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1 Introduction

Stable vector bundles over projective curves have been widely investigated. In particular,

it has been proved that there are coarse moduli spaces of such bundles and they have

good compacti¯cations; the dimensions of these spaces have been found, etc. (cf. [6]).

Nevertheless, not so much is known about explicit structure of stable bundles, especially

over singular curves. It seems that there is a unique general result in this direction,

namely that of [1] describing stable vector bundles over a nodal cubic. This description

has been derived from the description of all vector bundles over such a curve [3]. If we

consider more complicated singularities, e.g. a cuspidal cubic, it follows from [3] that

the description of all vector bundles is a wild problem, i.e. contains a classi¯cation of all

representations of all ¯nitely generated algebras. Thus, if we are going to study stable

vector bundles over such curves, we have to ¯nd another approach. Fortunately, there is

one used before in quite di®erent situation, namely in study of representations of \mixed"
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Lie groups (i.e. neither reductive nor solvable) [2]. It combines the technique of \matrix

problems" used in [3] with the concept of \general position", allowing to restrict matrix

considerations by rather simple cases, especially to avoid reductions that lead to wild

fragments, thus making possible a recursive construction of all stable vector bundles.

Using this method, we prove the following main result.

Theorem 1.1. Let C » P2 be a cuspidal cubic over an algebraically closed ¯eld k.

(1) The rank r and degree d of a stable vector bundle over C are always coprime.

(2) For every pair (r; d) of coprime integers with r > 0 the moduli space VB(r; d) of

stable vector bundles of rank r and degree d over C is isomorphic to the a±ne

line A1.

Note that A1 ’ k+ is just the Picard group Pic±(C) [5, Example II.6.11.4].

Moreover, we explicitly construct a universal family F (r; d; ¹) of stable vector bun-

dles of rank r and degree d depending on the parameter ¹ 2 A1 and calculate their

cohomologies.

Note that the matrix problem used in these calculations coincides with that arising in

the description of representations of groups of echelon matrices [2]. Perhaps there would

be an intrinsic reason for this coincidence, but at the moment we have no idea of what

nature it can be. There is also evidence that an analogous result must be valid for other

degenerate cubics. We hope to present it in the near future.

2 Matrix reduction

We use the technique of [3] to reduce the description of vector bundles to some matrix

calculations. Let C be a cuspidal cubic with the singular point p, ¼ : ~C ! C be its

normalization. (C is the compacti¯cation of the curve y2 = x3 and p = (0; 0).) Then
~C ’ P1 and ¼¡1(p) = fqg, one point set. We denote O = OC and ~O = O ~C . We also

denote by VB(C) the category of vector bundles or, the same, locally free coherent sheaves

over C . For every vector bundle F over C set ~F = ¼¤F . It is a vector bundle over ~C. We

always identify F with ¼¡1F » ~F . Note that ~C nfqg ’ C nfpg and the sections of ~F and

F coincide on this common part, while ~Fq ¼ Fp ¼ t2 ~Fq, where t is the local parameter

at the point q 2 ~C . Thus V = Fp=t2 ~Fq is a vector subspace in W = ~Fq=t2 ~Fq. The latter

is a free module over the algebra ~Oq=t2 ~Oq ’ k[t]=(t2). Moreover, dim V = rk W = rk ~F
and V generates W as k[t]=(t2)-module. On the contrary, if E is a vector bundle over ~C

of rank r and V is an r-dimensional subspace in W = Eq=t2Eq generating W as k[t]=(t2)-

module, its preimage in E is a vector bundle F over C of rank r. We consider the following

category T :

° Its objects are pairs (E ; V ), where E is a vector bundle over ~C and V is a subspace

in W = Eq=t2Eq such that dim V = rk E and V generates W as k[t]=(t2)-module.

° A morphism (E ; V ) ! (E 0; V 0) is a morphism of sheaves Á : E ! E 0 such that

Á(V ) ³ V 0, where Á is the induced morphism Eq=t2Eq ! E 0
q=t2E 0

q.
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The preceding considerations make obvious the following result (cf. also [3]).

Proposition 2.1. The functor T : VB(C) ! T mapping F to ( ~F ; Fp=t2 ~Fq) is an equiv-

alence of categories.

Recall that all indecomposable vector bundles over ~C ’ P1 are just twists ~O(d) of the

structure sheaf [4]. Especially, ~F ’
L

d md
~O(d) for some multiplicities md.

Note that the arithmetic genus of C is 1 and that of ~C is 0. Therefore, the exact

sequence 0 ! F ! ~F ! W=V ! 0 and the Riemann{Roch theorem give that

degC F = Â(F ) = Â( ~F ) ¡ r = deg ~C
~F ;

where Â(F ) denotes, as usual, the Euler{Poincar¶e characteristic: Â(F ) = dim H0(F ) ¡
dim H1(F ). Since W=V is zero outside the unique point q, Â(W=V ) = dim(W=V ) = r.

Denote by sl(F ) = deg F= rk F , the slope of F . Recall [6] that a vector bundle F
is said to be stable if sl F 0 < sl F for every proper subsheaf F 0 » F . As the arithmetic

genus of C is 1, there is an easier criterion for F to be stable.

Lemma 2.2. A vector bundle F over C is stable if and only if End F = k.

This condition is always necessary. Indeed, if End F 6= k, there is an endomorphism

f that is neither zero nor an isomorphism. Denote by F 0 = Im f ’ F= Ker f . If F is

stable, sl F 0 < sl F . But it implies that sl(Ker f) > sl F , so F is not stable.

To prove that it is also su±cient, note the following easy result.

Lemma 2.3. Let F ; G be coherent sheaves of O-modules.

(1) If one of them is locally free, Hom(F ; G ) ’ F _ « G .

(2) If F is locally free, (F _ « G )_ ’ G _ « F .

Proof.

(1) There is a natural morphism Á : F _ « G ! Hom(F ; G ), which is isomorphism if

either F = O or G = O. Since Á is an isomorphism if and only if all induced

morphisms of stalks are isomorphisms, it implies the claim.

(2) Hom(F _ « G ; O) ’ Hom( G ; Hom(F _; O)) ’ G _ « F .

Now the Riemann{Roch theorem implies that for any coherent sheaves F ; G over C,

one of which is locally free,

dim Hom(F ; G ) ¡ dim Ext(F ; G ) = Â(F _ « G ) = deg(F _ « G )

= rk F deg G ¡ rk G deg F ;

especially dim Hom(F ; G ) 6= 0 if sl G > sl F . Moreover, by the Serre’s duality, if F is

locally free,

dim Ext(F ; G ) = dim H1(Hom(F ; G )) = dim H1(F _ « G ) =

= dim H0( G _ « F ) = dim Hom( G ; F ):
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Thus if sl G = sl F and Hom( G ; F ) 6= 0, also Hom(F ; G ) 6= 0.

Suppose now that F is not stable and F 0 » F is such that sl F 0 ¶ sl F . Then, as we

have seen, Hom(F ; F 0) 6= 0, so the composition of a non-zero homomorphism F ! F 0

with the embedding F 0 ! F gives a nontrivial endomorphism of F .

Corollary 2.4. If F is a stable vector bundle, then fd j md 6= 0g = fc; c + 1g for some

integer c.

Proof. Otherwise there are integers a; b such that a µ b ¡ 2 and ma 6= 0; mb 6= 0. There

is a nonzero homomorphism f : ~O(a) ! ~O(b) such that f( ~O(a)q) ³ t2 ~O(b)q. It gives rise

to an endomorphism Á of ~F such that Á = 0, so (Á; 0) 2 End( ~F ; Fp=t2 ~Fq) is a nontrivial

endomorphism. By Proposition 2.1 it corresponds to a nontrivial endomorphism of F .

Hence F is not stable.

From now on we consider the full subcategories VBc(C) » VB(C) consisting of all

vector bundles F such that ~F ’ a ~O(c)©b ~O(c+1) for some integers a; b. Note that in this

case rk F = a+ b and deg F = (a+ b)c+ b. Under the equivalence T it corresponds to the

full subcategory Tc » T consisting of all pairs (E ; V ) with E = a ~O(c)+b ~O(c+1). The shift

F 7! F (c) of the category of coherent sheaves induces equivalences VB0(C) ! VBc(C)

and T0 ! Tc, so we only have to consider T0. If E = a ~O © b ~O(1), then Eq=t2Eq ’ aW0 ©
bW1, where W0 = W1 = k[t]=(t2). Homomorphisms ~O ! ~O(1) induce homomorphisms

of k[t]=(t2)-modules W0 ! W1 mapping 1 7! ¸ + ¹t and t 7! ¸t. Note that there are

no non-zero homomorphisms ~O(1) ! ~O and all endomorphisms of both ~O and ~O(1) are

just multiplications by a scalar.

Given a pair (E ; V ) from T0, choose bases

w0
1; w0

2; : : : ; w0
a of aW0;

w1
1; w1

2; : : : ; w1
b of bW1;

v1; v2; : : : ; vr of V

and write

vj =

aX

i=1

((®0
ij + ¯0

ijt)w
0
i + (®1

ij + ¯1
ijt)w

1
i ):

Since v1; v2; : : : ; vr must generate W , the matrix

L =

0

BBBBBBB@

®0
11 : : : ®0

1r

: : :
. . . : : :

®0
a1 : : : ®0

ar

®1
11 : : : ®1

1r

: : :
. . . : : :

®1
b1 : : : ®1

br

1

CCCCCCCA

must be invertible. Therefore, changing the basis v1; v2; : : : ; vr, we may suppose that it is

the unit r £ r matrix. Then, using automorphisms of E of the form id + f , where f arises
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from a homomorphism ~O ! ~O(1), we can make ¯1
ij = 0 for j µ a. Thus the remaining

part of coe±cients ¯k
ij form a matrix

M =

µ
M1 M2

0 M3

¶
(1)

where M1 is of size a £ a, M2 is of size a £ b and M3 is of size b £ b. We shall always

suppose that the bases v1; v2; : : : ; vr; w0
1; w0

2; : : : ; w0
a and w1

1; w1
2; : : : ; w1

b are chosen this

way and call M a de¯ning matrix of the pair (E ; V ). If M 0 is a de¯ning matrix for another

pair (E 0; V 0) and Á : (E ; V ) ! (E 0; V 0) is a morphism of pairs, let © = ©0 + ©1t be the

matrix of the homomorphism Á with respect to the bases w0
1; w0

2; : : : ; w0
a; w1

1; w1
2; : : : ; w1

b

of W and w00
1; w00

2; : : : ; w00
a0 ; w01

1; w01
2; : : : ; w01

b0 of W 0. Note that

©0 =

µ
S1 0

S2 S3

¶
and ©1 =

µ
0 0

S4 0

¶
(2)

where S1 is of size a0 £ a, S2 and S4 of size b0 £ a, and S3 of size b0 £ b, and the matrices

©0; ©1 uniquely de¯ne the morphism Á. The condition Á(V ) ³ V 0 means that

S1M1 = M 0
1S1 + M 0

2S2;

S1M2 = M 0
2S3; (3)

S3M3 + S2M2 = M 0
3S3:

On the contrary, if S1; S2; S3 satisfy equations 3, there exists a unique matrix S4 such

that the pair ©0; ©1 given by equations 2 arises from a uniquely de¯ned morphism Á :

(E ; V ) ! (E 0; V 0).

We consider the category of matrix triples M. Its objects are triples (M1; M2; M3)

as above and morphisms (M1; M2; M3) ! (M 0
1; M 0

2; M 0
3) are triples (S1; S2; S3) satisfying

conditions 3. A triple from M is called stable if it only has scalar endomorphisms. We

denote by Ms the full subcategory of stable triples. Then we get the following result.

Theorem 2.5. The category M is equivalent to the category VBc(C). Especially, the

category Ms is equivalent to the full subcategory VBs
c(C) » VBc(C) of stable vector

bundles.

We call the pair (a; b) the size of the triple M = (M1; M2; M3), the sum r = a + b the

rank of this triple and b the degree of this triple. Note that r coincides with the rank of

the corresponding vector bundle from VBc, while the actual degree of this vector bundle

is d = rc + b. Especially r; d are coprime if and only if so are a; b. We also call the matrix
µ

M1 M2

0 M3

¶

the de¯ning matrix corresponding to the triple M . It is indeed a de¯ning triple of a pair

(E ; V ) from the category Tc, and thus de¯nes a vector bundle F 2 VBc(C). Especially F
is stable if and only if so is the triple (M1; M2; M3).
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3 Proof of the main theorem

Theorem 2.5 shows that the main theorem 1.1 is equivalent to the following.

Theorem 3.1.

(1) There is a stable triple of size (a; b) if and only if a; b are coprime.

(2) For every pair (a; b) of coprime integers the moduli space T (a; b) of stable triples of

size (a; b) is isomorphic to the a±ne line A1.

Proof. Suppose that a triple M = (M1; M2; M3) is stable. If b = 0 (the same for a = 0),

we only have one matrix M1. If a > 1, there is a nonscalar matrix S1 commuting with

M1, hence de¯ning a non-trivial endomorphism of the triple. If a = 1, M1 = ¹ 2 k.

Hence, if either a or b is zero, then r = 1 and the moduli space is A1 (it coincides with

the Picard group Pic±(C)). We denote the corresponding vector bundle (actually line

bundle) from VBc(C) by F (1; c; ¹) (it is of degree c).

From now on we suppose that both a and b are non-zero. First of all we show that

rk M2 = min(a; b). Indeed, if rk M2 < min(a; b), there are invertible matrices S1; S3

such that both the ¯rst row and the last column of the matrix M 0
2 = S1M2S¡1

3 are zero.

Replacing M by an isomorphic triple, we may suppose that M2 = M 0
2. Then the triple

(Ia; S2; Ib), where S2 has only one non{zero element in the lower left corner, de¯nes a

nontrivial endomorphism, so M is not stable.

If a = b = rk M2, we can make M2 a unit matrix and M3 = 0. Then conditions 3 for

M = M 0 become S1 = S3; S2 = 0 and S1M1 = M1S1. If a > 1, one can easily ¯nd a

non-scalar matrix S1 such that these conditions hold, so M is not stable. If a = 1, S1 is

just an element from k, so M is stable. Moreover, one cannot change M3 (which is also

an element ¹ 2 k) without changing M2 and M1, so the stable triples of this shape are

(0; 1; ¹). they are of size (1; 1) and their moduli space is A1.

Suppose that a < b; then M2 can be chosen in the form (Ia 0). Using transformations

3, we can make M1 zero and transform M3 to the form

µ
N1 N2

0 N3

¶
; (4)

where N1; N2; N3 are of sizes, respectively, a £ a; a £ (b ¡ a); (b ¡ a) £ (b ¡ a). Moreover,

if a triple (S1; S2; S3) is a homomorphism of M to another triple M 0 of the same form,

with Ni replaced by N 0
i , one can check that S3 is of the form

S3 =

µ
T1 0

T2 T3

¶

such that

T1N1 = N 0
1T1 + N 0

2T2;

T1N2 = N 0
2T3;

T3N3 + T2N2 = N 0
3T3;
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S1 = T1 and the part S2 is also uniquely de¯ned by S3. Thus mapping a triple (N1; N2; N3)

of size (a; b ¡ a) to the triple

µ
0; (Ia 0);

µ
N1 N2

0 N3

¶¶

we get a full embedding M ! M, which induces a one-to-one correspondence between

stable triples of size (a; b ¡ a) and those of size (a; b). The same result can be obtained

if a > b: then we map a triple (N1; N2; N3) of size (a ¡ b; b) to the triple

µµ
N1 N2

0 N3

¶
;

µ
0

Ib

¶
; 0

¶
:

Therefore we are able to use induction on max(a; b), which immediately implies the claim

of the theorem.

Remark 3.2. One can easily check that the matrix problem given by the category M is

actually wild, hence so is also a description of all vector bundles from VBc(X).

Note that the proof above is e®ective, i.e. enables to get an explicit description of

stable vector bundles of any prescribed rank r and degree d (which must be coprime).

To do it, we have ¯rst to ¯nd a; b; c such that r = a + b; d = rc + b. It means that b is

the residue of d modulo r, c = [d=r] and a = r ¡ b. Having (a; b), suppose that a < b. If

a = 1, the canonical de¯ning matrix M(1; b; ¹) is

0

BBBB@

0 1 0 : : : 0 0

0 0 1 : : : 0 0

: : : : : : : : :
. . . : : : : : :

0 0 0 : : : 0 1

0 0 0 : : : 0 ¹

1

CCCCA
:

Let a > 1; b = qa + b0 with 0 < b0 < b. Subdivide the de¯ning matrix

µ
M1 M2

0 M3

¶

into a £ a blocks starting from the left upper corner; the last horizontal and vertical

stripes will be of width b0. Set all blocks zero, except those immediately over diagonal

and the last two diagonal blocks, and set all square blocks immediately over the diagonal,

except the last one, equal Ia, obtaining

0

BBBBBBB@

0 Ia 0 : : : 0 0 0

0 0 Ia : : : 0 0 0

: : : : : : : : :
. . . : : : : : : : : :

0 0 0 : : : 0 Ia 0

0 0 0 : : : 0 N1 N2

0 0 0 : : : 0 0 N3

1

CCCCCCCA
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(there are q + 2 horizontal and vertical stripes). If a > b = 1, the canonical de¯ning

matrix M(a; 1; ¹) is 0

BBBB@

¹ 1 0 : : : 0 0

0 0 1 : : : 0 0

: : : : : : : : :
. . . : : : : : :

0 0 0 : : : 0 1

0 0 0 : : : 0 0

1

CCCCA
:

If a > b > 1; a = qb + a0 with 0 < a0 < b, start from the lower right corner and make

b £ b blocks, obtaining 0

BBBBBBB@

N1 N2 0 : : : 0 0

0 N3 Ib : : : 0 0

0 0 0 : : : 0 0

: : : : : : : : :
. . . : : : : : :

0 0 0 : : : 0 Ib

0 0 0 : : : 0 0

1

CCCCCCCA

:

Here the ¯rst horizontal and vertical stripes are of width a0. Now pass to the triple

(N1; N2; N3) applying the same procedure, etc. The resulting triple is called the canonical

form of a stable triple of size (a; b), and its de¯ning matrix M = M(a; b; ¹) is called the

canonical de¯ning matrix. To obtain the corresponding vector bundle, consider the vector

bundle E = a ~O(c) © b ~O(c + 1) over ~C and take the O-subsheaf F = F (r; d; ¹) which

coincides with E outside p and is generated by the preimages of columns of the matrix

Ir + tM at the point p.

Example 3.3. Let a = 3; b = 11. The ¯rst step of reduction gives the matrix

0

BBBB@

0 I3 0 0 0

0 0 I3 0 0

0 0 0 I3 0

0 0 0 N1 N2

0 0 0 0 N3

1

CCCCA
;

the triple (N1; N2; N3) being of size (3; 2). The second step replaces

µ
N1 N2

0 N3

¶

by 0

@
L1 L2 0

0 L3 I2

0 0 0

1

A ;

where the triple (L1; L2; L3) is of size (1; 2). So we have to set

µ
L1 L2

0 L3

¶
=

0

@
0 1 0

0 0 1

0 0 ¹

1

A :
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Thus the canonical de¯ning matrix M(3; 11; ¹) is

·
M1 M2

0 M3

¸
=

2

666666666666666666666664

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0

0 0

0 0
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0

0 0

0 0
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 1 0

0 0 1

0 0 ¹

0 0

1 0

0 1
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0

0 0

3

777777777777777777777775

:

Here we keep lines showing the subdivision of the ¯rst step; double lines denotes the

original division of this matrix into M1; M2; M3. In the same way, the canonical de¯ning

matrix M(7; 4; ¹) is

2

666666666666666664

0 0 0

0 0 0

0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0
0 0 0

0 0 0

0 0 0

0 0 0

¹ 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

3

777777777777777775

:

We note also the following easy consequence of our reduction procedure, which is

useful, for instance, in calculating cohomologies.

Corollary 3.4. For every stable trip (M1; M2; M3) of size (a; b)

rk ( M1 M2 ) = a and rk

µ
M2

M3

¶
= b:

4 Cohomologies

Having an explicit description, we can calculate cohomologies of stable vector bundles

F (r; d; ¹).
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Theorem 4.1. The sheaves F = F (r; d; ¹) have the following dimensions of cohomolo-

gies:

dim H0(C; F ) =

8
<

:

d if d > 0;

1 if d = 0 and ¹ = 0,

0 otherwise.

(5)

dim H1(C; F ) =

8
<

:

¡ d if d < 0,

1 if d = 0 and ¹ = 0,

0 otherwise.

(6)

Proof. Note ¯rst that if F ; G are line bundles, then any non-zero homomorphism G ! F
is a monomorphism. Therefore, if Hom( G ; F ) 6= 0, necessarily, deg G µ deg F and if

these degrees coincide, then G ’ F . Recall also that dim Ext( G ; F ) = dim Hom(F ; G ).

Especially, if G = O, it gives

H0(F ) ’ Hom(O; F ) = 0 if deg F < 0 or deg F = 0 and F 6’ O;

H1(F ) ’ Ext(O; F ) = 0 if deg F > 0 or deg F = 0 and F 6’ O

for any line bundles F . Together with the Riemann{Roch theorem it implies the formulas

5 and 6 for line bundles, i.e. for the case when b = 0 or a = 0.

Suppose now that r > 1, hence a > 0; b > 0 and d 6= 0. The exact sequence

0 ! F ! ~F ! W=V ! 0 gives rise to the exact sequence of cohomologies

0 ! H0(F ) ! H0( ~F)
h¡ ! W=V ! H1(F ) ! H1( ~F) ! 0;

and dim W=V = r. Let ~F = a ~O(c) © b ~O(c + 1), then r = a + b; d = cr + b and

dim H0( ~F ) =

½
(c + 1)r + b if c ¶ ¡ 1,

0 if c < ¡ 1.

Note that d > 0 if and only if c = [d=r] ¶ 0. Let H be the image of H0( ~F ) in W =
~Fq=t2 ~Fq. If c ¶ 0, global sections generate ~F , so H = W and Im h = W=V , wherefrom

dim H0(F ) = cr+b = d. If c = ¡ 1, Corollary 3.4 easily implies that dim(H +V ) = a+2b,

so dim(Im h) = b and H0(F ) = 0. We have proven formula 5. Now the Riemann{Roch

theorem implies formula 6.
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