)=
N∑
j=1

αjiu
′
j +

N∑
j=1

α′
jiu

′′
j .

Sinceϕ is ak × k-module homomorphism,

0 = ϕ(e22vi)= e22ϕ(vi).

So allα′
ji = 0. Analogously,

ϕ(wi)=
N∑
j=1

βjiu
′′
j .

On the other hand, anyM2(k) homomorphismψ : (k2)n −→ (k2)m is given by an
m × n matrix (αij ) with the entries fromk (see [17, Theorem 1.7.5]). Namely,
(e′

1, e
′′
1, e

′
2, e

′′
2, . . . , e

′
n, e

′′
n) and (f ′

1, f
′′
1 , f

′
2, f

′′
2 , . . . , f

′
m,f

′′
m) are canonical bases of(k2)n

and(k2)m then

ψ
(
e′
j

)=
m∑
j=1

αij f
′
i , ψ

(
e′′
j

)=
m∑
j=1

αij f
′′
i .

Consider now aM2(k)-moduleM2(k)⊗k×k M. It is generated by

e11 ⊗ v1, e21 ⊗ v1; e11 ⊗ v2, e21 ⊗ v2; . . . ; e11 ⊗ vm, e21 ⊗ vm;

e12 ⊗w1, e22 ⊗w1; e12 ⊗w2, e22 ⊗w2; . . . ; e12 ⊗wn, e22 ⊗wn.

Sinceϕ̃(e ⊗ v) = eϕ(v), it is easy to see thatϕ is given byN × (n+m)-matrix (ϕ(1) |
ϕ(2)). So,ϕ̃ is an isomorphism if(ϕ(1) | ϕ(2)) is square and invertible.
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Now let us return to the Gelfand quiver. The morphisms inD−(Ã-mod) were discussed
in the previous subsection. We are able to write Bondarenko’s partially ordered set:

This picture shows the division of matricesHk(i), k ∈ Z, into horizontal and vertica
stripes. Each of these matrices is divided into two vertical blocksHk(i|1) andHk(i|2)
(which correspond to the fact that we have an embeddingk× k −→M2(k)) and horizonta
blocks that correspond to indecomposables ofD−(Ã-mod). In the same way as in th
previous section we have an ordering on the horizontal stripes.

We can perform the following transformations with matricesH•(i):

(1) We can do independently elementary transformations of columns ofHk(i|1) and
Hk(i|2).

(2) We can do any simultaneous transformations of rows inside conjugated blocks.
(3) We can add a scalar multiple of any row from a block with lower weight to any ro

a block of a higher weight.

This problem belongs to the class of representations of bunches ofsemi-chains. The
description of indecomposable objects was obtained in [5,11] and later elaborated i
Since we get in this case infinitely many matrices, certain modifications should be
see [7] and Appendix. Namely, there are the following types of indecomposable ob
bands, bispecial strings, finite and infinite special strings, finite and infinite strings
shall give more details in the over-next section.

Remark 4.2. In fact we have shown (see [22]) that the derived category of the Ha
Chandra modules overSL2(R) is tame.
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5. Matrix problem for a general nodal algebra

LetA be a nodal algebra, which is supposed to be basic,T its centerÃ= EndA(rad(A)).
Recall that we have 3 types of simpleA-modules (see [14]):

(1) Such simple leftA-modulesU that lA(Ã⊗A U)= 1.
(2) lA(Ã⊗A U)= 2, lÃ(Ã⊗A U)= 2.
(3) lA(Ã⊗A U)= 2, lÃ(Ã⊗A U)= 1.

It follows from the definition of a nodal algebra thatA and Ã have the common
radical: r = rad(A) = rad(Ã). Hence we have an embedding of semi-simple alge
A/r −→ Ã/r. SinceA is basic andk algebraically closed,A/r is isomorphic to a produc
of several copies ofk.

The conditions (1)–(3) above imply that each simple component ofÃ/r is isomorphic
either tok or toM2(k) and the induced mapA/r −→ Ã/r acts as follows:

(1) A simple component ofA/r is mapped isomorphically onto a simple componen
Ã/r.

(2) A simple component ofA/r is embedded diagonally into a product of two sim
components of̃A/r, both isomorphic tok.

(3) A product of two simple components ofA/r is mapped isomorphically onto th
diagonal subalgebra of a simple component ofÃ/r isomorphic toM2(k).

Let I be an ideal inÃ generated by the radical and idempotents of the first type. T
I is an ideal inA, too. Moreover, the factor-algebrasA/I andÃ/I are semi-simple in this
case. So, the conditions of the main theorem are fulfilled.

Let Ã = ∏N
n=1 Ãn, where all Ãn are hereditary orders,C(Ãn) be the basic algebr

corresponding toÃn. Since it is a hereditary order overk[[t]] (by Noether normalization
there is a finite ring extensionk[[t]] −→ T ), it is isomorphic to the completed path algeb
of some cycle of lengthdn (it follows from the classification of hereditary orders ove
complete discrete valuation ring, see [8,23] or [18]). Let us introduce some number
the vertices of the cyclesC(Ãn). For the sake of convenience we number the vertice
C(Ãn) by elements[1], [2], . . . , [dn] of Z/dnZ. So each simplẽA-moduleU correspond
to a pair(n, ν), wheren ∈ 1, . . . ,N , ν ∈ Z/dnZ. Namely,n denotes the number of th
componentÃn that acts non-trivially onU , ν is the number of the vertex from the cyc
C(Ãn) corresponding toU .

In order to consider the category of triples TCA we have to consider morphisms in t
derived categoryD−(Ã-mod). From what we have seen above it follows that it is eno
to consider morphisms inD−(C(Ãn)-mod), n ∈ 1, . . . ,N .

Let C be a cycle of lengthm. Then the category of finitely generated leftC-modules
is hereditary. Hence any indecomposable object ofD−(C-mod) is isomorphic to 0−→
M −→ 0, whereM is an indecomposableC-module. Moreover, eitherM is projective or

it has a resolutionP
ϕ−→Q, whereP andQ are indecomposable projectiveC-modules,ϕ

a morphism, given by some path on the quiverC [15]; denotel(ϕ)= length(cokerϕ).
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The morphisms ofA-modules (which are non-zero modulo the radical) are of
following form (see [15]):

Pν+1
ϕ1

Pν

Pν+2
ϕ2

cν+1

Pν

Pν+3
ϕ3

cν+2

Pν

· · ·
cν+3

· · ·

Pν
ψ1

Pν−1

cν−1

Pν
ψ2

Pν−2

cν−2

Pν
ψ3

Pν−3

cν−3

· · · · · ·

wherecν+i :Pν+i+1 −→ Pν+i is the map given by an arrow going from the vertexν + i

to ν + i + 1. There are also morphisms in the derived category, which correspond to1-
groups:

0 P Q

0 P 0

R P 0

Let us now construct the partially ordered set, which describes the matrix pro
corresponding to the category of triples TCA for a given nodal algebraA.

Let C(Ãn) be a basic algebra (which is a cycle) corresponding toÃn. Consider a
complex

(
Pν+l(ϕ)

ϕ−→ Pν
)[f ],

whereν ∈ Z/dnZ, ϕ a morphism of projective modules given by the path of the len
l(ϕ), f ∈ Z the shift of the complexes.

DenoteJ(C(Ãn)) the set of simpleÃn-modules, which correspond to direct summa
of Ã⊗A U , whereU is a simpleA-module of second or third type.

Let ν, ν + l(ϕ) ∈ J(C(Ãn)). Then we associate to this complex two symb
α(n, ν, l(ϕ), f ) and β(n, ν + l(ϕ), l(ϕ), f + 1). In case onlyν (respectivelyν + l(ϕ)

or neither of both) belongs toJ(C(Ãn)) we associate with it onlyα(n, ν, l(ϕ), f )
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(respectivelyβ(n, ν + l(ϕ), l(ϕ), f + 1) or nothing). In the same way a symbolρ(n, ν, f )
corresponds to the object

(0 −→ Pν −→ 0)[f ].

We are ready now to introduce our partially ordered set.

Definition 5.1. We introduce a Bondarenko’s partially ordered set together with eq
lence relation in several steps.

(1) Let 1� n�N , ν ∈ Z/dnZ, ν ∈ J(C(Ãn)).

E(f )ν (n)= {α(n, ν, i, f ),β(n, ν, i, f ) | i � 1
}∪ {ρ(n, ν, f )}, f ∈ Z.

(2) Eν(n)=
⋃
f∈Z

E(f )ν (n), E(n)=
⋃

ν∈J(Ãn)

Eν(n), E =
N⋃
n=1

E(n).

(3) We can introduce a partial order an equivalence relation onE.
(a) First of all

α(n, ν, i1, f )� α(n, ν, i2, f ), β(n, ν, i1, f )� β(n, ν, i2, f )

for i1 � i2.
(b) Furthermore,

α(n, ν, i, f )� ρ(n, ν, f )� β(n, ν, j, f )

for all i, j � 1, f ∈ Z.
(c) If i ∈ N andν ∈ J(C(Ãn)) are such thati + ν ∈ J(C(Ãn)), then

α(n, ν, i, f )∼ β(n, ν + i, i, f + 1), f ∈ Z.

(4) Let 1� n � N , ν ∈ Z/dnZ, ν ∈ J(C(Ãn)). The setF(n, ν, f ), f ∈ Z consists eithe
from one or two elements.
(a) If U is a simple module of a second type,(n, ν), (m,µ) corresponding simplẽA-

modules, then the setsF(n, ν, f ) = {g(n, ν, f )} andF(m,µ,f ) = {g(m,µ,f )}
are the sets consisting from one element. Moreoverg(n, ν, f )∼ g(m,µ,f ).

(b) In caseU is anA-module of the third type,(n, ν) corresponds toB ⊗A U , then

F(n, ν, f )= {g′(n, ν, f ), g′′(n, ν, f )
}
.

It is however convenient to assume thatF(n, ν, f )= {g(n, ν, f )} andg(n, ν, f )∼
g(n, ν, f ).
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Let us point out that we are interested in only inbounded from the right representatio
of the constructed bunch of semi-chains (since we want to describe the derived ca
of bounded from the right complexes). Moreover, the non-degeneracy condition fro
definition of the category of triples implies certain non-degeneracy restrictions o
matrices. However they concern only the discrete series of representations, for con
series they are automatically satisfied (see [5]).

To sum everything up we formulate the main result of this article:

Theorem 5.2. Let A be a nodal algebra. The description of indecomposable objec
D−(A-mod) can be reduced to the description of indecomposable representations
bunch of semi-chains, described in the previous definition. In particular, there are3 types
of indecomposable objects inD−(A-mod):

(1) BandsB(w,m,λ).
(2) Strings(which can be usual, special and bispecial).

(3) ComplexesPi andPi
ϕ−→ Pj , wherei andj correspond to simpleA-modules of the

first type.

In particular, a nodal algebra is derived-tame in “pragmatic sense”.

Remark 5.3. For the ringA = k[[x, y]]/(xy) it was shown in [10], how to describ
complexes, corresponding to objects ofA-mod with respect to the canonical inclusion

A-mod−→D−(A-mod).

6. Description of indecomposable complexes via gluing diagrams

In this section we want to show, how the combinatoric of bands and strings c
applied to write down explicit projective resolutions of indecomposable complexes
shall consider two “typical examples”: the case ofA = k〈〈x, y〉〉/(x2, y2) and the case o
the completed path algebra of the Gelfand quiver.

6.1. The case ofD−(k〈〈x, y〉〉/(x2, y2)-mod)

Let A = k〈〈x, y〉〉/(x2, y2), r its radical,Ã = EndA(r). As we have seen in previou
sections, the description of indecomposable objects of the derived categoryD−(A-mod)
can be reduced to a matrix problem of type “representations of bunches of chains.”
are two types of indecomposable complexes in this case: bandsB(w,m,λ) and strings
U(w).

Let us rewrite the corresponding partially ordered sets in this special case. We
family of sets

F(k)= {g(1, k), g(2, k)}, k ∈ Z, g(1, k)∼ g(2, k),
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which correspond to columns of the matricesHk(i|1) andHk(i|2); and two families of
setsE1(k) = {α(1, i, k), β(1, i, k) | i � 1} ∪ {ρ(1, k)} andE2(k) = {α(2, i, k), β(2, i, k) |
i � 1} ∪ {ρ(2, k)}, which label horizontal blocks of matricesHk(i|1) andHk(i|2), k ∈ Z.

The symbols{ρ(1, k)} and{ρ(2, k)} correspond to thekth shift of projectiveÃ-modules
P1 andP2. The elementβ(1 + i, i, k + 1) is conjugated toα(1, i, k) andβ(2 + i, i, k + 1)
is conjugated toα(2, i, k), where 1+ i and 2+ i have to be taken modulo 2.

Letw be some word containing a subwordβ(1+ i, i, k)∼ α(1, i, k). If i is even, then it

comes from the complex(P1
ϕ−→ P1)[k], where coker(ϕ) is an indecomposablẽA-module

of the lengthi. In what follows we shall say thatϕ has length coker(ϕ). If i is odd, then

this subword corresponds to(P2
ϕ−→ P1)[k].

As we shall see, an indecomposable complex from the derived categoryD−(A-mod)
can be viewed as a gluing of complexes

P1, P2, P1
ϕ−→ P1, P2

ψ−→ P2, P1
φ−→ P2, P2

θ−→ P1.

Suppose we have a subword

β(1+ i, i, k + 1)∼ α(1, i, k)− g(1, k)∼ g(2, k)− α(2, j, k)∼ β(2+ j, j, k+ 1).

It can be interpreted as a gluing of complexes

Pi+1
ϕ1

P1

Pj+2
ϕ2

P2

shown by the dotted line. Here the indicesi+ 1 andj + 2 must be taken modulo 2,ϕ1 and
ϕ2 have the lengthi andj respectively.

The subword

β(1+ i, i, k + 1)∼ α(1, i, k)− g(1, k)∼ g(2, k)− β(2+ j, j, k)∼ α(2, j, k− 1),

corresponds to the gluing of the type

Pi+1
ϕ1

P1

Pj+2
ϕ2

P2

and so on.
It is convenient to describe gluing of the complexes by a gluing diagram.
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Example 6.1. Consider the band dataB(w,m,λ), wherew = α(2,2,0) ∼ β(2,2,1) −
g(2,1) ∼ g(1,1)− α(1,3,1)∼ β(2,3,2)− g(2,2) ∼ g(1,2)− β(1,2,2)∼ α(1,2,1)−
g(1,1)∼ g(2,1)− α(2,1,1)∼ β(1,1,0)− g(1,0)∼ g(2,0).

Then it corresponds to the following gluing diagram:

Pm2
xyxIm

Pm1

Pm2
xyIm

Pm2

Jm(λ)

Pm2
xIm

Pm1

Pm1
yxIm

Pm1

This gluing diagram gives the complex

Am

xyIm

Am

xyxIm

xyIm

Am

Am
xJm(λ)

or, the same,

Am

(
xyxIm
yxIm

)
A2m

(xyIm(λ) xJm(λ))

Am.

Example 6.2. Consider the string dataU(w), wherew = · · · − g(2,1) ∼ g(1,1) −
β(1,1,1)∼ α(2,1,0)− g(2,0)∼ g(1,0)− α(1,1,0) ∼ β(2,1,1)− g(2,1)∼ g(1,1)−
α(1,1,1)∼ β(2,1,2)− · · ·.
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The gluing diagram is

P2
x

P1 P2
x

P1

P2
x

P1 P2
x

P1

P1
y

P2 P1
y

P2

P1
x

P2 P1
x

P2

This string complex is the minimal resolution of the simple modulek

· · · A2

(
x 0
0 y

)
A2

(
x 0
0 y

)
A.

There are also finite strings.

Example 6.3. Consider the stringU(w) given by

w = ρ(1,1)− g(1,1)∼ g(2,1)− β(2,3,1)∼ α(1,3,0)− g(1,0)∼ g(2,0)− ρ(2,0).

P1

P2
yxy

P1

P2

It corresponds to the complex

A
yxy

A.

6.2. The case of the Gelfand quiver

Let A be the completed path algebra of the Gelfand quiver,r its radical andÃ =
EndA(r). LetP1, P2, P3, be indecomposable projectiveA-modules,P ,Q indecomposable
projectiveÃ-modules and suppose thatÃ⊗A P1 = Ã⊗A P2 = P andÃ⊗A P3 =Q.
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We have seen that the description of indecomposable objects of the derived ca
D−(A-mod) can be reduced to a matrix problem of the type “representations of bu
of semi-chains.”

The combinatorics of indecomposable objects is similar to the case of bunches of c
Continuous series of representations are still bandsB(w,m,λ), but the structure of discret
series is much more complicated. There are bispecial stringsU(w,m, δ1, δ2), finite and
infinite special stringsU(w, δ) and finite and infinite usual stringsU(w). In this case there
are also complexes (certain discrete series) which do not come from the matrix prob

Let us rewrite the partially ordered set in this case. We have a family of setsF(k) =
{g(k)} with equivalence relationg(k)∼ g(k). The set

E(k)= {α(i, k),β(i, k) | i ∈ N
}∪ {ρ(k)}

is a chain with the total order

β(j2, k)� β(j1, k)� ρ(k)� α(i1, k)� α(i2, k)

for all natural numbersi1 � i2 andj1 � j2 andk ∈ Z.
If i = 2l is even then we have conjugate pointsα(2l, k) and β(2l, k + 1), and the

subwordα(2l, k) ∼ β(2l, k + 1) corresponds to the complex(P
ϕ−→ P)[k], whereϕ is

the unique path fromb to itself of the length 2l. If i = 2l + 1 is even, then elemen
α(2l + 1, k) andβ(2l+ 1, k) correspond to complexes

(P
ϕ−→Q)[k] and (Q

ϕ−→ P)[k − 1]

respectively, whereϕ has the length 2l + 1.
As in the case of dihedral algebra, the combinatorics of bands and strings c

simplified.

β(2i, k+ 1)∼ α(2i, k)− g(k)∼ g(k)− α(2j, k)∼ β(2j, k+ 1)

codes the gluing

P 2i P

P 2j P

etc. There is an algorithm which associates to a band or string data the corresp
complex of projective modules. A complex of projectiveA-modules is obtained as a gluin

of the complexes of̃A-modulesP
ϕ−→ P ,Q

φ−→ P , P
ψ−→Q andP . In order to keep the

notation simpler we shall write instead of the mapϕ only its lengthl(ϕ) (which definesϕ
uniquely).
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Example 6.4. Consider the band data:(w,1, λ), where

w = α(2,0)∼ β(2,1)− g(1)∼ g(1)− α(6,1)

∼ β(6,2)− g(2)∼ g(2)− β(4,2)∼ α(4,1)− g(1)

∼ g(1)− β(4,1)∼ α(4,0)− g(0)∼ g(0).

It gives the following gluing diagram

P 2 P

P 4 P

P 6 P

P 4 P

λ

Dotted lines here are directed: the direction of the arrow shows that there is a
of complexes which induces a non-zero map modulo the radical in the correspo
component of the complex.

Now we introduce the rule “of moving of an arrow”:
(1) Any time we have the situation

• a •

•

we move the arrow (preserving its sign):

• a •

•
a

(2) Any time we have the situation

•

• b •
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we can move the arrow taking the opposite sign:

•

• b

−b

•

(3) If we have the situation

•
λ

a •

•

we move the arrow (preserving its sign):

•
λ

a •

•
λa

Applying this rule to the band data above we get the following picture

P 2

λ2

P

P 6

6

4

−4

P

−2

−λ2

P 4

−4

P

4

P 4 P

λ
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Now we can insert instead ofP one of the symbolsP1 or P2 following the rule that
every dotted line has to connect symbols with different subscripts.

P1 2

λ2

P1

P2 6

6

4

−4

P2

−2

−λ2

P1 4

−4

P1

4

P2 4 P2

It corresponds to the complexP•

P2 ⊕ P1

 ϕ6 0
ϕ6 0
ϕ4 ϕ4−ϕ4 −ϕ4


P1 ⊕P2 ⊕ P1 ⊕ P2

(
ϕ2 −ϕ2 0 0
λϕ2 −λϕ2 ϕ4 ϕ4

)
P1 ⊕P2,

whereϕ2k always denotes the mapϕ2k :Pi −→ Pj of the length 2k. Let us compute the

triple (P̃•,M•, i). Observe that after applying̃A⊗A to Pi
ϕ−→ Pj (i, j ∈ {1,2}) we get

P
ϕ−→ P . It holds:

P̃• := Ã⊗A P• =

P ⊕ P

 ϕ6 0
ϕ6 0
ϕ4 ϕ4−ϕ4 −ϕ4


P ⊕ P ⊕ P ⊕P

(
ϕ2 −ϕ2 0 0
λϕ2 −λϕ2 ϕ4 ϕ4

)
P ⊕ P

 .

DenoteM =M2(k). The mapi :A/I ⊗A P• −→ Ã/I ⊗ P̃• is

k2 ⊕ k1
0

i2

k1 ⊕ k2 ⊕ k1 ⊕ k2
0

i1

k1 ⊕ k2

i0

M ⊕M
0

M ⊕M ⊕M ⊕M
0

M ⊕M
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wherei0, i1 andi2 are given by matrices

We have the following chain equivalence:

P ⊕ P

(
1 0
1 1

)

 ϕ6 0
ϕ6 0
ϕ4 ϕ4−ϕ4 ϕ4


P ⊕ P ⊕ P ⊕P

 1 −1 0 0
0 1 0 0
0 0 1 0
0 0 1 1



(
ϕ2 −ϕ2 0 0
λϕ2 −λϕ2 ϕ4 ϕ4

)
P ⊕ P

(
1 0−λ 1

)

P ⊕ P

 0 0
ϕ6 0
0 ϕ4
0 0


P ⊕ P ⊕ P ⊕P

(
ϕ2 0 0 0
0 0 0 ϕ4

)
P ⊕ P

This map transforms the matricesi0, i1 andi2 to the form
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Doing the allowed transformations of rows and columns we transform them int
canonical form (see [5]).

Suppose that a dotted line joins two points with equal weights. How to choos
direction of this line? We can do it by means of the following rule. Let us suppose t
gluing diagram has a subpart

a •

• 3 •

x
2 •

x
2 •

• 3 •

• 3
b

We have to find first pair of points(a, b) which are non-symmetric with respect
the axe of symmetry. In our case it holds:a < b. The arrow looks in the direction of th
smaller point (see [5]). In case when there are many dotted arrows joining points with
weights, we have to consider for each pair its own axe of symmetry.
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Example 6.5. Consider the following gluing diagram (band):

• 2 •

λ

• 2 •

• 2 •

• 4 •

• 4 •

• 2 •

• 2 •

• 6 •

If a wordw is symmetric, then we set directions of both dotted arrows intersectin
symmetry axe simultaneously clockwise or anticlockwise.

Let us now consider the case of discrete series. The first type of them are bis
stringsU(w,m, δ1, δ2). They are given by some wordw, by a natural numberm and by
two symbolsδ1, δ2 ∈ {−,+}. Consider the following example:

Example 6.6. Let δ1 = +, δ2 = −, m= 5 andw = (+)g(1)− α(4,1)∼ β(4,2)− g(2)∼
g(2)− β(6,2)∼ α(6,1)− g(1) ∼ g(1)− β(2,1)∼ α(2,0)− g(0)(−). Then we get the
following gluing diagram

5P
4

5P(+)

5P
6

5P

5P
2

5P(−)
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It correspond to the complex:

5P1

ϕ4I
r+
5

3P1 ⊕ 2P2

5P2
ϕ6I5

−ϕ6I5

ϕ4I
r+
5

5P2
ϕ2J

r−
5

5P1

ϕ2J
r−
5

2P1 ⊕ 3P2

whereI r+5 andJ r−5 are the following matrices:

I r+5 =


1 0 0 0 0
0 0 1 0 0
0 0 0 0 1

0 1 0 0 0
0 0 0 1 0

 , J r−5 =


0 1 1 0 0
0 0 0 1 1

1 1 0 0 0
0 0 1 1 0
0 0 0 0 1

 .

The matrixJ r−5 is obtained by the following rule: we take the 5× 5 matrix

J5 =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1



and permute rows putting rows with even and odd numbers in separate horizontal b
The superscript “–” means that the block with even rows comes first. The same rule a
to the identity matrixI5 givesI r+5 .

The triple corresponding to this complex is isomorphic to(P̃•,M•, i) where

P̃• =

5P ⊕ 5P

(
I5 0
0 I5
0 0

)
5P ⊕ 5P ⊕ 5P

( 0 0 I5 )

5P

 ,
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special
M• = (k5
1 ⊕ k5

2
0−→ k3

1 ⊕ k2
2 ⊕ k5

1 ⊕ k5
2

0−→ k5
2 ⊕ k5

1) andi0, i1, i2 are given by matrices

In the last example both special ends were sinks. In the case when one of the
end is source we have to modify our rule a little bit.

Example 6.7. Consider the following bispecial string:m = 4, δ1 = +, δ2 = +, w =
(+)g(2)− β(2,2)∼ α(2,1)− g(1)∼ g(1)− β(2,1)∼ α(2,0)− g(0)(+).

(+)P 2 P

P 4 P(+)

It corresponds to the complex

2P1 ⊕ 2P2

ϕ2I
c+
4

−ϕ2I
c+
4

4P1
ϕ4J

r+
4

4P2

ϕ4J
r+
4

2P1 ⊕ 2P2

where

I c+4 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 and J r+4 =


1 1 0 0
0 0 1 1

0 1 1 0
0 0 0 1

 .
The matrixI c+4 can be computed by the following rule: we take the matrix

I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


and group odd and even columns into separate blocks.
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The last remark concern the case when a bispecial string is given by a “short” dia

Example 6.8. Letm= 5, δ1 = +, δ2 = − andw is just

(+)P ϕ2−→ P(−).

Then the corresponding complex is

3P1 ⊕ 2P2
ϕ2C

2P1 ⊕ 3P2

whereC = I c+5 · (J r−5 )−1.

There are also special and usual strings, which can be finite and infinite.

Example 6.9. Letw = β(1,1)− g(1)∼ g(1)−α(1,1). Then the stringU(w) corresponds
to the gluing diagram

P 1 Q

Q 1 p

It defines the complex

P1
ϕ1

P3

P3
ϕ1

−ϕ1

P2

−ϕ1

One can recognize in this complex a projective resolution of the simpleA-moduleU1.

Example 6.10. Let δ = +, w = (+)g(0)− α(2,0) ∼ β(2,1)− g(1) ∼ g(1) − α(4,1) ∼
β(4,2)− g(2)∼ g(2)− α(2,2)∼ β(2,3)− g(3)∼ g(3)− · · ·. The infinite special string
U(w, δ) is given by the gluing diagram

· · · P 2 P P 2 P(+)

· · ·P 4 P P 4 P
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It corresponds to the complex

· · · P2
ϕ2

−ϕ2

P1

ϕ4

P2
ϕ2

P1

· · ·P2
ϕ4

−ϕ4

P1

ϕ2

P2
ϕ4

−ϕ4

P1

ϕ2

This complex belongs toD−(A-mod) and does not belong toDb(A-mod).

Example 6.11. Letw = ρ(1,0)− g(0)∼ g(0)− α(1,0). The the string complexU(w) is
given by the gluing diagram

P1

P3
ϕ1

−ϕ1

P2

This complex is isomorphic to a projective resolution of a module which is fin
generated but not finite-dimensional.

There are finally complexes which are not coming from the matrix problem. The

just complexes of the formP3
ϕ−→ P3, which come from triples(Q

ϕ−→Q,0,0).
The description of complexes for a general nodal algebra can be obtained by com

the combinatorics of complexes of the derived category of the dihedral algebra and
Gelfand quiver.

7. Derived categories and Harish-Chandra modules

In [24] it was proven that there are only two cases of compact Lie groups, for w
the category of Harish-Chandra modules is tame:SL2(R) andSO(1, n). As a corollary of
the theorem we obtain that the derived category of Harish-Chandra modules is als
in both of these cases. We have already seen it forSL2(R).

Let SO0(1, n) be the connected component ofSO(1, n).



I. Burban, Yu. Drozd / Journal of Algebra 272 (2004) 46–94 81

of the

h

(1) Let n = 2l. Then the category of Harish-Chandra modules overSO0(1, n) at a
singular point is equivalent to the category of finite-dimensional representations
completed path algebra of the following quiver (see [24]):

where we have the relations:

γ = b+a+ = b−a−,

andγ is nilpotent,

a±d1 = 0, c1b
± = 0,

ci+1ci = 0, didi+1 = 0, i = 1, . . . , l − 2.

Moreover, all

ϑi = dici, i = 1, . . . , l − 1,

are nilpotent.
This algebra can be embedded into

(this algebra is the endomorphism algebra of the radical ofA. However, it is not so
important).

The simpleA-module, corresponding to the vertexl+1 is of the first type. Those, whic
correspond to 1,2, . . . , l − 1 are of the second type, 0± are of the third type.

(2) If n = 2l + 1. Then the category of Harish-Chandra modules overSO0(1, n) is
described by the completed path algebra of the following quiver:
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e

sable
with relations:

ad1 = 0, c1a = 0, d1a = 0, ac1 = 0,

a is nilpotent,

ci+1ci = 0, didi+1 = 0, i = 1, . . . , l − 1,

and all

ϑi = dici, i = 1, . . . , l,

are nilpotent.
It can be embedded into

The simple module, corresponding to the vertexl is of the first type, all other simpl
modules are of the second type.

Let us consider two more examples (see [5] for a description of indecompo
modules over these algebras).

Example 7.1. Consider the completed path algebra of the following quiver:

where we have the relations

b+
i a

+
i = b−

i a
−
i , i = 1,2,

a
σ1
i b

σ2
i = 0, i = 1,2, σ1, σ2 ∈ {−,+},

cidi = 0, dici = 0, 1� i �m− 1,

and finally

γ = b+a+cm−1cm−2 · · ·c1b
+a+d1d2 · · ·dm−1
2 2 1 1
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is nilpotent.
As one easily observes, we can embed this algebra into

The simpleA-modules, corresponding to vertices 1,2, . . . ,m are of the second type
0±, (m+ 1)± are of the third type.

Example 7.2. Consider the completed path algebra of quiver:

where we have the relations:

γi = b+
i a

+
i = b−

i a
−
i , i = 1,2,

andγi , i = 1,2, are nilpotent,

a±
1 d1 = 0, c1b

±
1 = 0, a±

2 cm−1 = 0, dm−1b
±
2 = 0,

ci+1ci = 0, didi+1 = 0, i = 1, . . . ,m− 2.

Moreover, all

ϑi = dici, i = 1, . . . ,m− 1,

are nilpotent.
We can embed this algebra into:
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The simpleA-modules, corresponding to vertices 1,2, . . . ,m are of the second type
0±, (m+ 1)± are of the third type.

Remark 7.3. It can be checked that all algebras from this section are nodal and
embedding is embedding into the endomorphism algebra of the radical.
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Appendix A. Krull–Schmidt theorem for homotopy categories

Let C be an additive category. We denote byC(C) the category of chain complexe
with entries fromC and byK(C) the factorcategory ofC(C) modulo homotopy. IfC is
abelian, we denote byD(C) thederived categoryof C, that is the category of quotients
K(C) with respect to the set of morphisms inducing isomorphism of homologies. We
commutative ringS and considerS-categories, namely, suppose that all setsC(A,B) are
modules overS and the multiplication of morphisms isS-bilinear.

Definition A.1. An additive categoryC is called:

• local if every objectA ∈ C decomposes into a finite direct sum of objects with lo
endomorphism rings;

• ω-local if every objectA ∈ C decomposes into a finite of countable direct sum
objects with local endomorphism rings;

• fully additiveif any idempotent morphism inC splits, that is defines a decompositi
into a direct sum;

• locally finite (overS) if it is fully additive and all morphism spacesC(A,B) are finitely
generatedS-modules. Especially ifS is a field, a locally finite category is calledlocally
finite-dimensional.

Evidently, every locally finite category is local; moreover, an endomorphism alg
C(A,A) in a locally finite category is afinite S-algebra, i.e., such that the underlyin
S-module is finitely generated. It is known that any local (orω-local) category is fully
additive; moreover, a decomposition into a direct sum of objects with local endomorp
rings is always unique; in other words, any local (orω-local) category is a Krull–Schmid
one, cf. [1, Theorem 3.6].

For a local categoryC denote by radC its radical, that is the set of all morphism
f :A → B, whereA,B ∈ ObC, such that no component of the matrix presentation
f with respect to some (hence any) decomposition ofA andB into a direct sum of
indecomposable objects is invertible. Note that iff /∈ radC, there is a morphismg :B →A



I. Burban, Yu. Drozd / Journal of Algebra 272 (2004) 46–94 85

h
of

s

nt

pace

at

,

f

ection

y

such thatfgf = f andgfg = g. Hence bothgf andfg are nonzero idempotents, whic
define decompositionsA∼=A1 ⊕A2 andB ∼= B1 ⊕B2 such that the matrix presentation
f with respect to these decompositions is diagonal:

( f1 0
0 f2

)
, andf1 is invertible. Obviously,

if C is locally finite-dimensional, then radC(A,B) coincide with the set of all morphism
f :A→B such thatgf (or fg) is nilpotent for any morphismg :B →A.

Proposition A.2. Suppose thatS is a complete local noetherian ring with maximal idealm.
If C is a locally finite category overS, the categoriesC(C) and K(C) are ω-local
(in particular, Krull–Schmidt). Moreover, a morphismf• :A• → B• from one of these
categories belongs to the radical if and only if all componentsfngn (or gnfn) are nilpotent
modulom for any morphismg• :B• →A•.

Proof. Denote byk = S/m the residue field ofS. We use the following simple stateme
from linear algebra. ✷
Lemma A.3. Let Λ be a finite-dimensionalk-algebra anda be and element fromΛ.
There is a polynomialf (x) ∈ k[x] such thatf (a) is an idempotent andf (e) = e for
any idempotente from anyk-algebra. Moreover,f (a) is nilpotent(or invertible) if and
only if so isa.

Proof. Suppose that a polynomialf (x) satisfies the conditionf (0)= 0, f (1)= 1. Then
f (e)= e for any idempotente from any finite-dimensional algebra.

We can embedΛ in an endomorphism algebra of some finite-dimensional vector s
V , so we suppose thatΛ = EndV . DecomposeV = V0 ⊕ V1 so that the restrictiona|V0

is nilpotent anda|V1 is invertible. Replacinga by ak for somek, one can suppose th
a|V0 = 0. Indeed, if we have found a polynomialf (x) such thatf (ak) is idempotent, then
f k(a) = f (ak) hencef k(x) is the polynomial forak we are looking for. In particular
if ak = 0, then we can takef (x) = xk . Set b = a|V1 Since b is invertible, there is
a polynomialg(x) such thatg(b) = 1 andg(0) = 0. If 1 is an eigenvalue ofb, then
g(1) = 1, whenceg(e) = e for every idempotente. If 1 is not an eigenvalue ofb,
then (xh(x), x2 − x) = x, whereh(x) is the minimal polynomial ofb, hence there is
a polynomialf (x) such thatf (x) ≡ g(x) (mod xh(x)) and f (x) ≡ x (mod x2 − x).
Therefore,f (b)= 1 andf (e)= e for every idempotente, which accomplishes the proo
of the lemma. ✷

Recall also a known result, which can be easily deduced, for instance, from [25, S
III.8].

Lemma A.4. There are polynomialsGn(x) ∈ Z[x] withGn(0)= 0 and such that for ever
ring Λ, any idealI ⊆ Λ and any elementa ∈ Λ such thata2 ≡ a mod I , Gn(a)2 ≡
Gn(a)modIn+1 anda ≡Gn(a)modI .

(For instance,G1(x)= 3x2 − 2x3.)
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Corollary A.5. LetΛ be a finite algebra over a local noetherian ringS with maximal ideal
m anda ∈Λ. For everyn ∈ N there is a polynomialg(x) ∈ S[x] such that

• g(a)2 ≡ g(a)modmn+1;
• g(e) ≡ e mod mn for every elemente of an arbitrary finite S-algebra such tha
e2 ≡ e modmn;

• g(a)≡ 1 modm if and only ifa is invertible;
• g(a)≡ 0 modm if and only ifa is nilpotent modulom.

Proof. Find a polynomialf (x) over k = S/m such thatf (ā) is idempotent inΛ/mΛ,
where ā = a + mΛ ∈ Λ/mΛ and f (ē) = ē for any idempotent̄e of any k-algebra;
especiallyf (0) = 0. Lift f (x) to a polynomialF(x) ∈ S[x] such thatF(0) = 0. Then
F(a) is idempotent modulom and if e2 ≡ e mod mn, thenF(e) ≡ e mod m (by the
construction ofF(x)) and eF (e) ≡ F(e) mod mn (it is true for any polynomialF(x)
satisfyingF(0)= 0). Setg(x)=Gn(F(x)). Theng(a) is idempotent modulomn+1, just
as g(e) for every e that is idempotent modulom. If, moreover,e2 ≡ e mod mn, then
g(e) ≡ e mod m and eg(e) ≡ g(e) mod mn. Let g(e) = e + r; then r = g(e) − e and
er = re = r. Therefore it holds(e + r)2 ≡ e + 2r + r2 ≡ e + r mod mn, wherefrom
r ≡ −r2 modmn. But thenr ≡ −r2 ≡ −r4 ≡ · · · modmn, sor ≡ 0 modmn.

Let nowa• be an endomorphism of a complexA• fromC(C). Consider the setsIn ⊂ Z

defined as follows:I0 = {0}, I2k = {l ∈ Z | −k � l � k} andI2k−1 = {l ∈ Z | −k < l � k}.
Obviously,

⋃
n In = Z, In ⊂ In+1 and In+1 \ In consists of a unique elementln. Using

Corollary A.5, we can construct a sequence of endomorphismsa
(n)• such that

• (a
(n)
i )2 ≡ a

(n)
i modmn;

• a
(n+1)
i ≡ a

(n)
i modmn;

• a
(n)
i is invertible or nilpotent modulom if and only if so isai .

Then one easily sees that settingui = limn→∞ a
(n)
i , we get an idempotent endomorphis

u• of A•, such thatui ≡ 0 modm (ui ≡ 1 modm) if and only if ai is nilpotent modulom
(respectivelyai is invertible).

Especially, if either one ofal is neither nilpotent nor invertible modulom or one of
al is nilpotent modulom while another one is invertible, thenu• is neither zero no
identity. Hence the complexA• decomposes. ThusA• is indecomposable if and only i
for any endomorphisma• of A•, eithera• is invertible or all componentsan are nilpotent
modulom. Since all algebras EndAn/mEndAn are finite-dimensional, neither productαβ,
whereα,β ∈ EndAn and one of them is nilpotent modulom, can be invertible. Therefore
the set of endomorphismsa• of an indecomposable complexA• such that all componen
an are nilpotent modulom form an idealR of EndA• and EndA•/R is a skew field. Hence
R = rad(EndA•) and EndA• is local.

Now we want to show that any complex fromC(C) has an indecomposable dire
summand. Consider an arbitrary complexA• and suppose thatA0 %= 0. For any idempoten
endomorphisme• of A• at least one of the complexese(A•) or (1 − e)(A•) has a nonzero
component at the zero place. On the set of all endomorphisms ofA• we can introduce
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a partial ordering by writinge• � e′• if and only if e′• = e•e′•e• and bothe0 and e′
0

are non-zero. Lete• � e′• � e′′• � · · · be a chain of idempotent endomorphisms ofA•.
As all endomorphism algebras EndAl are finitely generatedS-modules, the sequenc
el, e

′
l, e

′′
l , . . . ∈ EndAl stabilize for alll, so this chain has a lower bound (formed by

limit values of components). By Zorn’s lemma, there is a minimal non-zero idemp
of A•, which defines an indecomposable direct summand.

Again, since all EndAl are finitely generated, for everyn there is a decompositio
A• = B

(n)• ⊕ ⊕rn
i=1Bin• where allBin• are indecomposable andB(n)l = 0 for l ∈ In.

Moreover, one may suppose thatrn � rm form> n andBin• = Bim•, for i � rn. Evidently,
it implies thatA• = ⊕r

i=1Bi• where r = supn rn and Bi• = Bin• for i � rn, which
accomplishes the proof of the Proposition A.2 forC(C).

Note now that the endomorphism ring of each complexBi• in the categoryK(C) is
a factor-ring of its endomorphism ring inC(C). Hence it is either local or zero; in th
latter case the image ofBi• in K(C) is a zero object. Therefore, the claim is also valid
K(C). ✷
Corollary A.6. Let S be local, complete and noetherian, andA be anS-algebra finitely
generated asS-module. Then the derived categoryD−(A-mod), whereA-moddenotes the
category of finitely generatedA-modules, isω-local, in particular, Krull–Schmidt category

Proof. Indeed,D−(A-mod) coincide with the categoryK−(A-pro), whereA-pro denotes
the category of finitely generated projectiveA-modules. ✷
Remark A.7. The conditions of Proposition A.2 are essential indeed, and Krull–Sch
theorem can fail even for the category of bounded complexesCb(C) over a local categor
C as the following example shows.

Let R be the localization of the polynomial ringk[x, y] at the maximal ideal(x, y),
C = R-pro be the category of freeR-modules of finite rank. Obviously, it is local. Th
categoryK−(C) is equivalent to the categoryD−(R-mod) and contains the catego
R-mod as a full subcategory. Denote byS the factor-ringR/(x2y − y3 + x4). It is a
local domain, but its completion̂S is not a domain: its normalization decomposes
S1 × S2 × S3, where eachSi ∼= k[[x]]. In particular,̂S has three torsion-free modulesLi
such that eachLi has a composition series with the factorsSj ,Sk , where{i, j, k} = {1,2,3}
(it is the projection of̂S ontoSj × Sk). It implies thatS has torsion-free indecomposab
modulesM1,M2,N1,N2,N3 with the following completions:

M̂1 = S1 ⊕ S2 ⊕ S3; M̂2 = L1 ⊕L2 ⊕L3;

N̂i = Si ⊕Li (i = 1,2,3).

(cf. [29]). ThenM1 ⊕M2 ∼=N1 ⊕N2 ⊕N3, hence the categoryS-mod, thus alsoR-mod
andDb(R-mod) are not local.
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Appendix B. Bunches of chains

We summarize the results of [5,6], changing both the definition and the presenta
the answer to equivalent ones, which seem more convenient for our purpose. Moreo
add a description of some infinite-dimensional representations that occur in dealin
derived categories, together with a sketch of a proof. As V.M. Bondarenko has inform
he has submitted a paper containing more details on infinite case [7]. Note that Bond
calls “bunch of semichained sets” what we call “bunch of chains”. The reason can b
if one compares our definitions.

Definition B.1. A bunch of chainsX consists of:

• An index setI , which we suppose finite or countable.
• For eachi ∈ I , two chains (linearly ordered sets)Ei andFi .

We setE =⋃i∈I Ei , F =⋃i∈I Fi and|X| = E ∪ F.
• A symmetric relation∼ (not an equivalence!) on|X| such that for everyx there is at

most oney with x ∼ y (maybex = y).

We define an equivalence relation≈ on |X| such thatx ≈ y means eitherx = y or x ∼ y,
and set̃X = |X|/ ≈. We write x − y if there is an indexi ∈ I such thatx ∈ Ei , y ∈ Fi

or vice versa. For eachx ∈ |X| such thatx ∼ x we introduce two new elementsx ′, x ′′
and setX∗ = (|X| \ {x | x ∼ x})∪ {x ′, x ′′ | x ∼ x}. We subdivideX∗ into E∗ =⋃i E

∗
i and

F∗ =⋃i F
∗
i , which are the images ofEi andFi ; for instancex ′ andx ′′ are inE∗

i if x ∈ Ei .
We consider the ordering< on |X|, which is just the union of orderings on allEi andFi ,
and extend it, as well as the relation−, ontoX∗ so that each “new” elementx ′ or x ′′ inherits
all relations that the elementx has. For instance,x ′ < y with y ∈ |X| means thatx < y;
x ′′ − z′ means thatx − z, etc. Note that the elementsx ′, x ′′ are always non-comparabl
On the other hand, we extend the equivalence≈ to X∗ trivially (each new elementx ′ or x ′′
is unique in its≈-class), and set̃X∗ = X∗/≈.

A bunch of chainsX gives rise to a bimodule problem. Namely, we fix a fieldk and
define ak-categoryA = A(X) and anA-bimoduleU = U(X) as follows:

• ObA = X̃∗.
• If a, b are two equivalence classes, a basis of the morphism spaceA(a, b) consists of

elementspyx with x ∈ a, y ∈ b, x < y and, ifa = b, the identity morphism 1x .
• The multiplication is given by the rule:pzypyx = pzx if z < y < x, while all other

possible products are zeros.
• A basis ofU(a, b) consists of elementsuyx with y ∈ b ∩ E∗, x ∈ a ∩ F∗, x − y.
• The action ofA on U is given by the rule:pzyuyx = uzx if y < z; uyxpxt = uyt if
x < t , while all other possible products are zeros.
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The category ofrepresentations of the bunchX over the fieldk is then defined as th
category El(U) of the elements of this bimodule. In other words, a representation is
M of block matrices

Mi =
 . . . . . . . . . .
. . . Mxy . . .

. . . . . . . . . .

 , i ∈ I, x ∈ E
∗
i , y ∈ F

∗
i , Mxy ∈ Mat(nx × ny,k)

such thatx ≈ y impliesnx = ny . Two representations are isomorphic if and only if they
be obtained from one another by a sequence of the followingelementary transformations:

• elementary transformations of rows (columns) in each horizontal (vertical) s
it means that they are performed simultaneously in all matricesMxy with fixed x
(respectivelyy); moreover, ifx ≈ z, the transformations of thex-stripe must be the
same as those ofz-stripe (certainly, if one of them is horizontal and the other is verti
“the same” means “contragradient”);

• if x < y, then scalar multiples of rows (columns) of thex-stripe can be added to row
(columns) of they-stripe.

One easily sees that this definition coincides with that of [5,6].
The description of indecomposable representations from [5,6] rests upon a com

torics, which we expound in terms ofstrings and bandsalike to their use in the represe
tation theory.

Definition B.2. Let X = {I,Ei ,Fi ,∼} be a bunch of chains.
(1) An X-word is a sequencew = x1r1x2r2x3 . . . rm−1xm, wherexk ∈ |X| and rk ∈

{∼,−}, such that for all possible values ofk

(a) xkrkxk+1 in |X|.
(b) rk %= rk+1.

We callm the lengthof the wordw. Possiblym= 1, i.e.,w = x for somex ∈ |X|. The
elementsx1 andxm are called theendsof the wordw.

(2) We call anX-word full if, wheneverx1 is not a unique element in its≈-class, then
r1 = ∼, and wheneverxm is not a unique element in its≈-class, thenrm−1 = ∼.

(3) We denote byw∗ the inverse wordxmrm−1xm−1 . . . r1x1 and call anX-word
symmetricif w = w∗. We call w quasisymmetricif it can be presented in the form
v ∼ v∗ ∼ v ∼ v∗ ∼ · · · ∼ v for a shorter wordv.

(4) We call the endx1 (xm) of the wordw specialif x1 ∼ x1 andr1 = − (respectively
xm ∼ xm andrm−1 = −). We call the wordw

(1) usualif neither of its ends is special;
(2) specialif one of its ends is special;
(3) bispecialif both its ends are special.
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Note that a special word is never symmetric, while a bispecial word is always
a quasisymmetric word is always bispecial.

(5) If r1 = rm−1 = ∼ andxm− x1 in X, we call the wordw anX-cycle. Note that in this
casem is always even. For a cyclew we setrm = − andxqm+k = xk, rqm+k = rk for all
integersq, k.

(6) We call an X-cycle w = x1r1x2r2x3 . . . rm−1xm non-periodic if the sequence
x1r1x2r2 . . . xmrm cannot be written as a multiplevv . . . v of a shorter sequencev.

(7) A shift of a cyclew is defined as the cyclew[k] = xk+1rk+1xk+2 . . . rk−1xk for some
even integer 0� k <m. We call a non-periodic cyclew symmetricif w∗ =w[k] for somek.
(Note thatw[k] =w[l] with k %= l is impossible ifw is non-periodic.)

(8) For a cyclew and an even integer 0� k < m we defineν(k,w) as the number o
even integers 0� i � k such that bothxi−1 andxi belong either toE or toF.

Definition B.3. (1) A usual stringdatum is a non-symmetric full usual word.
(2) A special stringdatum is a pair(w, δ), wherew is a special full word andδ ∈ {+,−}.
(3) A bispecial stringdatum is a quadruple(w,m, δ1, δ2), wherew is a bispecial word

which is neither symmetric nor quasisymmetric,m ∈ N andδi ∈ {+,−}.
(4) A banddatum is a pair(w,f ), wherew is a non-periodic cycle andf ∈ k[t] is

a primary polynomialover the fieldk, i.e., a degree of an irreducible polynomial w
leading coefficient 1, such thatf (0) %= 0 and ifw is symmetric alsof (1) %= 0. If the field
k is algebraically closed andf = (t − λ)d , we write(w,d,λ) instead of(w,f ).

(5) The following string data are calledequivalent:

(a) usual string dataw andw∗;
(b) special string data(w, δ) and(w∗, δ);
(c) bispecial string data(w,m, δ1, δ2) and(w∗,m, δ2, δ1).

(6) Two band data are calledequivalentif they can be obtained from one another b
sequence of the following transformations:

(a) replace(w,f ) by (w[k], f ) if ν(k,w) is even;
(b) replace(w,f ) by (w[k], α−1tdf (1/t)), whered = degf andα = f (0) if ν(k,w) is

odd;
(c) replace(w,f ) by (w∗, f ).

Note that iff (t)= (t − λ)d , thenα−1tdf (1/t)= (t − λ−1)d .

Then the main result of the papers [5,6] (see also [11]) can be reformulated as fo

Theorem B.4. There is one-to-one correspondence between isomorphism class
indecomposable representations of a bunch of chains and equivalence classes o
and band data.



I. Burban, Yu. Drozd / Journal of Algebra 272 (2004) 46–94 91

special

chains.

ry,

implest
on),

erning

ain

s

rieties,
We call indecomposable representations corresponding to usual string data (
string data, bispecial string data, band data)usual strings(respectively,special strings,
bispecial strings, bands).

Appendix C. Infinite chains

For our purpose we have to consider some infinite representations of a bunch of
We suppose now thatI = N and for every indexi ∈ I the set{

j ∈ I | (∃x ∈ Ei ∪ Fi ) (∃y ∈ Ej ∪ Fj ) x ∼ y
}

is finite. Namely, we define the category El∞(U) just in the same way as El(U), but
allowing infinitely many elements ofX∗ to occur in every representation. On the contra
we always suppose that for everyi ∈ I the sum of all dimensionsnx with x ∈ E∗

i ∪ F∗
i is

finite. The last condition looks indispensable, since even when one considers the s
case #I = 1,E = {x},F = {y}, x ∼ y (which means square matrices under conjugati
the classification of representations of infinite dimension is a wild problem.

To deal with such infinite representations we first establish a general result conc
infinite matrices over bimodules.

Definition C.1. Let A be a locally finite-dimensional category,B be its full subcategory
and U be an A-bimodule. We say thatU is triangular with respect toB if, for
every indecomposable objectsA,B,C, whereB,C ∈ B andA /∈ B, A(C,A)U(B,C) =
U(B,C)A(A,B)= 0.

The following lemma is obvious.

Lemma C.2. Let U be triangular with respect toB. For any objectA ∈ A choose a
decompositionA ∼= A1 ⊕ A2, whereA1 ∈ B and A2 has no direct summands fromB.
For a morphisma ∈ A(A,A′) or an elementu ∈ U(A,A′) denote, respectively, bya1 or
u1 its component fromA(A1,A

′
1) or U(A1,A

′
1). If a ∈ A(A,A′) is a morphism inEl(U)

from u ∈ U(A,A) to v ∈ U(A′,A′) (i.e., au= va), thena1 is a morphism fromu1 to v1.
Especially ifa is an isomorphismu→ v, thena1 is an isomorphismu1 → v1.

Lemma C.3. Let A be a locally finite-dimensional category that is a union of a ch
A1 ⊆ A2 ⊆ A3 ⊆ · · · of full subcategories. Suppose thatU is an A-bimodule that is
triangular with respect to eachAi . Denote byA∞ the category of infinite direct sum
A=⊕∞

i=1Ai , whereAi is an object fromAi with no direct summands fromAi−1, and by
U∞ the natural extension ofU onto A∞. For each elementu from U∞(A,A) denote by
un its restriction onto

⊕n
i=1 ai . If u,v are two elements such thatun ∼= vn for all n, then

u∼= v.

Proof. First suppose the fieldk uncountable. Consider the sets of isomorphisms Iso(un, vn)

and the natural mappingsπmn : Iso(um, vm) → Iso(un, vn) (m > n) arising from the tri-
angularity condition. These sets can be considered as algebraic (even affine) va
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thenπmn are open morphisms of these varieties. In particular, the images Imπm1 form
a decreasing chain of non-empty open subsets in Iso(u1, v1). Hence their intersection i
also non-empty (cf., for instance, [19]). Take an elementa1 from this intersection and
setXn = π−1

n1 (a1) (n� 2). Again they are algebraic varieties andX′
n = πn2(Xn) are non-

empty open subsets ofX2, thus there is an elementa2 ∈⋂∞
n=2X

′
n. Continuing this process

we get a sequencean of elements from Iso(un, vn) such thatπmn(am)= an for all m> n.
This sequence defines an isomorphisma :u→ v.

If k is arbitrary, take its uncountable extensionk̃ and consider extensions ofA andU
to k̃. It is easy to see thatu ∼= v if and only if their extensions are isomorphic, whi
accomplishes the proof.✷

Note that using Lemma A.3 one can obtain the following analogue of Propositio
(with almost the same proof).

Proposition C.4. We use the suppositions and notations of LemmaC.3. If A=⊕∞
i=1Ai ∈

A∞ anda ∈ EndA, denote byai the component ofa belongings toEndAi . The category
El(U∞) is ω-local (in particular, Krull–Schmidt). Moreover, if u ∈ U∞(A,A) is an
indecomposable element fromEl(U∞) anda ∈ Endu, then either allai are invertible or
all of them are nilpotent.

Now we defineinfiniteX-wordsas sequencesw= . . . x1r1x2r2x3 . . . rm−1xm . . . , which
are one-side or two-side infinite, subject to conditions (a) and (b) of Definition B
and such that for eachi the set{k | xk ∈ Ei ∪ Fi} is finite. We apply to such words a
terminology from Definitions B.2(2)–(4) and B.3(1), (2), (5)(a)(b). Then we can ex
Theorem B.4 to infinite representations.

Theorem C.5. Isomorphism classes of indecomposable infinite representations of a
of chains are in one-to-one correspondence with equivalence classes of infinite
data. Moreover, every infinite representation uniquely decomposes into a direct s
indecomposable ones.

Sketch of the proof (more details will appear in [7]). LetXm be the bunch of chain
with the index setIm = {1,2, . . . ,m}, the same chainsEi ,Fi and the same relation∼,
Am = A(Xm). Then we are in the situation of Lemma C.3. We define representa
corresponding to infinite string data just as it has been done in [5,6] for finite case. O
show that all of them are indecomposable and their endomorphism rings are local.
only have to prove that there are no more indecomposable infinite representations.

For each representationM ∈ El∞(U) we denote byMm the restriction ofM ontoXm,
given by all matricesMxy with x, y ∈ X∗

m. Lemma C.3 implies thatM ∼= N if and only
if Mm

∼= Nm for everym. Suppose thatM is infinite and indecomposable and consid
an indecomposable direct summandL of a representationMm. The reduction procedur
and the explicit description of strings and bands from [6] immediately imply the follow
facts.

(1) L cannot be a band or a bispecial string.
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(2) If L is a usual or a special string, there is an integerm′ >m and an indecomposab
direct summandL′ of Mm′ such that the wordw from the string datum correspondin
toL is a part of the wordw′ from the string datum corresponding toL′.

(3) If K is another indecomposable direct summand ofMm, the numberm′ >m and the
representationL′ from (2) can be chosen common forL andK.

It implies the first statement of the theorem. The Krull–Schmidt property follows f
Proposition C.4. ✷
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