On Hom-Spaces of Tame Algebras*

Raymundo Bautista ${ }^{1 \dagger}$, Yuriy A. Drozd ${ }^{2 \ddagger}$,
Xiangyong Zeng ${ }^{38}$, Yingbo Zhang ${ }^{34}$
1 Instituto de Matemáticas, UNAM, Unidad Morelia, C.P. 58089, Morelia, Michoacán, México
2 Department of Mechanics and Mathematics, Kyiv Taras Shevchenko University, 01033 Kyiv, Ukraine
3 Department of Mathematics, Beijing Normal University, 100875 Beijing, People's Republic of China

Received 11 July 2006; accepted 9 November 2006

Abstract

Let Λ be a finite dimensional algebra over an algebraically closed field k and Λ has tame representation type. In this paper, the structure of Hom-spaces of all pairs of indecomposable Λ-modules having dimension smaller than or equal to a fixed natural number is described, and their dimensions are calculated in terms of a finite number of finitely generated Λ-modules and generic Λ-modules. In particular, such spaces are essentially controlled by those of the corresponding generic modules.

(c) Versita Warsaw and Springer-Verlag Berlin Heidelberg. All rights reserved.

Keywords: Generic module, infinite radical, bocs
MSC (2000): 16G20, 16G60, 16G70

[^0]
1 Introduction

Let Λ be a finite-dimensional k-algebra of tame representation type, k an algebraically closed field. We recall that Λ is of tame representation type if for all natural numbers d, there is a finite number of Λ - $k[x]$-bimodules M_{1}, \ldots, M_{n} which are free of finite rank as right $k[x]$-modules and such that if M is an indecomposable Λ-module of k-dimension equal to d, then $M \cong M_{i} \otimes_{k[x]} k[x] /(x-\lambda)$ for some $1 \leq i \leq n$ and $\lambda \in k$.

It is known from [6] that for each dimension d, almost all Λ-modules of dimension at most d are controlled by finitely many isomorphism classes of generic modules in the sense of (i) of Theorem 1.2. A question arises naturally: are Hom-spaces of Λ-modules also controlled by those of generic modules? In this paper, we will give a positive answer.

If G is a left Λ-module then G can be regarded as a left $\operatorname{End}_{\Lambda}(G)$-module, and we call its length as $\operatorname{End}_{\Lambda}(G)$-module, the endolength of G. We say that G is a generic module if it is indecomposable, of infinite dimension over k but finite endolength. We recall that if G is a generic Λ-module and R a commutative principal ideal domain which is finitely generated over k, then a realization of G over R is a finitely generated Λ - R-bimodule T such that if K is the quotient field of R, then $G \cong T \otimes_{R} K$ and $\operatorname{dim}_{K}\left(T \otimes_{R} K\right)$ is equal to the endolength of G.

As an example consider, $\Lambda=k Q$, the Kronecker algebra defined by quiver Q, then G is a generic module, and T is a realization of G over $R=k[x]$.

We denote by Λ-Mod the category of left Λ-modules, by Λ-mod the full subcategory of Λ-Mod consisting of the finite-dimensional Λ-modules, and by Λ-ind the full subcategory of Λ-mod consisting of the indecomposable Λ-modules.

We recall from Theorem 5.4 of [6] that if Λ is of tame representation type then given any generic Λ-module there is a good realization of G over some R in the sense of the following definition:

Definition 1.1. Let T be a realization of a generic module G over some R, then T is called a good realization if:
(i) T is free as right R-module;
(ii) the functor $T \otimes_{R}-: R$-Mod $\rightarrow \Lambda$-Mod preserves isomorphism classes and indecomposability;
(iii) if $p \in R$ is a prime, $n \geq 1$ and $S_{p, n}$ denotes the exact sequence

$$
0 \rightarrow R /\left(p^{n}\right) \xrightarrow{(p, \pi)} R /\left(p^{n+1}\right) \oplus R /\left(p^{n-1}\right) \xrightarrow{\binom{\pi}{-p}} R /\left(p^{n}\right) \rightarrow 0
$$

where π is the canonical projection, then $T \otimes_{R} S_{p, n}$ is an almost split sequence in Λ-mod.
We know from Theorem 4.6 of [6] that if G is a generic Λ-module then there is a splitting $\operatorname{End}_{\Lambda}(G)=k(x) \oplus \operatorname{radEnd}_{\Lambda}(G)$. This splitting induces a structure of left $\Lambda^{k(x)}=\Lambda \otimes_{k} k(x)$-module for G and such structure is called an admissible structure. The main aim of this paper is to prove of the following theorem:

Theorem 1.2. Let Λ be a finite-dimensional k-algebra of tame representation type, k an algebraically closed field. Let d be an integer greater than the dimension of Λ over k. Then there are generic Λ-modules G_{1}, \ldots, G_{s} with admissible structures of left $\Lambda^{k(x)}$ modules and good realizations T_{i} over some R_{i}, finitely generated localization of $k[x]$, of each G_{i} and indecomposable Λ-modules L_{1}, \ldots, L_{t} with $\operatorname{dim}_{k} L_{j} \leq d$ for $j=1, \ldots, t$ with the following properties:
(i) If M is an indecomposable left Λ-module with $\operatorname{dim}_{k} M \leq d$, then either $M \cong L_{j}$ for some $j \in\{1, \ldots, t\}$ or $M \cong T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$ for some $i \in\{1, \ldots, s\}$ some prime element $p \in R_{i}$ and some natural number m. If M is an indecomposable which is simple, projective or injective left Λ-module, then $M \cong L_{j}$ for some $j \in\{1, \ldots, t\}$.
(ii) If $M=T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right), N=T_{j} \otimes_{R_{j}} R_{j} /\left(q^{n}\right), L_{u}^{k(x)}=L_{u} \otimes_{k} k(x)$ with $i, j \in$ $\{1, \ldots, s\}, u \in\{1, \ldots, t\}, p$ a prime in R_{i}, q a prime in R_{j}, then

$$
\begin{aligned}
\operatorname{dim}_{k} \operatorname{rad}_{\Lambda}^{\infty}(M, N) & =m n \operatorname{dim}_{k(x)} \operatorname{rad}_{\Lambda^{k(x)}}\left(G_{i}, G_{j}\right), \\
\operatorname{dim}_{k} \operatorname{rad}_{\Lambda}^{\infty}\left(L_{u}, M\right) & =m \operatorname{dim}_{k(x)} \operatorname{rad}_{\Lambda^{k(x)}}\left(L_{u}^{k(x)}, G_{i}\right), \\
\operatorname{dim}_{k} \operatorname{rad}_{\Lambda}^{\infty}\left(M, L_{u}\right) & =m \operatorname{dim}_{k(x)} \operatorname{rad}_{\Lambda^{k(x)}}\left(G_{i}, L_{u}^{k(x)}\right)
\end{aligned}
$$

(iii) Suppose $M=T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right), N=T_{j} \otimes_{R_{j}} R_{j} /\left(q^{n}\right)$, then if $i=j, p=q$,

$$
\operatorname{Hom}_{\Lambda}(M, N) \cong \operatorname{Hom}_{R_{i}}\left(R_{i} /\left(p^{m}\right), R_{i} /\left(p^{n}\right)\right) \oplus \operatorname{rad}_{\Lambda}^{\infty}(M, N)
$$

And if $i \neq j$ or $(p) \neq(q)$:

$$
\operatorname{Hom}_{\Lambda}(M, N)=\operatorname{rad}_{\Lambda}^{\infty}(M, N) .
$$

Moreover, $\operatorname{Hom}_{\Lambda}\left(L_{u}, M\right)=\operatorname{rad}_{\Lambda}^{\infty}\left(L_{u}, M\right), \operatorname{Hom}_{\Lambda}\left(M, L_{u}\right)=\operatorname{rad}_{\Lambda}^{\infty}\left(M, L_{u}\right)$.
For the proof of our main result we first study layered bocses of tame representation type (see Theorem 9.2). For this we use the method of reduction functors $F: \mathcal{B}_{1^{-}}$ $\operatorname{Mod} \rightarrow \mathcal{B}_{2}$-Mod between the representation categories of two layered bocses \mathcal{B}_{1} and \mathcal{B}_{2} (see [5], [7] and section 7 of this paper). We prove that given a layered bocs \mathcal{A} of tame representation type and a dimension vector \mathbf{d} of \mathcal{A} there is a composition of reduction functors $F: \mathcal{B}$-Mod $\rightarrow \mathcal{A}$-Mod with \mathcal{B} a minimal bocs such that if $M \in \mathcal{A}$-Mod with $\operatorname{dim} M \leq \mathbf{d}$, then there is a $N \in \mathcal{B}-\operatorname{Mod}$ with $F(N) \cong M$. Observe that in Theorem A of [5] several minimal bocses are needed. In section 6 we study the Hom-spaces for minimal bocses. Consider now the category $P^{1}(\Lambda)$ of morphisms $f: P \rightarrow Q$ with P, Q projective Λ-modules and $f(P) \subset \operatorname{rad} Q$. There is a layered bocs $\mathcal{D}(\Lambda)$, the Drozd's bocs,
such that $\mathcal{D}(\Lambda)$-Mod is equivalent to $P^{1}(\Lambda)$. Using our results on Hom-spaces for minimal layered bocses we study the Hom-spaces in $P^{1}(\Lambda)$ obtaining a version of Theorem 1.2 for $P^{1}(\Lambda)$ (see Theorem 9.5). Finally, we use the relations between Hom-spaces in $P^{1}(\Lambda)$ and Λ-Mod collected in the results of sections 2 and 3.

2 Generalities

Here we state the general results needed in our work. We recall that an additive k-category \mathcal{R} is a Krull-Schmidt category if each object is a finite direct sum of indecomposable objects with local endomorphism rings. In this case, the indecomposable objects coincide with those having local endomorphism rings.

Let \mathcal{R} be a Krull-Schmidt category. A morphism $f: E \rightarrow M$ in \mathcal{R} is called irreducible if it is neither a retraction nor a section and for any factorization $f=v u$, either u is a section or v is a retraction.

A morphism $f: E \rightarrow M$ in \mathcal{R} is called right almost split if
(i) f is not a retraction;
(ii) if $g: X \rightarrow M$ is not a retraction, there is a $s: X \rightarrow E$ with $f s=g$.

Moreover, $f: E \rightarrow M$ a right almost split morphism is said to be minimal if $f u=f$ with $u \in \operatorname{End}_{\mathcal{R}}(E)$ implies u is an isomorphism.

One has the dual concepts for left almost split morphisms and minimal left almost split morphisms.

Remark. Any minimal right almost split morphism $f: E \rightarrow M$ is an irreducible morphism. Moreover if $X \neq 0, g: X \rightarrow M$ is an irreducible morphism iff there is a section $\sigma: X \rightarrow E$ with $f \sigma=g$.

In particular if $h: F \rightarrow M$ is also a minimal right almost split morphism there is an isomorphism $u: F \rightarrow E$ with $f u=h$.

Similar properties hold for minimal left almost split morphisms.
Definition 2.1. A pair of composable morphisms in \mathcal{R},

$$
M \xrightarrow{f} E \xrightarrow{g} N
$$

is said to be almost split if
(i) g is a minimal right almost split morphism;
(ii) f is a minimal left almost split morphism, and;
(iii) $g f=0$

In the following, we use the following notation. If $f: E \rightarrow M$ and $f^{\prime}: E^{\prime} \rightarrow M^{\prime}$ are morphisms in \mathcal{R}, a morphism from f to f^{\prime} is a pair (u, v) where $u: E \rightarrow E^{\prime}$ and $v: M \rightarrow M^{\prime}$ are morphisms such that $f^{\prime} u=v f$. If u, v are isomorphisms, we say that f and g are isomorphic. Similarly if $M \xrightarrow{f} E \xrightarrow{g} N, M^{\prime} \xrightarrow{f^{\prime}} E^{\prime} \xrightarrow{g^{\prime}} N^{\prime}$ are pairs of composable morphisms, a morphism from (f, g) into $\left(f^{\prime}, g^{\prime}\right)$ is a triple $\left(u_{1}, u_{2}, u_{3}\right)$ where $u_{1}: M \rightarrow M^{\prime}$,
$u_{2}: E \rightarrow E^{\prime}, u_{3}: N \rightarrow N^{\prime}$ are morphisms such that $u_{2} f=f^{\prime} u_{1}, u_{3} g=g^{\prime} u_{2}$. If u_{1}, u_{2}, u_{3} are isomorphisms we say that the pair (f, g) is isomorphic to the pair $\left(f^{\prime}, g^{\prime}\right)$. The pairs (f, g) and $\left(f^{\prime}, g^{\prime}\right)$ are equivalent if $M=M^{\prime}, N=N^{\prime}$ and there is an isomorphism from the first pair into the second one of the form $\left(1_{M}, u, 1_{N}\right)$.

If \mathcal{A} is an additive category with split idempotents a pair (i, d) of composable morphisms $X \xrightarrow{i} Y \xrightarrow{d} Z$ in \mathcal{A} is said to be exact if i is a kernel of d, and d is a cokernel of i. Let \mathcal{E} be a class of exact pairs closed under isomorphisms. The morphisms i and d appearing in a pair of \mathcal{E} are called an inflation and a deflation of \mathcal{E}, respectively.

We recall from [9] that the class \mathcal{E} is an exact structure for \mathcal{E} if the following axioms are satisfied:
E. 1 The composition of two deflations is a deflation.
E. 2 If $f: Z^{\prime} \rightarrow Z$ is a morphism in \mathcal{A} for each deflation $d: Y \rightarrow Z$ there is a morphism $f^{\prime}: Y^{\prime} \rightarrow Y$ and a deflation $d^{\prime}: Y^{\prime} \rightarrow Z^{\prime}$ such that $d f^{\prime}=f d^{\prime}$.
E. 3 Identities are deflations. If $d e$ is deflation, then so is d.
E. $3^{o p}$ Identities are inflations. If $j i$ is a inflation, then so is i.

If \mathcal{E} is an exact structure for \mathcal{A} then we denote by $\operatorname{Ext}_{\mathcal{A}}(X, Y)$ the equivalence class of the pairs $Y \xrightarrow{i} E \xrightarrow{d} X$ in \mathcal{E}. If \mathcal{A} is a k-category, $\operatorname{Ext}_{\mathcal{A}}(?,-)$ is a bifunctor from \mathcal{A} into the category of k-vector spaces, contravariant in the first variable and covariant in the second variable.

An object $X \in \mathcal{A}$ is called \mathcal{E}-projective if $\operatorname{Ext}_{\mathcal{A}}(X,-)=0$, and it is called \mathcal{E}-injective if $\operatorname{Ext}_{\mathcal{A}}(-, X)=0$.

Definition 2.2. An almost split pair $X \rightarrow Y \rightarrow Z$ in \mathcal{A} which is in \mathcal{E} is called an almost split \mathcal{E}-sequence.

As in the case of modules, one can prove that in the above definition, X and Z are indecomposables.

Now, consider $(\mathcal{A}, \mathcal{E})$ an exact category with \mathcal{A} a Krull-Schmidt k-category such that for $X, Y \in \mathcal{A}, \operatorname{dim}_{k} \operatorname{Hom}_{\mathcal{A}}(X, Y)$ is finite. Let \mathcal{C} be a full subcategory of \mathcal{A} having the following property:
(A) If X is an indecomposable object in \mathcal{C} there is a minimal left almost split morphism in $\mathcal{A}, f: X \rightarrow Y_{1} \oplus \ldots \oplus Y_{t}$ with $Y_{i} \in \mathcal{C}$.

We recall that a morphism $f: M \rightarrow N$ with M, N indecomposable objects in \mathcal{A} is called a radical morphism if f is not an isomorphism.

Proposition 2.3. Let \mathcal{C} be a full subcategory of \mathcal{A} with condition (A).
Suppose $h: M \rightarrow N$ is a morphism in \mathcal{A} with M, N indecomposable objects in \mathcal{C} such that $h=\sum h_{i}$, where each h_{i} is a composition of m radical morphisms between indecomposables in \mathcal{A}, then $h=\sum g_{j}$ with each g_{j} composition of m radical morphisms between indecomposables in \mathcal{C}.

Proof. By induction on m. If $m=1$ our assertion is trivial. Assume our assertion is
true for $m-1$. We may assume $h=s_{m} \cdots s_{1}$ with $s_{i}: M_{i} \rightarrow M_{i+1}, M_{j}$ indecomposable object of \mathcal{A} for $j=1, \ldots, m+1, M_{1}=M, M_{m+1}=N$. By (A), there is a left almost split morphism $M=M_{1} \xrightarrow{u} Y_{1} \oplus \ldots \oplus Y_{t}$ with $Y_{1}, \ldots, Y_{t} \in \mathcal{C}$. We have $u=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{t}\end{array}\right)$. Then there is $v=\left(v_{1}, \ldots, v_{t}\right): Y_{1} \oplus \ldots \oplus Y_{t} \rightarrow M_{2}$ with $v u=s_{1}=\sum_{i=1}^{t} v_{i} u_{i}$. Therefore,

$$
h=s_{m} \cdots s_{2} s_{1}=\sum_{i=1}^{t} s_{m} \cdots s_{2} v_{i} u_{i}
$$

Now, consider $g_{i}=s_{m} \cdots s_{2} v_{i}: Y_{i} \rightarrow N$ which is a composition of $m-1$ radical morphisms. Then, by induction hypothesis, each g_{i} is a sum of $m-1$ radical morphisms between indecomposables in \mathcal{C}. Consequently, h is a sum of compositions of m radical morphisms between objects in \mathcal{C}. This proves our claim.

We recall that an ideal of a k-category \mathcal{R} is a subfunctor of $\operatorname{Hom}_{\mathcal{R}}(-$, ?). If I, J are ideals of $\mathcal{R}, I J$ is the ideal such that for $X, Y \in \mathcal{R}, I J(X, Y)$ consists of sums of compositions $g f$ with $f \in J(X, Z), g \in I(Z, Y)$ for some $Z \in \mathcal{R}$. We denote by I^{2} the ideal $I I$ and, by induction, $I^{n}=I^{n-1} I$. For \mathcal{R} a Krull-Schmidt k-category we define the ideal $\operatorname{rad}_{\mathcal{R}}$ such that for X and Y indecomposable objects of $\mathcal{R}, \operatorname{rad}_{\mathcal{R}}(X, Y)=$ the morphisms which are not isomorphisms. The infinity radical is defined by

$$
\operatorname{rad}_{\mathcal{R}}^{\infty}=\bigcap_{n} \operatorname{rad}_{\mathcal{R}}^{n}
$$

Corollary 2.4. With the hypothesis of proposition 2.3, for $X, Y \in \mathcal{C}$,

$$
\operatorname{rad}_{\mathcal{C}}^{\infty}(X, Y)=\operatorname{rad}_{\mathcal{A}}^{\infty}(X, Y)
$$

Proof. We may assume X and Y are indecomposables. It follows from Proposition 2.3 that $\operatorname{rad}_{\mathcal{C}}^{m}(X, Y)=\operatorname{rad}_{\mathcal{C}}^{m}(X, Y)$ for all m. Hence,

$$
\operatorname{rad}_{\mathcal{C}}^{\infty}(X, Y)=\bigcap_{m} \operatorname{rad}_{\mathcal{C}}^{m}(X, Y)=\bigcap_{m} \operatorname{rad}_{\mathcal{A}}^{m}(X, Y)=\operatorname{rad}_{\mathcal{A}}^{\infty}(X, Y)
$$

Now, we recall the following definition of [5], section 2:
Definition 2.5. If $(\mathcal{A}, \mathcal{E})$ is an exact category with \mathcal{A} a Krull-Schmidt category, we say that it has almost split sequences if
i) for any indecomposable Z in \mathcal{A} there is a right almost split morphism $Y \rightarrow Z$ and a left almost split morphism $Z \rightarrow X$;
ii) for each indecomposable Z in \mathcal{A} which is not \mathcal{E}-projective, there is an almost split \mathcal{E}-sequence ending in Z, and for each indecomposable Z in \mathcal{A} which is not \mathcal{E}-injective, there is an almost split \mathcal{E}-sequence starting in Z.

Remark. If the exact category $(\mathcal{A}, \mathcal{E})$ has almost split sequences one can consider the valued Auslander-Reiten quiver of \mathcal{A} as in the case of the category of finitely generated modules over an artin algebra.

Proposition 2.6. Suppose $\left(\mathcal{A}, \mathcal{E}_{\mathcal{A}}\right)$ and $\left(\mathcal{B}, \mathcal{E}_{\mathcal{B}}\right)$ are two exact categories such that the first category has almost split sequences and $F: \mathcal{B} \rightarrow \mathcal{A}$ is a full and faithful functor sending $\mathcal{E}_{\mathcal{B}}$-sequences into $\mathcal{E}_{\mathcal{A}}$-sequences. Let $\left\{E_{i}\right\}_{i \in \mathbb{N}}$ be a set of pairwise non-isomorphic objects in \mathcal{B} which are not $\mathcal{E}_{\mathcal{B}}$-projectives, and almost split $\mathcal{E}_{\mathcal{B}}$-sequences:

$$
\begin{gathered}
\left(e_{1}\right): E_{1} \xrightarrow{f_{1}} E_{2} \xrightarrow{g_{1}} E_{1} \\
\left(e_{i}\right): E_{i} \xrightarrow{\binom{f_{i}}{g_{i-1}}} E_{i+1} \oplus E_{i} \xrightarrow{\left(g_{i}, f_{i-1}\right)} E_{i},
\end{gathered}
$$

for $i>1$. Then, if there is an almost split $\mathcal{E}_{\mathcal{A}^{-}}$sequence ending in $F\left(E_{1}\right)$ which is the image under F of a sequence in $\mathcal{E}_{\mathcal{B}}$, then the image $F\left(e_{i}\right)$ of the sequence e_{i} is an $\mathcal{E}_{\mathcal{A}}$-almost split sequence for all $i \in \mathbb{N}$.

Proof. There is a sequence in $\mathcal{E}_{\mathcal{B}},(a): M \xrightarrow{u} E \xrightarrow{v} E_{1}$ whose image under F is an almost split $\mathcal{E}_{\mathcal{A}}$-sequence. Since F is a full and faithful functor, then (a) is an almost split sequence. This implies that (a) is isomorphic to $\left(e_{1}\right)$. Therefore, the image under F of $\left(e_{1}\right)$ is isomorphic to the image under F of (a) which is an almost split sequence, and so, the image of $\left(e_{1}\right)$ under F is an almost split sequence.

Suppose that $F\left(e_{l}\right)$ is an almost split sequence for all $l \leq i$. By hypothesis, $\left(e_{i+1}\right)$ is a non-trivial $\mathcal{E}_{\mathcal{B}}$-sequence, since F is a full and faithful functor. Then $F\left(e_{i+1}\right)$ is a non-trivial $\mathcal{E}_{\mathcal{A}}$-sequence. Thus, $F\left(E_{i+1}\right)$ is not $\mathcal{E}_{\mathcal{A}}$-projective. Then there is an almost split sequence

$$
L_{i+1} \rightarrow M_{i+1} \rightarrow F\left(E_{i+1}\right)
$$

Here $F\left(e_{i}\right)$ is an almost split sequence. Then we have an almost split sequence:

$$
F\left(E_{i}\right) \rightarrow F\left(E_{i+1}\right) \oplus F\left(E_{i-1}\right) \rightarrow F\left(E_{i}\right),
$$

and so, we have an irreducible morphism $F\left(E_{i}\right) \rightarrow F\left(E_{i+1}\right)$. Therefore, $M_{i+1} \cong F\left(E_{i}\right) \oplus$ Y. Thus, we have an irreducible morphism $L_{i+1} \rightarrow F\left(E_{i}\right)$. This implies that $L_{i+1} \cong$ $F\left(E_{i+1}\right)$ or $L_{i+1} \cong F\left(E_{i-1}\right)$. But we have an almost split sequence starting and ending in $F\left(E_{i-1}\right)$. Therefore, if $L_{i+1} \cong F\left(E_{i-1}\right)$, then $F\left(E_{i+1}\right) \cong F\left(E_{i-1}\right)$ implies $E_{i+1} \cong E_{i-1}$, which is not the case, therefore $L_{i+1} \cong F\left(E_{i+1}\right)$. Then the socle of $\operatorname{Ext}_{\mathcal{A}}\left(F\left(E_{i+1}\right), F\left(E_{i+1}\right)\right)$ as $\operatorname{End}_{\mathcal{A}}\left(F\left(E_{i+1}\right)\right)$-module is simple. As previously stated, $F\left(e_{i+1}\right)$ is a non-zero element of the above socle, and; therefore, $F\left(e_{i+1}\right)$ is an almost split sequence.

3 The categories $P(\Lambda)$ and $P^{1}(\Lambda)$

Let Λ be a finite-dimensional algebra over an arbitrary field k. We denote by Λ-Proj the full subcategory of Λ-Mod whose objects are projective Λ-modules, and by Λ-proj, the
full subcategory of Λ-mod whose objects are projective Λ-modules.
Here Λ-proj has only a finite number of isoclasses of indecomposable objects, then for any indecomposable projective Λ-module P there are morphisms

$$
\rho(P): r(P) \rightarrow P, \quad \lambda(P): P \rightarrow l(P)
$$

such that they are a minimal right almost split in Λ-proj and a minimal left almost split in Λ-proj, respectively. Observe that $\rho(P)$ and $\lambda(P)$ are also a minimal right almost split and a minimal left almost split morphism, respectively, in the category Λ-Proj.

Denote by $P(\Lambda)$ the category whose objects are morphisms $X=f_{X}: P_{X} \rightarrow Q_{X}$, with $P_{X}, Q_{X} \in \Lambda$-Proj. The morphisms from X to Y, objects of $P(\Lambda)$, are pairs $u=\left(u_{1}, u_{2}\right)$ with $u_{1}: P_{X} \rightarrow P_{Y}, u_{2}: Q_{X} \rightarrow Q_{Y}$ such that $u_{2} f_{X}=f_{Y} u_{1}$. If $u=\left(u_{1}, u_{2}\right): X \rightarrow Y$ and $v=\left(v_{1}, v_{2}\right): Y \rightarrow Z$ are morphisms, its composition is defined by $v u=\left(v_{1} u_{1}, v_{2} u_{2}\right)$.

We denote by \mathcal{E} the class of pairs of composable morphisms $X \xrightarrow{u} Y \xrightarrow{v} Z$ such that the sequences of Λ-modules:

$$
\begin{aligned}
& 0 \rightarrow P_{X} \xrightarrow{u_{1}} P_{Y} \xrightarrow{v_{1}} P_{Z} \rightarrow 0 \\
& 0 \rightarrow Q_{X} \xrightarrow{u_{2}} Q_{Y} \xrightarrow{v_{2}} Q_{Z} \rightarrow 0
\end{aligned}
$$

are exact and then split exact.
Proposition 3.1. The pair $(P(\Lambda), \mathcal{E})$ is an exact category.
Proof. See [1].
For P any projective Λ-module consider $J(P)=\left(P \xrightarrow{i d_{P}} P\right), Z(P)=(P \xrightarrow{0} 0)$, $T(P)=(0 \xrightarrow{0} P)$. It is easy to see that the objects $J(P)$ and $T(P)$ are \mathcal{E}-projectives and the objects $J(P), Z(P)$ are \mathcal{E}-injectives. One can see without difficulty that the exact category $(P(\Lambda), \mathcal{E})$ has enough projectives and enough injectives.

Proposition 3.2. The indecomposable \mathcal{E}-projectives in $P(\Lambda)$ are the objects $J(P)$ and $T(P)$ for P indecomposable projective Λ-module.

The indecomposable \mathcal{E}-injectives in $P(\Lambda)$, are the objects $J(P)$ and $Z(P)$ for P indecomposable projective Λ-module.

We denote by $\overline{P(\Lambda)}$ the category having the same objects as $P(\Lambda)$ and morphisms those of $P(\Lambda)$ modulo the morphisms which factorizes through \mathcal{E}-injective objects.

We have a full and dense functor $\operatorname{Cok}: P(\Lambda) \rightarrow \Lambda$-Mod which in objects is given by $\operatorname{Cok}\left(f_{X}: P_{X} \rightarrow Q_{X}\right)=\operatorname{Coker} f_{X}$.

Proposition 3.3. The functor $\operatorname{Cok}: P(\Lambda) \rightarrow \Lambda$-Mod induces an equivalence $\overline{C o k}$: $\overline{P(\Lambda)} \rightarrow \Lambda$-Mod.

Proof. One can prove (see [1]) that if $f: X \rightarrow Y$ is a morphism in $P(\Lambda)$ then $\operatorname{Cok}(f)=0$ iff f factorizes through some \mathcal{E}-injective object in $P(\Lambda)$.

We consider now $p(\Lambda)$, the full subcategory of $P(\Lambda)$ whose objects are morphisms between finitely generated Λ-modules.

Proposition 3.4. The exact category $(p(\Lambda), \mathcal{E})$ has almost split \mathcal{E}-sequences.

Proof. See [1].
Now consider $P^{1}(\Lambda)$ the full subcategory of $P(\Lambda)$ whose objects are those $X=f_{X}$: $P_{X} \rightarrow Q_{X}$ with $\operatorname{Im}\left(f_{X}\right) \subset \operatorname{rad}\left(Q_{X}\right)$. We denote by \mathcal{E}_{1} the class of composable morphisms in $P^{1}(\Lambda)$ which are in \mathcal{E}. By $p^{1}(\Lambda)$ we denote the full subcategory of $P^{1}(\Lambda)$, whose objects are morphisms between finitely generated projective Λ-modules.

Proposition 3.5. The pair $\left(P^{1}(\Lambda), \mathcal{E}_{1}\right)$ is an exact category.
Proof. See [1].
For an indecomposable projective Λ-module P denote by $R(P)$ the object $\rho(P)$: $r(P) \rightarrow P$ and by $L(P)$ the object $\lambda(P): P \rightarrow l(P)$. Observe that P a left Λ-module is in Λ-proj if P is indecomposable and projective.

Lemma 3.6. The morphism

$$
\sigma(P)=\left(\rho(P), i d_{P}\right): R(P) \rightarrow J(P)
$$

is a minimal right almost split morphism in $P(\Lambda)$, the morphism

$$
\tau(P)=\left(i d_{P}, \lambda(P)\right): J(P) \rightarrow L(P)
$$

is a minimal left almost split morphism in $P(\Lambda)$.

Proposition 3.7. Suppose $u: X \rightarrow Y$ is a morphism in $P^{1}(\Lambda)$ such that $\operatorname{Cok}(u)=0$, then $u=g h$ with $h: X \rightarrow W, g: W \rightarrow Y$ and W a sum of objects of the form $Z(P)$ and $R(Q)$.

Proof. It follows from Proposition 3.3 and Lemma 3.6.

Proposition 3.8. The indecomposable \mathcal{E}_{1}-projectives in $P^{1}(\Lambda)$ are the objects $T(P)$ and $L(P)$ with P indecomposable projective Λ-module. The indecomposable \mathcal{E}_{1}-injectives are the objects $Z(P)$ and $R(P)$ with P an indecomposable projective Λ-module.

Proof. It follows from Proposition 3.2 and Lemma 3.6.
Proposition 3.9. For $X, Y \in P^{1}(\Lambda)$, there is an exact sequence

$$
0 \rightarrow \operatorname{Hom}_{P^{1}(\Lambda)}(X, Y) \xrightarrow{i} \operatorname{Hom}_{\Lambda}\left(P_{X}, P_{Y}\right) \oplus \operatorname{Hom}_{\Lambda}\left(Q_{X}, Q_{Y}\right)
$$

$$
\stackrel{\delta}{\rightarrow} \operatorname{rad}_{\Lambda}\left(P_{X}, Q_{Y}\right) \xrightarrow{\eta} \operatorname{Ext}_{P^{1}(\Lambda)}(X, Y) \rightarrow 0
$$

Proof. See Proposition 5.1 of [1].
Now, if $X=\left(P_{X} \xrightarrow{f_{X}} Q_{X}\right) \in P(\Lambda)$ choose some minimal projective cover $P_{2} \xrightarrow{g} P_{1} \xrightarrow{\eta}$ Kerh $\rightarrow 0$ with $h=D(\Lambda) \otimes f_{X}: D(\Lambda) \otimes_{\Lambda} P_{X} \rightarrow D(\Lambda) \otimes_{\Lambda} Q_{X}$. We put $\tau X=\left(P_{2} \xrightarrow{g} P_{1}\right)$.

Proposition 3.10. If X is an indecomposable which is not \mathcal{E}_{1}-projective in $p^{1}(\Lambda)$, then there is an almost split \mathcal{E}_{1}-sequence:

$$
\text { (1) } Y \rightarrow E \rightarrow X
$$

with $Y \cong \tau X$. Dually if Y is indecomposable non \mathcal{E}_{1}-injective, then there is an almost split \mathcal{E}_{1}-sequence (1).

Proof. See [10] for k a perfect field and [1] for the general case.

Proposition 3.11. For $X, Y \in p^{1}(\Lambda)$, there is an isomorphism of k-modules

$$
\operatorname{Ext}_{P^{1}(\Lambda)}(X, Y) \cong D \overline{\operatorname{Hom}}_{P^{1}(\Lambda)}(Y, \tau(X))
$$

Here $\overline{\operatorname{Hom}}_{p^{1}(\Lambda)}(Z, W)$ stands for the morphisms from Z to W modulo those morphisms which are factorized through \mathcal{E}_{1}-injectives objects.

Proof. It follows from Corollary 9.4 of [9].
As a consequence we obtain:

Proposition 3.12. (See [3] and [1]) For $X, Y \in p^{1}(\Lambda)$, there is an isomorphism of k-modules:

$$
\operatorname{Ext}_{P^{1}(\Lambda)}(X, Y) \cong D\left(\operatorname{Hom}_{\Lambda}(\operatorname{Cok}(Y), \operatorname{Dtr} \operatorname{Cok}(X)) / \mathcal{S}(\operatorname{Cok}(Y), \operatorname{Dtr}(\operatorname{Cok}(X)))\right.
$$

where $\mathcal{S}(M, N)$ are the morphisms which factorizes through semisimple Λ-modules.
Proposition 3.13. If $Y \xrightarrow{v} E \xrightarrow{u} X$ is an almost split sequence in $p(\Lambda)$ with $\operatorname{Cok}(Y) \neq 0$ and $\operatorname{Cok}(X) \neq 0$, then

$$
0 \rightarrow \operatorname{Cok}(Y) \xrightarrow{\operatorname{Cok}(v)} \operatorname{Cok}(E) \xrightarrow{\operatorname{Cok}(u)} \operatorname{Cok}(X) \rightarrow 0
$$

is an almost split sequence in Λ-mod. Moreover, if $\operatorname{Cok}(Y)$ is not a simple Λ-module, then the sequence $Y \xrightarrow{v} E \xrightarrow{u} X$ lies in $p^{1}(\Lambda)$.

Proof. For the first part of our statement see Proposition 5.6 of [1], for the second part see Theorem 2.6 of [10] and Proposition 5.7 of [1].

Suppose now that Λ is a basic finite-dimensional k-algebra, and $1_{\Lambda}=\sum_{i=1}^{n} e_{i}$ is a decomposition into pairwise orthogonal primitive idempotents. Moreover, assume that $\operatorname{dim}_{k}(\Lambda / \operatorname{rad} \Lambda) e_{i}=1$ for all $i=1, \ldots, n$. For $M \in \Lambda-\bmod$ we put

$$
\operatorname{dim} M=\left(\operatorname{dim}_{k} e_{1} M, \ldots, \operatorname{dim}_{k} e_{n} M\right)
$$

For $X=f_{X}: P_{X} \rightarrow Q_{X}$ an object in $p^{1}(\Lambda)$ we put

$$
\operatorname{dim} X=\left(\operatorname{dim}\left(P_{X} / \operatorname{rad} P_{X}\right), \operatorname{dim}\left(Q_{X} / \operatorname{rad} Q_{X}\right)\right) \in \mathbb{Z}^{2 n}
$$

In the following, we consider three bilinear forms defined on $\mathbb{Z}^{2 n}$:
For $\mathbf{x}=\left(x_{1}, \ldots, x_{n} ; x_{1}^{\prime}, \ldots, x_{n}^{\prime}\right), \mathbf{y}=\left(y_{1}, \ldots, y_{n} ; y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right)$, we put

$$
\begin{aligned}
& h_{\Lambda}(\mathbf{x}, \mathbf{y})=\sum_{i, j}\left(x_{i} y_{j}+x_{i}^{\prime} y_{j}^{\prime}\right) \operatorname{dim}_{k}\left(e_{i} \Lambda e_{j}\right)-\sum_{i, j} x_{i} y_{j}^{\prime} \operatorname{dim}_{k}\left(e_{i} \mathrm{rad} \Lambda e_{j}\right) \\
& s_{\Lambda}(\mathbf{x}, \mathbf{y})=\sum_{i=1}^{n} x_{i} y_{i}^{\prime}, \quad g_{\Lambda}(x, y)=\sum_{i, j}\left(x_{i} y_{j}+x_{i}^{\prime} y_{j}^{\prime}-x_{i} y_{j}^{\prime}\right)\left(\operatorname{dim}_{k} e_{i} \Lambda e_{j}\right) .
\end{aligned}
$$

Clearly $g_{\Lambda}(\mathbf{x}, \mathbf{y})=h_{\Lambda}(\mathbf{x}, \mathbf{y})-s_{\Lambda}(\mathbf{x}, \mathbf{y})$.
Proposition 3.14. For $X, Y \in p^{1}(\Lambda)$ we have:

$$
\text { (1) } \operatorname{dim}_{k} \operatorname{Hom}_{p^{1}(\Lambda)}(X, Y)-\operatorname{dim}_{k} \operatorname{Ext}_{p^{1}(\Lambda)}(X, Y)=h_{\Lambda}(\operatorname{dim} X, \operatorname{dim} Y) ;
$$

$(2) \operatorname{dim}_{k} \operatorname{Ext}_{p^{1}(\Lambda)}(X, Y)=\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}(\operatorname{Cok}(Y), \operatorname{Dtr} \operatorname{Cok}(X))-s_{\Lambda}(\operatorname{dim} X, \operatorname{dim} Y) ;$
$(3) \operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}(\operatorname{Cok}(Y), \operatorname{Dtr} \operatorname{Cok}(X))=\operatorname{dim}_{k} \operatorname{Hom}_{p^{1}(\Lambda)}(X, Y)-g_{\Lambda}(\operatorname{dim} X, \operatorname{dim} Y)$.
Proof. The part (1) follows from Proposition 3.9, part (2) follows from Proposition 3.12 and from the equalities:

$$
\begin{gathered}
\operatorname{dim}_{k} \mathcal{S}(\operatorname{Cok}(Y), \operatorname{Dtr} \operatorname{Cok}(X))=\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}(\operatorname{top} \operatorname{Cok}(Y), \operatorname{soc} \operatorname{Dtr} \operatorname{Cok}(X)) \\
=s_{\Lambda}(\operatorname{dim} X, \operatorname{dim} Y)
\end{gathered}
$$

Finally, (3) follows from (1) and (2).

4 Bocses

We recall that a coalgebra over a k-category A is an A-bimodule V endowed with two bimodule homomorphisms, a comultiplication $\mu: V \rightarrow V \otimes_{A} V$ and a counit $\epsilon: V \rightarrow A$, subject to the conditions

$$
\begin{aligned}
(\mu \otimes 1) \mu= & (1 \otimes \mu) \mu \\
(\epsilon \otimes 1) \mu=i_{l}, & (1 \otimes \epsilon) \mu=i_{r}
\end{aligned}
$$

with $i_{l}: V \cong A \otimes_{A} V$ and $i_{r}: V \cong V \otimes_{A} A$ the natural isomorphisms. Observe that A is a coalgebra over A with comultiplication $A \cong A \otimes_{A} A$ the natural isomorphism and the counit the identity morphism $i d_{A}: A \rightarrow A$.

A bocs is a pair $\mathcal{A}=(A, V)$ with A a skeletally small k-category and V a coalgebra over A.

The bocs (A, A) is called the principal bocs.
The category \mathcal{A}-Mod has the same objects as A-Mod, the covariant functors $A \rightarrow k$ Mod. Then, if M, N are in \mathcal{A}-Mod, a morphism in \mathcal{A}-Mod is given by an A-module morphism from $V \otimes_{A} M$ to N. The composition of $f: V \otimes_{A} M \rightarrow N$ and $g: V \otimes_{A} N \rightarrow L$ is given by the composition

$$
V \otimes_{A} M \xrightarrow{\mu \otimes 1} V \otimes_{A} V \otimes_{A} M \xrightarrow{1 \otimes f} V \otimes_{A} N \xrightarrow{g} L,
$$

the identity morphism for M in \mathcal{A}-Mod is given by the composition:

$$
V \otimes_{A} M \xrightarrow{\epsilon \otimes 1} A \otimes_{A} M \xrightarrow{\sigma} M
$$

where σ is given by $\sigma(a \otimes m)=a m$ for $a \in A, m \in M$. We identify A-Mod with (A, A)-Mod.

Suppose now $\mathcal{A}=(A, V)$ and $\mathcal{B}=(B, W)$ are two bocses, denote by $\epsilon_{V}, \mu_{V}, \epsilon_{W}$, μ_{W} the corresponding counits and comultiplications. A morphism of bocses $\theta: \mathcal{A} \rightarrow \mathcal{B}$ is a pair $\left(\theta_{0}, \theta_{1}\right)$ where $\theta_{0}: A \rightarrow B$ is a functor and $\theta_{1}: V \rightarrow{ }_{\theta_{0}} W_{\theta_{0}}$ is a morphism of $A-A$ bimodules such that

$$
\epsilon_{W} \theta_{1}=\theta_{0} \epsilon_{V}, \text { and } \quad \pi\left(\theta_{1} \otimes \theta_{1}\right) \mu_{V}=\mu_{W} \theta_{1},
$$

where π is the natural map $W \otimes_{A} W \rightarrow W \otimes_{B} W$. A morphism of bocses $\theta: \mathcal{A} \rightarrow \mathcal{B}$ induces a functor $\theta^{*}: \mathcal{B}$-Mod $\rightarrow \mathcal{A}$-Mod. For $M \in \mathcal{B}$-Mod we put $\theta^{*} M={ }_{\theta_{0}} M$ and if $f: W \otimes_{B} M \rightarrow N$ is a morphism in \mathcal{B} - Mod then $\theta^{*}(f)$ is the composition:

$$
V \otimes_{A}\left(\theta_{0} M\right) \xrightarrow{\theta_{1} \otimes 1} W \otimes_{A}\left(\theta_{0} M\right) \xrightarrow{\pi} W \otimes_{B} M \xrightarrow{f} N
$$

where π is the natural morphism.
Observe that if

$$
\mathcal{A} \xrightarrow{\left(\theta_{0}, \theta_{1}\right)} \mathcal{B} \xrightarrow{\left(\phi_{0}, \phi_{1}\right)} \mathcal{C}
$$

are morphisms of bocses then $\left(\phi_{0} \theta_{0}, \phi_{1} \theta_{1}\right)=\phi \theta: \mathcal{A} \rightarrow \mathcal{C}$ is a morphism of bocses. Clearly $(\phi \theta)^{*}=(\theta)^{*}(\phi)^{*}$.

Lemma 4.1. If $\theta=\left(\theta_{0}, \theta_{1}\right): \mathcal{A}=(A, V) \rightarrow \mathcal{B}=(B, W)$ is a morphism of bocses then

$$
(\theta)^{*}\left(1, \epsilon_{W}\right)^{*}=\left(1, \epsilon_{V}\right)^{*}\left(\theta_{0}, \theta_{0}\right)^{*}
$$

Proof. It follows from the definition of morphism of bocses and the above.
Let $\mathcal{A}=(A, V)$ be a bocs and A^{\prime} a subcategory of A with the same objects as A. A morphism $\omega: A^{\prime} \rightarrow{ }_{A^{\prime}} V_{A^{\prime}}$ of $A^{\prime}-A^{\prime}$ bimodules is said to be a grouplike of \mathcal{A} relative to
A^{\prime} if $(i, \omega):\left(A^{\prime}, A^{\prime}\right) \rightarrow \mathcal{A}$ is a morphism of bocses, where $i: A^{\prime} \rightarrow A$ is the inclusion. If the induced functor $(i, \omega)^{*}: \mathcal{A}$-Mod $\rightarrow A^{\prime}$-Mod reflects isomorphisms we say that ω is a reflector. If $\omega:_{A^{\prime}} A_{A^{\prime}}^{\prime} \rightarrow-{ }_{A^{\prime}} V_{A^{\prime}}$ is a grouplike we have that ω is completely determined by the elements $\omega_{X}=\omega\left(i d_{X}\right)$ for all $X \in \operatorname{ind} A^{\prime}$ such that $\mu\left(\omega_{X}\right)=\omega_{X} \otimes \omega_{X}$.

If $\mathcal{A}=(A, V)$ is a bocs $\bar{V}=\operatorname{Ker} \epsilon$ is called the kernel of \mathcal{A}. Then there is the following exact sequence of $A-A$ bimodules:

$$
0 \rightarrow \bar{V} \xrightarrow{\sigma} V \xrightarrow{\epsilon} A \rightarrow 0
$$

where σ is the inclusion.
We recall that if $\omega: A^{\prime} \rightarrow{ }_{A^{\prime}} V_{A^{\prime}}$ is a grouplike, it determines two morphisms δ_{1} : $A_{A^{\prime}} A_{A^{\prime}} \rightarrow{ }_{A^{\prime}} \bar{V}_{A^{\prime}}$ and $\delta_{2}:{ }_{A^{\prime}} \bar{V}_{A^{\prime}} \rightarrow{ }_{A^{\prime}} \bar{V} \otimes_{A} \bar{V}_{A^{\prime}}$, given for $a \in \operatorname{Hom}_{A}(X, Y)$ and $v \in V(X, Y)$ by :

$$
\delta_{1}(a)=a \omega_{X}-\omega_{Y} a, \quad \delta_{2}(v)=\mu(v)-\omega_{Y} \otimes v-v \otimes \omega_{X} .
$$

Observe that $\left(i d_{A}, \epsilon\right): \mathcal{A} \rightarrow(A, A)$ is a morphism of bocses. Therefore, it induces a functor $\left(i d_{A}, \epsilon\right)^{*}: A$-Mod $\rightarrow \mathcal{A}$-Mod. For $M \in A$ - $\operatorname{Mod},\left(i d_{A}, \epsilon\right)^{*}(M)=M$, and for $h: M \rightarrow N$ a morphism of A-modules $\left(i d_{A}, \epsilon\right)^{*} h: V \otimes{ }_{A} M \rightarrow N$ is given by $\left(i d_{A}, \epsilon\right)^{*}(h)(v \otimes m)=h(\epsilon(v) m)$ for $m \in M, v \in V$.

For $M \in \mathcal{A}$-Mod, $(i, \omega)^{*}(M)={ }_{A^{\prime}} M$ and if $f: V \otimes_{A} M \rightarrow N$ is a morphism in \mathcal{A}-Mod, $f^{0}=(i, \omega)^{*} f:{ }_{A^{\prime}} M \rightarrow{ }_{A^{\prime}} N$ is given by $f^{0}(m)=f\left(\omega_{X} \otimes m\right)$ for $m \in M(X)$.

Given $\mathcal{A}=(A, V)$ a bocs with a grouplike ω relative to some A^{\prime} subcategory of A, for any morphism, $f: V \otimes_{A} M \rightarrow N$ we have the morphisms $f^{0}=(i, \omega)^{*} f \in \operatorname{Hom}_{A^{\prime}}(M, N)$, $f^{1}=f(\sigma \otimes 1): \bar{V} \otimes_{A} M \rightarrow N$. The pair of morphisms $\left(f^{0}, f^{1}\right)$ satisfies the following property:

$$
\text { (A) } \quad f^{0}(a m)=a f^{0}(m)+f^{1}\left(\delta_{1}(a) \otimes m\right) .
$$

Now, for any object $Y \in A$ we have :

$$
\left(V \otimes_{A} M\right)(Y)=V(-, Y) \otimes_{A} M=\omega_{Y} \otimes M(Y) \oplus\left(\bar{V} \otimes_{A} M\right)(Y),
$$

therefore, a pair of morphisms $\left(f^{0}, f^{1}\right)$ with

$$
f^{0} \in \operatorname{Hom}_{A^{\prime}}(M, N) \quad \text { and } \quad f^{1} \in \operatorname{Hom}_{A}\left(\bar{V} \otimes_{A} M, N\right)
$$

which satisfies the condition (A) determines a morphism of A-modules $f: V \otimes_{A} M \rightarrow N$. Thus, any morphism $f: V \otimes_{A} M \rightarrow N$ is completely determined by the pair $\left(f^{0}, f^{1}\right)$ satisfying property (A). In the rest of the paper, we put $f=\left(f^{0}, f^{1}\right)$.

Proposition 4.2. If $f=\left(f^{0}, f^{1}\right): M \rightarrow N, g=\left(g^{0}, g^{1}\right): N \rightarrow L$ are morphisms in \mathcal{A}-Mod then $g f=\left(g^{0} f^{0},(g f)^{1}\right)$ with

$$
(g f)^{1}(v \otimes m)=g^{1}\left(v \otimes f^{0}(m)\right)+g^{0}\left(f^{1}(v \otimes m)\right)+\sum_{i} g^{1}\left(v_{i}^{1} \otimes f^{1}\left(v_{i}^{2} \otimes m\right)\right)
$$

where $v \in V, m \in M$ and $\delta_{2}(v)=\sum_{i} v_{i}^{1} \otimes v_{i}^{2}$.

Proof. It follows from the fact that $(i, \omega)^{*}$ is a functor and from the definitions.
Following [5], if A is a k-category a morphism $a \in A(X, Y)$ is called indecomposable if both X and Y are indecomposable objects of A. Similarly, if W is an A - A bimodule an element of W is an element $w \in W(X, Y)$ for some X, Y. In case both X and Y are indecomposable, w will be called indecomposable. If X and Y are objects of A, then we denote by $F_{X, Y}$ the $A-A$ bimodule given by

$$
F_{X, Y}=\operatorname{Hom}_{A}(-, X) \otimes_{k} \operatorname{Hom}_{A}(Y,-) .
$$

We say that the A - A bimodule W is freely generated by the elements $w_{i} \in W\left(X_{i}, Y_{i}\right), i=$ $1, \ldots, n$ if there is an isomorphism of $A-A$ bimodules

$$
\psi: F_{X_{1}, Y_{1}} \oplus \ldots \oplus F_{X_{n}, Y_{n}} \rightarrow W
$$

such that $\psi\left(i d_{X_{i}} \otimes i d_{Y_{i}}\right)=w_{i}$, for $i=1, \ldots, n$.
Now, suppose that A^{\prime} has the same objects as A, and T is an $A^{\prime}-A^{\prime}$-subimodule of ${ }_{A^{\prime}} A_{A^{\prime}}$, denote by $T^{\otimes n}$ the tensor product $T \otimes_{A^{\prime}} T \otimes_{A^{\prime}} \ldots \otimes_{A^{\prime}} T$ of n copies of T and set $T^{0}=A^{\prime}$. Then the direct sum of $A^{\prime}-A^{\prime}$-bimodules:

$$
T^{\otimes}=\bigoplus_{n=0}^{\infty} T^{\otimes n}
$$

can be regarded as a category with the same objects as A and product given by the natural isomorphisms $T^{\otimes n} \otimes_{A} T^{\otimes m} \rightarrow T^{\otimes m+n}$.

We recall from Definition 2.5 of [5] that if A^{\prime} has the same objects as A, we say that A is freely generated over A by morphisms a_{1}, \ldots, a_{n} in A if the a_{i} freely generate an $A^{\prime}-A^{\prime}$ subimodule T of ${ }_{A^{\prime}} A_{A^{\prime}}$ such that the functor $T^{\otimes} \rightarrow A$ induced by the inclusion of A^{\prime} and T in A is an isomorphism.

Definition 4.3. A k-category A is called minimal if it is skeletal and is equivalent to

$$
\bmod (k) \times \ldots \times \bmod (k) \times P\left(R_{1}\right) \times \ldots \times P\left(R_{n}\right)
$$

where $R_{i}=k\left[x, f_{i}(x)^{-1}\right]$ with $f_{i}(x)$ is a nonzero element of $k[x]$ and $P(R)$ denotes the category of finitely generated projective left R-modules. We denote by ind A the set of indecomposable objects of a minimal category A.

Definition 4.4. Let $\mathcal{A}=(A, V)$ be a bocs with kernel \bar{V}. A collection $L=\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n}\right.$; $\left.v_{1}, \ldots v_{m}\right)$, is a layer for \mathcal{A}, if
(L1) A^{\prime} is a minimal category;
(L2) A is freely generated over A^{\prime} by indecomposable elements a_{1}, \ldots, a_{n};
(L3) ω is a reflector for \mathcal{A} relative to A^{\prime};
(L4) \bar{V} is freely generated as an $A-A$ bimodule by indecomposable elements $v_{1}, \ldots v_{m}$;
(L5) let $\delta_{1}: A \rightarrow \bar{V}$ be the morphism induced by $\omega, A_{0}=A^{\prime}$ and for $i \in\{1, \ldots, n-1\}$, A_{i} the subcategory of A generated by A^{\prime} and $a_{1}, \ldots a_{i}$, then for any $0 \leq i<n, \delta_{1}\left(a_{i+1}\right)$ is contained in the $A_{i}-A_{i}$ subimodule of \bar{V} generated by $v_{1}, \ldots v_{m}$.

A bocs having a layer will be called layered.
Suppose $\mathcal{A}=(A, V)$ is a bocs with layer $L=\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots v_{m}\right)$. Throughout this paper, we denote by \mathcal{A}-mod the full subcategory of \mathcal{A}-Mod whose objects are representations M such that $\sum_{X \in \operatorname{ind} A^{\prime}} \operatorname{dim}_{k} M(X)<\infty$.

For \mathcal{A} as before we have

$$
\bar{V} \otimes_{A} M \cong \bigoplus_{v_{i}} A\left(-, Y_{i}\right) \otimes_{k} M\left(X_{i}\right)
$$

for $M \in A$-Mod. Thus, for $M, N \in A$-Mod we have an isomorphism:

$$
\phi_{M, N}: \bigoplus_{v_{i}} \operatorname{Hom}_{k}\left(M\left(X_{i}\right), N\left(Y_{i}\right)\right) \rightarrow \operatorname{Hom}_{A}\left(\bar{V} \otimes_{A} M, N\right) .
$$

Therefore, in this case a morphism $f: M \rightarrow N$ in \mathcal{A}-Mod is given by a pair of morphisms

$$
\left(f^{0}, \phi_{M, N}\left(f_{1}^{1}, \ldots, f_{m}^{1}\right)\right), f^{0} \in \operatorname{Hom}_{A^{\prime}}(M, N), f_{i}^{1} \in \operatorname{Hom}_{k}\left(M\left(X_{i}\right), N\left(Y_{i}\right)\right)
$$

$i=1, \ldots, m$ such that for all $a_{j}: X_{j} \rightarrow Y_{j}, j=1, \ldots, n$ and $u \in M\left(X_{j}\right)$

$$
f_{Y_{j}}^{0}\left(a_{j} u\right)=a_{j} f_{X_{j}}^{0}(u)+\phi_{M, N}\left(f_{1}^{1}, \ldots, f_{m}^{1}\right)\left(\delta_{1}\left(a_{j}\right) \otimes u\right)
$$

Observe that $\phi_{M, N}\left(f_{1}^{1}, \ldots, f_{m}^{1}\right)\left(v_{i} \otimes u\right)=f_{i}^{1}(u)$ for $u \in M\left(X_{i}\right), i=1, \ldots, m$.
Lemma 4.5. With the above notations, if $(f, 0): M \rightarrow N$ and $\left(h^{0}, \phi_{N, L}\left(h_{1}, \ldots, h_{m}\right)\right): N \rightarrow L$ are morphisms in $\mathcal{A}-\operatorname{Mod}$ then:

$$
\left(h^{0}, \phi_{N, L}\left(h_{1}, \ldots, h_{m}\right)\right)(f, 0)=\left(h^{0} f, \phi_{M, L}\left(g_{1}, \ldots, g_{m}\right)\right) \quad \text { with } \quad g_{i}=h_{i} f_{X_{i}} .
$$

Similarly, if $\left(h^{0}, \phi_{M, N}\left(h_{1}, \ldots, h_{m}\right)\right): M \rightarrow N,(f, 0): N \rightarrow L$ are morphisms in \mathcal{A}-Mod, then:

$$
(f, 0)\left(h^{0}, \phi_{M, N}\left(h_{1}, \ldots, h_{m}\right)\right)=\left(f h^{0}, \phi_{M, N}\left(g_{1}, \ldots, g_{m}\right)\right), \quad \text { with } \quad g_{i}=f_{Y_{i}} h_{i}
$$

In later sections we need the following.
Definition 4.6. Let $\mathcal{A}=(A, V)$ be a bocs with layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$. Then a sequence of morphisms in \mathcal{A}-Mod,

$$
M \xrightarrow{f} E \xrightarrow{g} N
$$

is called proper exact if $g f=0$ and the sequence of morphisms

$$
0 \rightarrow M \xrightarrow{(i, \omega)^{*} f} E \xrightarrow{(i, \omega)^{*} g} N \rightarrow 0
$$

in A^{\prime}-Mod is exact. An almost split sequence in \mathcal{A}-mod which is also a proper exact sequence is called a proper almost split sequence.

Definition 4.7. With the notation of Definition 4.6 an indecomposable object $X \in A^{\prime}$ is called marked if $A^{\prime}(X, X) \neq k i d_{X}$.

5 Hom-spaces of Minimal Bocses

We recall from [5] that a minimal bocs is a bocs $\mathcal{A}=(A, V)$ with layer

$$
L=\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)
$$

such that $A^{\prime}=A$. Therefore in this case the a_{1}, \ldots, a_{n} do not appear.
Throughout this section, $\mathcal{B}=(B, W)$ is a minimal bocs with layer

$$
L=\left(B ; \omega ; w_{1}, \ldots, w_{m}\right), \quad \text { where } \quad w_{i} \in \bar{W}\left(X_{i}, Y_{i}\right) .
$$

For $M, N \in \mathcal{B}$-Mod we put $\operatorname{Hom}_{\mathcal{B}}(M, N)^{1}=\left\{f: M \rightarrow N \mid(1, \omega)^{*}(f)=0\right\}$.
Proposition 5.1. Let $\mathcal{B}=(B, W)$ be a minimal bocs and $\epsilon: W \rightarrow B$ the counit of W. Then for $M, N \in \mathcal{B}$-Mod we have

$$
\operatorname{Hom}_{\mathcal{B}}(M, N)=(1, \epsilon)^{*}\left(\operatorname{Hom}_{B}(M, N)\right) \oplus \operatorname{Hom}_{\mathcal{B}}(M, N)^{1} .
$$

Proof. We have $(1, \epsilon)^{*}(1, \omega)^{*} \cong i d_{B \text {-Mod }}$.
Observe that if we have any pair of morphisms $\left(f, \phi_{M, N}\left(h_{1}, \ldots, h_{m}\right)\right)$ with $f \in \operatorname{Hom}_{B}(M, N)$, $h_{i} \in \operatorname{Hom}_{k}\left(M\left(X_{i}\right), N\left(Y_{i}\right)\right)$ where $w_{i}: X_{i} \rightarrow Y_{i}$, this pair is a morphism from M to N in \mathcal{B}-Mod, because in a minimal bocs $\delta_{1}=0$ and condition (A) before Proposition 4.2 is trivially satisfied. Then we have:

Corollary 5.2. For $M, N \in \mathcal{B}-\bmod$:

$$
\operatorname{dim}_{k} \operatorname{Hom}_{\mathcal{B}}^{1}(M, N)=\sum_{w_{i}} \operatorname{dim}_{k} \operatorname{Hom}_{k}\left(M\left(X_{i}\right), N\left(Y_{i}\right)\right) .
$$

The morphisms in the image of $(1, \epsilon)^{*}$ have the form $(f, 0)$ where the morphism f is in $\operatorname{Hom}_{B}(M, N)$.

Lemma 5.3. (Compare Definition 3.8 in [5]) Let M, N be two objects in \mathcal{B}-Mod, then $M \cong N$ in \mathcal{B}-Mod iff $M \cong N$ in B-Mod.

Proof. If $h: M \rightarrow N$ is an isomorphism in \mathcal{B}-Mod then $(1, \omega)^{*}(h)$ is an isomorphism in B-Mod. Conversely, if $g: M \rightarrow N$ is an isomorphism in B-Mod then $(1, \epsilon)^{*}(g)$ is an isomorphism in \mathcal{B}-Mod.

Clearly, Lemma 5.3 implies that indecomposable objects in B-Mod and \mathcal{B}-Mod coincide.

We have $B\left(Z, Z^{\prime}\right)=0$ for $Z \neq Z^{\prime} \in \operatorname{ind} B$ and for $Z \in \operatorname{ind} B, B(Z, Z)=R_{Z}=$ $k\left[x, h(x)^{-1}\right] i d_{Z}$ with $h(x) \in k[x]$ or $B(Z, Z)=k i d_{Z}$. Take M an indecomposable object in B-mod, then there is only one $Z \in \operatorname{ind} B$ such that $M(Z) \neq 0$. Here M is a covariant
functor of B into k-Mod, $M(Z)$ is a left $R_{Z^{-}}$module. Therefore if $B(Z, Z)=R_{Z} \neq k i d_{Z}$, $M(Z) \cong R_{Z} /\left(p^{n}\right)$ with $p=x-\lambda$ a prime element in R_{Z}, if $B(Z, Z)=k i d_{Z}, M(Z)=k$.

For $Z \in \operatorname{ind} B$ with $B(Z, Z)=R_{Z} \neq k i d_{Z}$ and $p=x-\lambda$, a prime element in R_{Z} we define $M(Z, p, n) \in B-\operatorname{Mod}$ by

$$
M(Z, p, n)(W)=0 \quad \text { for } \quad W \neq Z, W \in \operatorname{ind} B, \quad M(Z, p, n)(Z)=R_{Z} /\left(p^{n}\right)
$$

If $B(Z, Z)=k i d_{Z}$ we define $S_{Z} \in B-\bmod$ by

$$
S_{Z}(W)=0 \quad \text { for } \quad W \neq Z, W \in \operatorname{ind} B, \quad S_{Z}(Z)=k
$$

Lemma 5.4. If M is an indecomposable object in $B-\bmod$ then $M \cong M(Z, p, n)$ or $M \cong S_{Z}$ for some $Z \in \operatorname{ind} B$.

Lemma 5.5. Let $(f, 0): M \rightarrow N$ be a morphism in \mathcal{B}-Mod such that for all $Z \in \operatorname{ind} B$, $f_{Z}: M(Z) \rightarrow N(Z)$ is surjective. Then if $h: L \rightarrow N$ is a morphism in \mathcal{B}-Mod with $(1, \omega)^{*}(h)=0$, there is a morphism $g: L \rightarrow M$ in $\mathcal{B}-\operatorname{Mod}$ with $(f, 0) g=h$.

Proof. Take $h: L \rightarrow N$ with $(1, \omega)^{*}(h)=0$, then $h=\left(0, \phi_{L, N}\left(h_{1}, \ldots, h_{m}\right)\right)$. We may assume that there is a j with $0 \neq h_{j} \in \operatorname{Hom}_{k}\left(M\left(X_{j}\right), N\left(Y_{j}\right)\right)$ and $h_{i}=0$ for $i \neq j$.

We have that $f_{Y_{j}}: M\left(Y_{j}\right) \rightarrow N\left(Y_{j}\right)$ is an epimorphism. Consequently, there is a k-linear map $\sigma: N\left(Y_{j}\right) \rightarrow M\left(Y_{j}\right)$ with $f_{Y_{j}} \sigma=i d_{N\left(Y_{j}\right)}$. Take now $g_{j}=\sigma h_{j} \in$ $\operatorname{Hom}_{k}\left(L\left(X_{j}\right), M\left(Y_{j}\right)\right)$, and $0=g_{i} \in \operatorname{Hom}_{k}\left(L\left(X_{i}\right), M\left(Y_{i}\right)\right)$, for $i \neq j$. Take now the morphism

$$
g=\left(0, \phi_{L, M}\left(g_{1}, \ldots, g_{m}\right)\right): L \rightarrow M
$$

then by Lemma $4.5(f, 0) g=\left(0, \phi_{L, N}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right)$ with $\lambda_{i}=f_{Y_{i}} g_{i}$. Therefore, $\lambda_{i}=0$ for $i \neq j$ and $\lambda_{j}=f_{Y_{j}} g_{j}=f_{Y_{j}} \sigma h_{j}=h_{j}$. Consequently, $(f, 0) g=\left(0, \phi_{L, N}\left(\lambda_{1}, \ldots, \lambda_{m}\right)\right)=$ $\left(0, \phi_{L, N}\left(h_{1}, \ldots, h_{m}\right)\right)=h$.

Similarly, we have the dual version of the above result.
Lemma 5.6. Let $(f, 0): M \rightarrow N$ be a morphism in \mathcal{B}-Mod such that for all $Z \in \operatorname{ind} B$, $f_{Z}: M(Z) \rightarrow N(Z)$ is an injection. Then if $u: M \rightarrow L$ is a morphism with $(1, \omega)^{*}(u)=0$ there is a morphism $v: N \rightarrow L$ with $v(f, 0)=u$.

For $Z, Z^{\prime} \in \operatorname{ind} B$ we denote by $t\left(Z, Z^{\prime}\right)$ the number of $w_{i} \in \bar{W}\left(Z, Z^{\prime}\right)$.
Lemma 5.7. Suppose M, N are indecomposable objects in $\mathcal{B}-\bmod$ with $M(Z) \neq 0, N\left(Z^{\prime}\right) \neq$ $0, Z, Z^{\prime} \in \operatorname{ind} B$. Then

$$
\operatorname{dim}_{k} \operatorname{Hom}_{\mathcal{B}}(M, N)^{1}=t\left(Z, Z^{\prime}\right) \operatorname{dim}_{k} M(Z) \operatorname{dim}_{k} N\left(Z^{\prime}\right)
$$

Proof. It follows from Corollary 5.2.

Lemma 5.8. If M, N are indecomposable objects in \mathcal{B}-mod, then

$$
\operatorname{rad}_{\mathcal{B}}^{\infty}(M, N) \subset \operatorname{Hom}_{\mathcal{B}}(M, N)^{1} .
$$

Proof. Suppose there is a $h \in \operatorname{rad}_{\mathcal{B}}^{\infty}(M, N)$ with $(1, \omega)^{*}(h) \neq 0$. Then there is a $Z \in \operatorname{ind} B$ with $M(Z) \neq 0, N(Z) \neq 0$. Since $(1, \omega)^{*}$ reflects isomorphisms, then $(1, \omega)^{*}(h)$ is not an isomorphism. Consequently, $B(Z, Z)=R_{Z} \neq \operatorname{kid}_{Z}$ and $M \cong M(Z, p, m), N \cong$ $M(Z, p, n)$.

Here $\operatorname{rad}_{B}^{\infty}(M, N) \cong \operatorname{rad}_{R_{Z}}^{\infty}\left(R_{Z} /\left(p^{m}\right), R_{Z} /\left(p^{n}\right)\right)=0$. Then there is a s with $\operatorname{rad}_{B}^{s}(M, N)=$ 0.

On the other hand, there is a chain of non-isomorphisms between indecomposables:

$$
M \xrightarrow{f_{1}} X_{1} \xrightarrow{f_{2}} X_{2} \rightarrow \ldots \rightarrow X_{s-1} \xrightarrow{f_{s}} N
$$

with $g=(1, \omega)^{*}\left(f_{s} \cdots f_{2} f_{1}\right) \neq 0$.
But $g=(1, \omega)^{*}\left(f_{s}\right) \cdots(1, \omega)^{*}\left(f_{1}\right) \in \operatorname{rad}_{B}^{s}(M, N)=0$, a contradiction. This proves our claim.

Consider $M=M(Z, p, m), N=M(Z, p, n)$ indecomposables in B-mod. If f : $R_{Z} /\left(p^{m}\right) \rightarrow R_{Z} /\left(p^{n}\right)$ is a morphism of R_{Z}-modules, we put $u(f): M \rightarrow N$ given by $u(f)_{Z}=f$ and $u(f)_{W}=0$ for $W \neq Z$.

Proposition 5.9. Let M, N be indecomposables in $\mathcal{B}-\bmod$ with $M(Z) \neq 0$ or $N(Z) \neq 0$ for some $Z \in \operatorname{ind} B$ with $B(Z, Z) \neq k i d_{Z}$, then

$$
\operatorname{rad}_{\mathcal{B}}^{\infty}(M, N)=\operatorname{Hom}_{\mathcal{B}}(M, N)^{1}
$$

Proof. By Lemma 5.8, it is enough to prove that if $f: M \rightarrow N$ is a morphism in \mathcal{B}-mod with $(1, \omega)^{*}(f)=0$ then $f \in \operatorname{rad}_{\mathcal{B}}^{\infty}(M, N)$. Suppose $M(Z) \neq 0$ with $B(Z, Z)=R_{Z} \neq$ $i d_{Z} k$. Then we may assume $M=M(Z, p, m)$. Take any natural number n. Consider the monomorphism $i_{l}: R_{Z} /\left(p^{l}\right) \rightarrow R_{Z} /\left(p^{l+1}\right)$ given by $i_{l}\left(\eta_{l}(a)\right)=\eta_{l+1}(p a)$ for $a \in R_{Z}$ and η_{j} : $R_{Z} \rightarrow R_{Z} /\left(p^{j}\right)$ the quotient map. Take $(u, 0)=\left(u\left(i_{n+m-1}\right), 0\right) \ldots\left(u\left(i_{m+1}\right), 0\right)\left(u\left(i_{m}\right), 0\right):$ $M(Z, p, m) \rightarrow M(Z, p, m+n)$. Here $u_{Z}: M(Z, p, m)(Z) \rightarrow M(Z, p, m+n)(Z)$ is a monomorphism . By Lemma 5.6, there is a morphism $t: M(Z, p, m+n) \rightarrow N$ in \mathcal{B}-Mod such that $t(u, 0)=f$.

Now, $(u, 0) \in \operatorname{rad}_{\mathcal{B}}^{n}(M, M(Z, p, m+n))$, and, therefore, $f=t(u, 0) \in \operatorname{rad}_{\mathcal{B}}^{n}(M, N)$ for all n, then $f \in \operatorname{rad}_{\mathcal{B}}^{\infty}(M, N)$.

For the case in which $N(Z) \neq 0$ with $B(Z, Z) \neq k i d_{Z}$ one proceeds in a similar way.

Corollary 5.10. If M, N are indecomposable objects in \mathcal{B}-mod, and $Z, Z^{\prime} \in \operatorname{ind} B$ with $M(Z) \neq 0, N\left(Z^{\prime}\right) \neq 0$, and $B(Z, Z) \neq \operatorname{kid}_{Z}$ or $B\left(Z^{\prime}, Z^{\prime}\right) \neq k i d_{Z^{\prime}}$, then

$$
\operatorname{dim}_{k} \operatorname{rad}_{\mathcal{B}}^{\infty}(M, N)=\operatorname{dim}_{k} M(Z) \operatorname{dim}_{k} N\left(Z^{\prime}\right) t\left(Z, Z^{\prime}\right) .
$$

Corollary 5.11. Let $M=M(Z, p, m), N=M\left(Z^{\prime}, q, n\right), S=S_{W}$ be indecomposables in $\mathcal{B}-\bmod$, with $B(Z, Z) \neq \operatorname{kid}_{Z}, B\left(Z^{\prime}, Z^{\prime}\right) \neq \operatorname{kid}_{Z^{\prime}}, B(W, W)=k i d_{W}$. Then if $Z=Z^{\prime}$, $p=q$,

$$
\operatorname{Hom}_{\mathcal{B}}(M, N) \cong \operatorname{Hom}_{B}(M, N) \oplus \operatorname{rad}_{\mathcal{B}}^{\infty}(M, N),
$$

with $\operatorname{dim}_{k}\left(\operatorname{Hom}_{B}(M, N)\right)=\min \{m, n\}$.
And if $Z \neq Z^{\prime}$ or $Z=Z^{\prime}$, and $(p) \neq(q)$

$$
\operatorname{Hom}_{\mathcal{B}}(M, N)=\operatorname{rad}_{\mathcal{B}}^{\infty}(M, N) .
$$

Moreover,

$$
\operatorname{Hom}_{\mathcal{B}}(M, S)=\operatorname{rad}_{\mathcal{B}}^{\infty}(M, S) \quad \text { and } \quad \operatorname{Hom}_{\mathcal{B}}(S, M)=\operatorname{rad}_{\mathcal{B}}^{\infty}(S, M)
$$

Lemma 5.12. If $0 \rightarrow M \xrightarrow{f^{0}} E \xrightarrow{g^{0}} N \rightarrow 0$ is a short exact sequence in B-Mod, then the pair of morphisms in \mathcal{B}-Mod, $M \xrightarrow{\left(f^{0}, 0\right)} E \xrightarrow{\left(g^{0}, 0\right)} N$ is an exact pair of morphisms.

Proof. We claim that $f=\left(f^{0}, 0\right)$ is a kernel of $\left(g^{0}, 0\right)$. Assume there is a morphism $u=\left(u^{0}, u^{1}\right)=\left(u^{0}, 0\right)+\left(0, u^{1}\right): L \rightarrow E$ such that $g u=\left(g^{0} u^{0},(g u)^{1}\right)=0$. Here $g^{0} u^{0}=0$, then there is a unique morphism in B-Mod, $v^{0}: L \rightarrow M$ with $f^{0} v^{0}=u^{0}$. Now, $u^{1}=\phi_{L, E}\left(u_{1}, \ldots, u_{m}\right)$, with $u_{i}: L\left(X_{i}\right) \rightarrow E\left(Y_{i}\right)$ where $w_{i} \in \bar{W}\left(X_{i}, Y_{i}\right)$. Then $(g u)^{1}=\phi_{L, N}\left(g_{Y_{1}}^{0} u_{1}, \ldots, g_{Y_{m}}^{0} u_{m}\right)$. Therefore, for $i=1, \ldots, m, g_{Y_{i}}^{0} u_{i}=0$. Thus, there are linear maps $v_{i}: L\left(X_{i}\right) \rightarrow M\left(Y_{i}\right)$ with $f_{Y_{i}}^{0} v_{i}=u_{i}$ for $i=1, \ldots, m$. Then taking $v=\left(v^{0}, \phi_{L, M}\left(v_{1}, \ldots, v_{m}\right)\right)$ we have $f v=u$. Clearly v is unique with this property. This proves our claim. In a similar way one can prove that g is a cokernel of f.

Lemma 5.13. Suppose (a) : $M \xrightarrow{f} E \xrightarrow{g} N$ is a proper exact sequence in \mathcal{B}-Mod. Then (a) is isomorphic to the sequence: $M \xrightarrow{\left(f^{0}, 0\right)} E \xrightarrow{\left(g^{0}, 0\right)} N$.

Proof. By Lemma 5.5 and its proof, there is a morphism $u=\left(0, u^{1}\right): E \rightarrow E$ such that $\left(g^{0}, 0\right) u=\left(0, g^{1}\right)$. Then $\left(g^{0}, 0\right)\left(1_{E}, u^{1}\right)=g$, with $\sigma=\left(1_{E}, u^{1}\right)$ an isomorphism. Thus, $\left(g^{0}, 0\right) \sigma f=g f=0$. But by the above Lemma, $\left(f^{0}, 0\right)$ is a kernel of $\left(g^{0}, 0\right)$, then there is a morphism $\lambda=\left(\lambda^{0}, \lambda^{1}\right): M \rightarrow M$ with $\left(f^{0}, 0\right) \lambda=\sigma f$. Here $f^{0} \lambda^{0}=f^{0}$, since f^{0} is a monomorphism then $\lambda^{0}=1_{M}$. Therefore, $\lambda: M \rightarrow M$ is an isomorphism. This proves our claim.

From Lemma 5.12 and Lemma 5.13, we deduce that proper exact sequences are exact pairs of morphisms. Denote by \mathcal{E}_{p} the class of proper exact sequences in \mathcal{B}-Mod, then we have the following.

Proposition 5.14. The pair $\left(\mathcal{B}-\operatorname{Mod}, \mathcal{E}_{p}\right)$ is an exact category.
Proof. Observe first that $g=\left(g^{0}, g^{1}\right): E \rightarrow M$ is a deflation if and only if g^{0} is an epimorphism. In fact, if g is a deflation, by definition of proper exact sequence g^{0} is an
epimorphism. Conversely, suppose g^{0} is an epimorphism, then as in the proof of Lemma 5.5 there is an isomorphism $\tau: E \rightarrow E$ such that $\left(g^{0}, 0\right)=g \tau$. Taking $f^{0}: N \rightarrow E$ the kernel of g^{0} in B-Mod, we see that $\left(g^{0}, 0\right)$ is a deflation, thus g is a deflation too. Similarly, one can prove that $f: N \rightarrow E$ is an inflation if and only if f^{0} is a monomorphism. From this, it is clear that conditions E.1, E. 3 and E. $3^{o p}$ hold. For proving E.2, assume $g: E \rightarrow N$ is a deflation and $h: L \rightarrow N$ is an arbitrary morphism. Then we have the morphism $(g, h): E \oplus L \rightarrow N$. Now, $(g, h)=\left(\left(g^{0}, h^{0}\right),\left(g^{1}, h^{1}\right)\right)$, here g^{0} is an epimorphism, then $\left(g^{0}, h^{0}\right)$ is also an epimorphism, thus (g, h) is a deflation, therefore it has a kernel, $M \xrightarrow{u} E \oplus L$. Take $u_{1}: M \rightarrow E$ equal to u composed with the projection on E and $-u_{2}: M \rightarrow L$, the composition of u with the projection on L. Now, one can see that u_{2} is a deflation and $g u_{1}=h u_{2}$. Therefore, E. 2 holds.

Let Z_{1}, \ldots, Z_{s} be all marked objects in ind B. For $i=1, \ldots, s$ take $R_{i}=B\left(Z_{i}, Z_{i}\right)$ and the B - R_{i}-bimodule $B_{i}=B\left(Z_{i},-\right)$. Then if p is a prime element of R_{i} and n a positive integer, $M\left(Z_{i}, p, n\right) \cong B_{i} \otimes_{R_{i}} R_{i} /\left(p^{n}\right)$. We denote by $S_{p, n}^{i}$ the exact sequence in R_{i}-mod:

$$
0 \rightarrow R_{i} /\left(p^{n}\right) \xrightarrow{(p, \pi)}\left(\left(R_{i} /\left(p^{n+1}\right) \oplus R_{i} /\left(p^{n-1}\right)\right) \xrightarrow{\binom{\pi}{-p}} \quad R /\left(p^{n}\right) \rightarrow 0\right.
$$

Proposition 5.15. The sequence $B_{i} \otimes_{R_{i}} S_{p, n}^{i}$:

$$
\begin{aligned}
& B_{i} \otimes_{R_{i}} R_{i} /\left(p^{n}\right) \xrightarrow{i d \otimes(p, \pi)} B_{i} \otimes_{R_{i}}\left(\left(R_{i} /\left(p^{n+1}\right) \oplus R_{i} /\left(p^{n-1}\right)\right)\right. \\
& i d \otimes\binom{\pi}{-p} \\
& \xrightarrow{ } B_{i} \otimes_{R_{i}} R_{i} /\left(p^{n}\right)
\end{aligned}
$$

is a proper almost split sequence in \mathcal{B}-mod.
Proof. The sequence $S_{p, n}^{i}$ is an almost split sequence in R_{i}-mod. Now, using Lemma 5.5 and Lemma 5.6 one can prove that $B_{i} \otimes_{R_{i}} S_{p, n}^{i}$ is a proper almost split sequence.

6 Hom-spaces between \mathcal{A} - $k(x)$-bimodules

Let $\mathcal{A}=(A, V)$ be a bocs with layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$. We recall from [6] that an \mathcal{A} - $k(x)$-bimodule is an object $M \in \mathcal{A}$-Mod with a morphism $\alpha_{M}: k(x) \rightarrow \operatorname{End}_{\mathcal{A}}(M)$. If M and N are \mathcal{A} - $k(x)$-bimodules, a morphism $f: M \rightarrow N$ in \mathcal{A}-Mod is a morphism of \mathcal{A} - $k(x)$-bimodules if for all $q \in k(x), f \alpha_{M}(q)=\alpha_{N}(q) f$.

We denote by $\mathcal{A}-k(x)$-Mod the category whose objects are the $\mathcal{A}-k(x)$-bimodules and the morphisms are morphisms of $\mathcal{A}-k(x)$-bimodules. If $F: \mathcal{B}-\operatorname{Mod} \rightarrow \mathcal{A}$-Mod is a functor with \mathcal{A}, \mathcal{B} layered bocses, then F induces a functor $F^{k(x)}: \mathcal{B}-k(x)-\operatorname{Mod} \rightarrow \mathcal{A}-k(x)$-Mod. If
M is a \mathcal{B} - $k(x)$-bimodule, with $\alpha_{M}: k(x) \rightarrow \operatorname{End}_{\mathcal{B}}(M)$ then $F(M)$ is an \mathcal{A} - $k(x)$-bimodule with $\alpha_{F(M)}=F \alpha_{M}: k(x) \rightarrow \operatorname{End}_{\mathcal{A}}(F(M))$. Observe that if $f: M \rightarrow N$ is a morphism of \mathcal{B} - $k(x)$-bimodules, then $F(f)$ is a morphism of $\mathcal{A}-k(x)$-bimodules. Now, if F is full and faithful then $F(f): F(M) \rightarrow F(N)$ is a morphism of $\mathcal{A}-k(x)$-bimodules if and only if for all $q \in k(x), F(f) F\left(\alpha_{M}(q)\right)=F\left(\alpha_{N}(q)\right) F(f)$ and this is true if and only if $f \alpha_{M}(q)=\alpha_{N}(q) f$ for all $q \in k(x)$. Thus, F induces a full and faithful functor

$$
F^{k(x)}: \mathcal{B}-k(x)-\operatorname{Mod} \rightarrow \mathcal{A}-k(x)-\operatorname{Mod}
$$

The \mathcal{A} - $k(x)$-bimodule M is called proper if there is a $\beta_{M}: k(x) \rightarrow \operatorname{End}_{A}(M)$ such that $\alpha_{M}=(1, \epsilon)^{*} \beta_{M}$, thus $\alpha_{M}(q)=\left(\beta_{M}(q), 0\right)$ for all $q \in k(x)$. Observe that if M is a proper $\mathcal{A}-k(x)$-bimodule then M is an $A-k(x)$-bimodule. We denote by $\mathcal{A}-k(x)-\operatorname{Mod}^{p}$, the full subcategory of $\mathcal{A}-k(x)$-Mod whose objects are the proper bimodules. Suppose $\theta: \mathcal{A} \rightarrow \mathcal{B}$ is a morphism of bocses with $\epsilon_{\mathcal{B}}$ the counit of \mathcal{B} and $\epsilon_{\mathcal{A}}$ the counit of \mathcal{A}, then $\theta^{*}: \mathcal{B}$-Mod $\rightarrow \mathcal{A}$-Mod is a full and faithful functor. Observe that if M is a proper \mathcal{B} - $k(x)$-bimodule then $\alpha_{M}=\left(1, \epsilon_{\mathcal{B}}\right)^{*} \beta_{M}$ with $\beta_{M}: k(x) \rightarrow \operatorname{End}_{B}(M)$. Then $\theta^{*}(M)$ is a $\mathcal{A}-k(x)$-bimodule, using Lemma 4.1 we have

$$
\alpha_{\theta^{*}(M)}=\left(\theta_{0}, \theta_{1}\right)^{*}\left(1, \epsilon_{\mathcal{B}}\right)^{*} \beta_{M}=\left(1, \epsilon_{\mathcal{A}}\right)^{*}\left(\theta_{0}, \theta_{0}\right)^{*} \beta_{M},
$$

thus $\theta^{*}(M)$ is a proper $\mathcal{B}-k(x)$-bimodule, consequently θ^{*} induces a full and faithful functor $\left(\theta^{*}\right)^{k(x)}: \mathcal{B}-k(x)-\operatorname{Mod}^{p} \rightarrow \mathcal{A}-k(x)-\operatorname{Mod}^{p}$.

Proposition 6.1. Let M, N be proper \mathcal{A} - $k(x)$-bimodules. Then $f=\left(f^{0}, \phi_{M, N}\left(f_{1}, \ldots, f_{m}\right)\right): M \rightarrow N$ is a morphism of $\mathcal{A}-k(x)$-bimodules if and only if f^{0} is a morphism of $A^{\prime}-k(x)$-bimodules and $f_{i} \in \operatorname{Hom}_{k(x)}\left(M\left(X_{i}\right), N\left(Y_{i}\right)\right)$ for all $v_{i} \in \bar{V}\left(X_{i}, Y_{i}\right)$.

Proof. We have that M and N are proper bimodules so, $\alpha_{M}(q)=\left(\beta_{M}(q), 0\right)$ and $\alpha_{N}(q)=\left(\beta_{N}(q), 0\right)$ with morphisms of k-algebras $\beta_{M}: k(x) \rightarrow \operatorname{End}_{A}(M)$ and $\beta_{N}:$ $k(x) \rightarrow \operatorname{End}_{A}(N)$. Then a morphism $f: M \rightarrow N$ in \mathcal{A}-Mod is a morphism of $\mathcal{A}-k(x)$ bimodules if and only if $f \alpha_{M}(q)=\alpha_{N}(q) f$ for all $q \in k(x)$. Then, by Proposition 4.2, the above holds if and only if $f^{0} \beta_{M}(q)=\beta_{N}(q) f^{0}$ for all $q \in k(x)$, and for all v_{i} and all $q \in k(x), u \in M\left(X_{i}\right): \beta_{N}(q) \phi_{M, N}\left(f_{1}, \ldots, f_{m}\right)\left(v_{i} \otimes u\right)=\phi_{M, N}\left(f_{1}, \ldots, f_{m}\right)\left(v_{i} \otimes \beta_{M}(q)(u)\right)$. Using the relations given in Lemma 4.5, we obtain that the latter equality is equivalent to $\beta_{N}(q) f_{i}(u)=f_{i}\left(\beta_{M}(q)(u)\right)$. From here we obtain our result.

Corollary 6.2. Let $\mathcal{B}=(B, W)$ be a minimal bocs with layer $\left(B ; \omega_{B} ; w_{1}, \ldots, w_{m}\right)$, with $w_{i} \in \bar{W}\left(X_{i}, Y_{i}\right)$. Then if M and N are proper $\mathcal{B}-k(x)$-bimodules we have:

$$
\operatorname{Hom}_{\mathcal{B}-k(x)}(M, N) \cong \operatorname{Hom}_{B-k(x)}(M, N) \oplus \bigoplus_{i} \operatorname{Hom}_{k(x)}\left(M\left(X_{i}\right), N\left(Y_{i}\right)\right)
$$

Let $\mathcal{B}=(B, W)$ be a minimal bocs with layer $\left(B ; \omega ; w_{1}, \ldots, w_{m}\right)$, for Z a marked object in ind B we define $Q_{Z} \in \mathcal{B}$-Mod as follows: $Q_{Z}(Z)=k(x)$ where $B(Z, Z)=$ $k\left[x, f(x)^{-1}\right] i d_{Z}$ and the action of x on $Q_{Z}(Z)$ is the multiplication by $x, Q_{Z}(W)=0$ for
$Z \neq W$. The action of $k(x)$ is the multiplication on the right by the elements of $k(x)$. Here Q_{Z} is a proper \mathcal{B} - $k(x)$-bimodule. Using the notation of section 5, we have as a consequence of the above corollary:

Corollary 6.3. If Z, Z^{\prime} are marked objects and W is a non-marked object in $\operatorname{ind} B$, write $S_{W}^{k(x)}=S_{W} \otimes_{k} k(x)$. We have:

$$
\operatorname{dim}_{k(x)} \operatorname{Hom}_{\mathcal{B}-k(x)}\left(Q_{Z}, Q_{Z^{\prime}}\right)=\delta\left(Z, Z^{\prime}\right)+t\left(Z, Z^{\prime}\right)
$$

where $\delta\left(Z, Z^{\prime}\right)=1$ if $Z=Z^{\prime}$ and zero otherwise. Moreover

$$
\begin{aligned}
& \operatorname{dim}_{k(x)}\left(\operatorname{rad}_{\mathcal{B}-k(x)}\left(Q_{Z}, S_{W}^{k(x)}\right)\right)=t(Z, W), \\
& \operatorname{dim}_{k(x)}\left(\operatorname{rad}_{\mathcal{B}-k(x)}\left(S_{W}^{k(x)}, Q_{Z}\right)\right)=t(W, Z) .
\end{aligned}
$$

Corollary 6.4. With the notations in Corollary 6.3 we have :

$$
\begin{gathered}
\operatorname{Hom}_{\mathcal{B}-k(x)}\left(Q_{Z}, Q_{Z^{\prime}}\right)=k(x) \oplus \operatorname{rad}_{\mathcal{B}-k(x)}\left(Q_{Z}, Q_{Z^{\prime}}\right) \quad \text { when } \quad Z=Z^{\prime} \\
\operatorname{Hom}_{\mathcal{B}-k(x)}\left(Q_{Z}, Q_{Z^{\prime}}\right)=\operatorname{rad}_{\mathcal{B}-k(x)}\left(Q_{Z}, Q_{Z^{\prime}}\right) \quad \text { when } \quad Z \neq Z^{\prime} .
\end{gathered}
$$

Moreover:

$$
\begin{aligned}
& \operatorname{Hom}_{\mathcal{B}-k(x)}\left(Q_{Z}, S_{W}^{k(x)}\right)=\operatorname{rad}_{\mathcal{B}-k(x)}\left(Q_{Z}, S_{W}^{k(x)}\right), \\
& \operatorname{Hom}_{\mathcal{B}-k(x)}\left(S_{W}^{k(x)}, Q_{Z}\right)=\operatorname{rad}_{\mathcal{B}-k(x)}\left(S_{W}^{k(x)}, Q_{Z}\right) .
\end{aligned}
$$

From the above corollaries, we obtain the next proposition.
Proposition 6.5. Let $\mathcal{B}=(B, W)$ be a minimal bocs with layer $\left(B ; \omega ; w_{1}, \ldots, w_{m}\right)$. Suppose Z, Z^{\prime}, and W are objects in ind B with $B(W, W)=i d_{W} k, B(Z, Z) \neq i d_{Z} k$, $B\left(Z^{\prime}, Z^{\prime}\right) \neq i d_{Z^{\prime}} k$. Take $M=M(Z, p, m), N=M\left(Z^{\prime}, q, n\right), L=S_{W}$ with p, q prime elements in $B(Z, Z)$ and $B\left(Z^{\prime}, Z^{\prime}\right)$, respectively. Then

$$
\begin{gathered}
\operatorname{dim}_{k} \operatorname{rad}_{\mathcal{B}}^{\infty}(M, N)=m n\left(\operatorname{dim}_{k(x)} \operatorname{Hom}_{\mathcal{B}-k(x)}\left(Q_{Z}, Q_{Z^{\prime}}\right)-\delta\left(Z, Z^{\prime}\right)\right) ; \\
\operatorname{dim}_{k} \operatorname{rad}_{\mathcal{B}}^{\infty}(M, L)=m \operatorname{dim}_{k(x)} \operatorname{rad}_{\mathcal{B}-k(x)}\left(Q_{Z}, L^{k(x)}\right) ; \\
\operatorname{dim}_{k} \operatorname{rad}_{\mathcal{B}}^{\infty}(L, M)=m \operatorname{dim}_{k(x)} \operatorname{rad}_{\mathcal{B}-k(x)}\left(L^{k(x)}, Q_{Z}\right) .
\end{gathered}
$$

$7 \quad \mathcal{D}$-isolated Objects

Let $\mathcal{A}=(A, V)$ be a bocs with layer $L=\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$. We recall that an object $X \in \operatorname{ind} A^{\prime}$ is called marked if $A^{\prime}(X, X) \neq k i d_{X}$, we denote by $m\left(A^{\prime}\right)$, the set of marked objects of A^{\prime}. For $M \in \mathcal{A}$-mod we define its dimension vector

$$
\operatorname{dim} M: \operatorname{ind} A^{\prime} \rightarrow \mathbb{N} \quad \text { by } \quad \operatorname{dim} M(X)=\operatorname{dim}_{k} M(X)
$$

By $\operatorname{Dim} \mathcal{A}$ we denote the set of functions $\mathbf{d}: \operatorname{ind} A^{\prime} \rightarrow \mathbb{N}$. If $\mathbf{d}, \mathbf{d}^{\prime} \in \operatorname{Dim} \mathcal{A}$ we have $\mathbf{d}+\mathbf{d}^{\prime}$, defined by $\left(\mathbf{d}+\mathbf{d}^{\prime}\right)(X)=\mathbf{d}(X)+\mathbf{d}^{\prime}(X)$ for all $X \in \operatorname{ind} A^{\prime}$. The norm of $\mathbf{d} \in \operatorname{Dim} \mathcal{A}$ is defined by $\|\mathbf{d}\|=\sum_{i=1}^{n} \mathbf{d}\left(X_{i}\right) \mathbf{d}\left(Y_{i}\right)+\sum_{X \in m\left(A^{\prime}\right)} \mathbf{d}(X)^{2}$, where $a_{i}: X_{i} \rightarrow Y_{i}$. For $M \in \mathcal{A}$ \bmod we define the norm of $M,\|M\|=\|\operatorname{dim} M\|$.

If $\mathbf{d} \in \operatorname{Dim}(\mathcal{A})$ we define $|\mathbf{d}|=\sum_{X \in \text { ind } A^{\prime}} \mathbf{d}(X)$. For $M \in \mathcal{A}$-mod, we put $|M|=$ $|\operatorname{dim} M|$ which is called the dimension of M.

Take $\theta: A \rightarrow B$ a functor with B a skeletally small category, the induced bocs $\mathcal{A}^{B}=(B, W)$ is given as follows: $W=B \otimes_{A} V \otimes_{A} B$ with counit

$$
\epsilon_{B}: W \rightarrow B
$$

given by $\epsilon_{B}\left(b_{1} \otimes v \otimes b_{2}\right)=b_{1} \theta(\epsilon(v)) b_{2}$ for b_{1}, b_{2} morphisms in $B, v \in V$. The coproduct

$$
\mu_{B}: W \rightarrow W \otimes_{B} W
$$

is given by $\mu_{B}\left(b_{1} \otimes v \otimes b_{2}\right)=\sum_{i} b_{1} \otimes v_{i}^{1} \otimes 1 \otimes 1 \otimes v_{i}^{2} \otimes b_{2}$, where b_{1}, b_{2} are morphisms in B and $v \in V$ with $\delta(v)=\sum_{i} v_{i}^{1} \otimes v_{i}^{2}$.

There is a morphism of A - A-bimodules

$$
\theta_{1}: V \rightarrow W
$$

given by $\theta_{1}(v)=1 \otimes v \otimes 1$, for $v \in V$. Then we obtain a morphism of bocses $\left(\theta, \theta_{1}\right)$: $\mathcal{A} \rightarrow \mathcal{A}^{B}$ which induces a full and faithful functor $\theta^{*}: \mathcal{A}^{B}-\operatorname{Mod} \rightarrow \mathcal{A}$-Mod.

Assume \mathcal{A}^{B} has layer

$$
L^{\theta}=\left(B^{\prime} ; \omega^{\prime} ; b_{1}, \ldots, b_{n^{\prime}} ; w_{1}, \ldots, w_{m^{\prime}}\right) .
$$

There is an additive function $t^{\theta}: \operatorname{Dim}\left(\mathcal{A}^{B}\right) \rightarrow \operatorname{Dim}(\mathcal{A})$, given by $t^{\theta}(\mathbf{d})(X)=\sum_{j} \mathbf{d}\left(Y_{j}\right)$ with $\theta(X)=\bigoplus_{j} Y_{j}, Y_{j} \in \operatorname{ind} B^{\prime}$. We have $\operatorname{dim} \theta^{*}(M)=t^{\theta}(\operatorname{dim} M)$, for $M \in \mathcal{A}^{B}-\bmod$.

Following [6], we say that that the bocs $\mathcal{A}=(A, V)$ with counit $\epsilon: V \rightarrow A$ and layer $L=\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$ is of wild representation type or simply wild if there is a functor $F: A \rightarrow \Sigma$, where Σ are the finitely generated free $k\langle x, y\rangle$-modules such that the induced functor:

$$
(F, F \epsilon)^{*}: \Sigma-\operatorname{Mod} \rightarrow \mathcal{A}-\operatorname{Mod}
$$

preserves isomorphism classes and indecomposables.
From [7], we know that a layered bocs $\mathcal{A}=(A, V)$ which is not of wild representation type is of tame representation type. This is, for each natural number d, there are a finite number of $A-k[x]$-bimodules M_{1}, \ldots, M_{s} free of finite rank as right $k[x]$-modules, and such that every indecomposable M in \mathcal{A}-Mod with $|\operatorname{dim} M| \leq d$ is isomorphic to $M_{i} \otimes_{k[x]} k[x] /(x-\lambda)$ for some $1 \leq i \leq s$ and $\lambda \in k$.

This section is devoted to find some subset \mathcal{D} of $\operatorname{Dim} \mathcal{A}$ with \mathcal{A} a bocs of tame representation type such that the marked indecomposable objects of A become \mathcal{D}-isolated objects in the sense of Definition 7.4. For this we need the following specific functors (see section 4 of [5]):

1. Regularization. Suppose $a_{1}: X_{1} \rightarrow Y_{1}$ with $\delta\left(a_{1}\right)=v_{1}$. Then B is freely generated by A^{\prime} and a_{2}, \ldots, a_{n}. The functor $\theta: A \rightarrow B$ is the identity on $A^{\prime}, \theta\left(a_{1}\right)=0, \theta\left(a_{i}\right)=a_{i}$ for $i=2, \ldots, n$. The bocs $\mathcal{A}^{B}=(B, W)$ has layer $\left(A^{\prime} ; \omega_{B} ; a_{2}, \ldots, a_{n} ; \theta_{1}\left(v_{2}\right), \ldots, \theta_{1}\left(v_{m}\right)\right)$.

The functor $\theta^{*}: \mathcal{A}^{B}$ - $\operatorname{Mod} \rightarrow \mathcal{A}$-Mod is an equivalence of categories, $\operatorname{Dim}\left(\mathcal{A}^{B}\right)=$ $\operatorname{Dim}(\mathcal{A})$ and $t^{\theta}=i d$. In this case $\left\|t^{\theta}(\mathbf{d})\right\| \geq\|\mathbf{d}\|$, and one has the equality if and only if $\mathbf{d}\left(X_{1}\right) \mathbf{d}\left(Y_{1}\right)=0$.
2. Deletion of objects. Let C be a subcategory of A. Let B^{\prime} be the full subcategory of A^{\prime} whose objects have no non-zero direct summand isomorphic to a direct summand of an object of C. Take I_{0} the set of $i \in\{1, \ldots, n\}$ such that $a_{i} \in A\left(X_{i}, Y_{i}\right)$ with X_{i}, Y_{i} in B^{\prime}, and I_{1} the set of $j \in\{1, \ldots, m\}$ such that $v_{j} \in V\left(X_{j}, Y_{j}\right)$ with X_{j}, Y_{j} in B^{\prime}. Then B is freely generated by B^{\prime} and the a_{i} with $i \in I_{0}$. The functor $\theta: A \rightarrow B$ is the identity on B^{\prime} and $\theta(X)=0$ for all $X \in C$. The bocs \mathcal{A}^{B} has layer $\left(B^{\prime} ; \omega_{B} ;\left(a_{i}\right)_{i \in I_{0}} ;\left(\theta_{1}\left(v_{j}\right)\right)_{j \in I_{1}}\right)$. Here $M \in \mathcal{A}$-Mod is isomorphic to some $\theta^{*}(N)$ if and only if $M(X)=0$ for all X indecomposable objects of C. The function $t^{\theta}: \operatorname{Dim}\left(\mathcal{A}^{B}\right) \rightarrow \operatorname{Dim}(\mathcal{A})$ is an inclusion, $\mathrm{d} \in \operatorname{Dim}(\mathcal{A})$ is in the image of t^{θ} if and only if $\mathrm{d}(X)=0$ for all X indecomposable objects of C. In this case $\left\|t^{\theta}(\mathbf{d})\right\|=\|\mathbf{d}\|$.
3. Edge reduction . Suppose $a_{1}: X_{1} \rightarrow Y_{1}$ with $X_{1} \neq Y_{1}$ is such that $\delta\left(a_{1}\right)=0$, and $A^{\prime}\left(X_{1}, X_{1}\right)=\operatorname{kid}_{X_{1}}, A^{\prime}\left(Y_{1}, Y_{1}\right)=k i d_{Y_{1}}$. Let C be the full subcategory of A^{\prime} whose objects have no direct summands isomorphic to X_{1} or Y_{1}. Now denote by D a minimal category with three indecomposable objects $Z_{1}, Z_{2}, Z_{3}, D\left(Z_{i}, Z_{i}\right)=k i d_{Z_{i}}$ for $i=1,2,3$. Take $B^{\prime}=C \times D$. The category B is freely generated by B^{\prime} and elements b_{1}, \ldots, b_{s}. The number of arrows $b_{j}: W_{j} \rightarrow W_{j}^{\prime}$ with W_{j} and W_{j}^{\prime} different from Z_{2} is $n-1$, where n is the number of a_{i}.

The functor $\theta: A \rightarrow B$ is the identity on C and $\theta\left(X_{1}\right)=Z_{1} \oplus Z_{2}, \theta\left(Y_{1}\right)=Z_{2} \oplus Z_{3}$.
The bocs $\mathcal{A}^{B}=(B, W)$ has a layer of the form $\left(B^{\prime}, \omega_{B} ; b_{1}, \ldots, b_{s} ; w_{1}, \ldots w_{u}\right)$. Moreover, if $M \in \mathcal{A}^{B}$-Mod, $\theta^{*}(M)\left(a_{i}\right)=0$ for all $i \in\{1, \ldots, n\}$ if and only if $M\left(b_{j}\right)=0$ for all $j \in\{1, \ldots, s\}$ and $M\left(Z_{2}\right)=0$. The functor θ^{*} is an equivalence of categories. Moreover $\left\|t^{\theta}(\mathbf{d})\right\|>\|\mathbf{d}\|$ if and only if $\left(t^{\theta}(\mathbf{d})\right)\left(X_{1}\right)\left(t^{\theta}(\mathbf{d})\left(Y_{1}\right)\right) \neq 0$. If $\left\|t^{\theta}(\mathbf{d})\right\|=\|\mathbf{d}\|$ and $\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|=$ $\left\|\mathbf{d}^{\prime}\right\|$, then $t^{\theta}(\mathbf{d})=t^{\theta}\left(\mathbf{d}^{\prime}\right)$ implies $\mathbf{d}=\mathbf{d}^{\prime}$.
4. Unraveling . Let X be an indecomposable object in A^{\prime} with $A^{\prime}(X, X)=$ $k\left[x, f(x)^{-1}\right] i d_{X}$. Suppose $S=\left\{\lambda_{1}, \ldots, \lambda_{t}\right\}$ is a set of elements of k which are not roots of $f(x)$. For r a positive integer there is a functor $\theta: A \rightarrow B$, where B is freely generated by B^{\prime} and elements $b_{1}, \ldots, b_{s}, B^{\prime}=C \times D$, where C is the full subcategory of A^{\prime} whose objects have no direct summands isomorphic to X. The category D is the minimal category with indecomposable objects $Y, Z_{i, j}$ with $i \in\{1, \ldots, r\}, j \in\{1, \ldots, t\}$, $D\left(Z_{i, j}, Z_{i, j}\right)=k i d_{Z_{i, j}}, D(Y, Y)=k\left[x, f(x)^{-1}, g(x)^{-1}\right] i d_{Y}$, where $g(x)=\left(x-\lambda_{1}\right) \ldots\left(x-\lambda_{t}\right)$. The functor $\theta: A \rightarrow B$ acts as the identity on C and $\theta(X)=Y \oplus \bigoplus_{j=1}^{t} \bigoplus_{i=1}^{r} Z_{i, j}^{i}$, where $Z_{i, j}^{i}$ is the direct sum of i copies of $Z_{i, j}$.

The bocs $\mathcal{A}^{B}=(B, W)$ has a layer of the form $\left(B^{\prime} ; \omega_{B} ; b_{1}, \ldots, b_{s} ; w_{1}, \ldots, w_{u}\right)$.
Moreover for $N \in \mathcal{A}^{B}$ - \bmod we have the following:
(a) $\|N\| \leq\left\|\theta^{*}(N)\right\|$, with strict inequality if $\theta^{*}(N)(g(x))$ is not invertible.
(b) If $M \in \mathcal{A}$-mod and for all $Z \in \operatorname{ind} A^{\prime}, \operatorname{dim}_{k} M(Z) \leq r$ then there is a $N \in \mathcal{A}^{B}$ - \bmod
such that $\theta^{*}(N) \cong M$.
(c) $\theta^{*}(N)(x)=N(x) \oplus \bigoplus_{j=1}^{s} \bigoplus_{i=1}^{r} N\left(Z_{i, j}^{i}\right)(x)$ with eigenvalues of $N(x)$ not in S, and $N\left(Z_{i, j}^{i}\right)(x)=J_{i}\left(\lambda_{j}\right)$, the Jordan block of size i and eigenvalue λ_{j}.
(d) Suppose $M \in \mathcal{A}$-mod is an indecomposable with $M(X) \neq 0$ and $M(W)=0$ for all $W \neq X, W \in \operatorname{ind} A^{\prime}, M\left(a_{i}\right)=0$ for $i \in\{1, \ldots, n\}$. Then if the unique eigenvalue of $M(x)$ is not in the set S, there is a $N \in \mathcal{A}^{B}-\bmod$ with $N(W)=0$ for all $W \in \operatorname{ind} B^{\prime}$, with $W \neq Y, N\left(b_{j}\right)=0$ for all $j \in\{1, \ldots, s\}$ and $\theta^{*}(N) \cong M$.
(e) The number of $b_{j}: Y_{1} \rightarrow Y_{2}$ with Y_{1}, Y_{2} non isomorphic to $Z_{i, j}$ is equal to n, the number of a_{i}.

Definition 7.1. Let $\mathcal{A}=(A, V)$ be a bocs with layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots v_{m}\right)$. We say that $M \in \mathcal{A}$-Mod is concentrated in the indecomposable $X \in A^{\prime}$ if $M(X) \neq 0, M(Y)=0$ for Y indecomposable in $A^{\prime}, Y \neq X$ and $M\left(a_{i}\right)=0$ for all $i \in\{1, \ldots, n\}$.

Proposition 7.2. Let $\mathcal{A}=(A, V)$ be a bocs which is not wild, with layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$. Let X be an indecomposable object in A^{\prime} with $A^{\prime}(X, X)=k\left[x, f(x)^{-1}\right]$. Then given a fixed dimension vector \mathbf{d} with $\mathbf{d}(X) \neq 0$, there is a finite subset $S(X, \mathbf{d})$ of k such that if M is indecomposable in $\mathcal{A}-\bmod$ with $\operatorname{dim} M=\mathbf{d}$ and λ in k but not in $S(X, \mathbf{d})$ is an eigenvalue of $M(x)$, then $M \cong M^{\prime}$, with M^{\prime} concentrated in X.

Proof. We may assume \mathbf{d} is sincere. We prove our assertion by induction on $\|\mathbf{d}\|$. If $\|\mathbf{d}\|=1$, take $S(X, \mathbf{d})$ the set of roots of $f(x)$. Then if M is an indecomposable in \mathcal{A}-mod, $M(X) \neq 0, \operatorname{dim} M=\mathbf{d}$, clearly M is concentrated in X.

Suppose our result proved for all non-wild layered bocses and dimension vectors with norm smaller than r. We may assume that for all $a_{i}: X_{i} \rightarrow Y_{i}$ with $\delta\left(a_{i}\right)=0, Y_{i}$ is not equal to X_{i}, since if $X_{i}=Y_{i}$, then because \mathcal{A} is not wild and by Proposition 9 of [7] we have $A^{\prime}\left(X_{i}, X_{i}\right)=k i d_{X_{i}}$, so we may move a_{i} into A^{\prime}, such that $A^{\prime}\left(X_{i}, X_{i}\right)=k[z]$, with $z=a_{i}$.

Take $a_{1}: X_{1} \rightarrow Y_{1}$ the first arrow. By condition $L .5$ of a layered bocs we have

$$
\delta\left(a_{1}\right)=\sum_{j \in T} c_{j} v_{j} d_{j},
$$

where $c_{j} \in A^{\prime}\left(Y_{1}, Y_{1}\right), d_{j} \in A^{\prime}\left(X_{1}, X_{1}\right)$ and T is the set of all $j \in\{1, \ldots, m\}$ such that $v_{j}: \bar{V}\left(X_{1}, Y_{1}\right)$. We have then the following possibilities: $\delta\left(a_{1}\right)=0$ or $\delta\left(a_{1}\right)=\sum_{j} c_{j} v_{j} d_{j}$ with some $c_{j} v_{j} d_{j} \neq 0$. If all $c_{i}, d_{i} \in k$, we may assume $d_{i}=1$ for all $i \in T$. In this case we put $v_{i}^{\prime}=v_{i}$ for $i \neq j$ and $v_{j}^{\prime}=\sum_{j} c_{j} v_{j}$. Taking $\left\{v_{j}^{\prime}, v_{1}^{\prime}, \ldots, v_{m}^{\prime}\right\}$ instead of $\left\{v_{1}, \ldots, v_{m}\right\}$ we have again a layer for \mathcal{A}, thus in this case we may assume $\delta\left(a_{1}\right)=v_{1}$. In case that for some $j \in T, c_{j}$ is not in k or d_{j} is not in k, we have $A^{\prime}\left(Y_{1}, Y_{1}\right) \neq k i d_{Y_{1}}$ or $A^{\prime}\left(X_{1}, X_{1}\right) \neq k i d_{X_{1}}$.

Case 1. $\delta\left(a_{1}\right)=v_{1}$. Take $\theta^{*}: \mathcal{A}^{B}-\operatorname{Mod} \rightarrow \mathcal{A}$-Mod the regularization of a_{1}. Here θ^{*} is an equivalence and the norm of \mathbf{d} in \mathcal{A}^{B} is smaller than r. Our claim is true for X and the norm r^{\prime} of \mathbf{d} in \mathcal{A}^{B}. Take $S(X, \mathbf{d})=S^{\prime}(X, \mathbf{d})$, with $S^{\prime}(X, \mathbf{d})$ the subset of k for which our claim is true in \mathcal{A}^{B}.

Then if $M \in \mathcal{A}$-mod is indecomposable with $\operatorname{dim} M=\mathbf{d}$ and λ is an eigenvalue of $M(x)$ which is not in $S(X, \mathbf{d})$, we may assume $M=\theta^{*}(N)$. Here $M(x)=N(x)$, thus $N \cong N^{\prime}$, with N^{\prime} concentrated in X, but this implies that $\theta^{*}\left(N^{\prime}\right)$ is concentrated in X, thus $\theta^{*}\left(N^{\prime}\right) \cong \theta^{*}(N)=M$, proving our claim.

Case 2. $\delta\left(a_{1}\right)=0$. Since \mathcal{A} is not wild, by Proposition 9 of $[7], A^{\prime}\left(X_{1}, X_{1}\right)=k i d_{X_{1}}$ and $A^{\prime}\left(Y_{1}, Y_{1}\right)=k i d_{Y_{1}}$. Here X_{1} is not equal to Y_{1}. We have the edge reduction of a_{1}, $\theta^{*}: \mathcal{A}^{B}-\operatorname{Mod} \rightarrow \mathcal{A}$-Mod, with $\mathcal{A}^{B}=(B, W)$. Consider the dimension vectors $\mathbf{d}_{1}, \ldots, \mathbf{d}_{l}$ of those $N \in \mathcal{A}^{B}-\bmod$ such that $\operatorname{dim} \theta^{*}(N)=\mathbf{d}$.

The norms of the \mathbf{d}_{i} are smaller than r. Here X is not equal to X_{1} and to Y_{1}. Therefore X is an indecomposable object of B^{\prime}. We may consider the subsets $S\left(X, \mathbf{d}_{1}\right), \ldots, S\left(X, \mathbf{d}_{l}\right)$. Take $S(X, \mathbf{d})=S\left(X, \mathbf{d}_{1}\right) \cup \ldots \cup S\left(X, \mathbf{d}_{l}\right)$.

Let M be an indecomposable in \mathcal{A}-mod with $\operatorname{dim} M=\mathbf{d}$. Suppose λ is an eigenvalue of $M(x)$ which is not in $S(X, \mathbf{d})$. Since θ^{*} is an equivalence there is a $N \in \mathcal{A}^{B}-\bmod$ such that $\theta^{*}(N) \cong M$. We may assume $\theta^{*}(N)=M$, then $M(X)=N(X)$ and $M(x)=N(x)$. Here $\operatorname{dim} N=\mathbf{d}_{\mathbf{i}}$ for some $i \in[1, l]$. Therefore, since λ is an eigenvalue of $N(x)$ which is not in $S\left(X, \mathbf{d}_{i}\right), N \cong N^{\prime}$, with N^{\prime} concentrated in X, consequently $\theta^{*}\left(N^{\prime}\right)$ is concentrated in X and $\theta^{*}\left(N^{\prime}\right) \cong M$.

Case 3. $a_{1}: X_{1} \rightarrow Y_{1}$ with $A^{\prime}\left(X_{1}, X_{1}\right) \neq k i d_{X_{1}}$ or $A^{\prime}\left(Y_{1}, Y_{1}\right) \neq k i d_{Y_{1}}$.
Using the notation of [5], we have an unraveling in X_{1} or in Y_{1}, for r and some elements of $k, \lambda_{1}, \ldots, \lambda_{s}$ followed by regularization of $b: Y \rightarrow Y_{1}$ or of $b: X_{1} \rightarrow Y$, with b the generator corresponding to a_{1}. Let $\theta^{*}: \mathcal{A}^{B}-\operatorname{Mod} \rightarrow \mathcal{A}$-Mod be the unraveling functor followed by the corresponding regularization, with $\mathcal{A}^{B}=(B, W)$ and layer $\left(B^{\prime}, \omega_{B} ; b_{1}, \ldots, b_{v} ; w_{1}, \ldots, w_{u}\right)$.

In case X is not equal to X_{1} and to Y_{1} we proceed as in Case 2.
Suppose now that the unraveling is in X with $X=X_{1}$ or $X=Y_{1}$, such that $\theta(X)=Y \oplus\left(\bigoplus_{i, j} Z_{i, j}^{i}\right)$. Take all dimension vectors $\mathbf{d}_{1}, \ldots, \mathbf{d}_{l}$ of those $N \in \mathcal{A}^{B}$-mod with $\operatorname{dim} \theta^{*}(N)=\mathbf{d}$.

The norms of all $\mathbf{d}_{\mathbf{i}}$ are smaller than r. Then we may take $S\left(Y, \mathbf{d}_{i}\right)$. We put $S(X, \mathbf{d})=$ $S\left(Y, \mathbf{d}_{1}\right) \cup \ldots \cup S\left(Y, \mathbf{d}_{l}\right) \cup\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$.

Let M be an indecomposable in \mathcal{A}-mod with $\operatorname{dim} M=\mathbf{d}, M(X) \neq 0$ and λ an eigenvalue of $M(x)$ which is not in $S(X, \mathbf{d})$.

There is a $N \in \mathcal{A}^{B}$ with $\theta^{*}(N) \cong M$. We may assume $\theta^{*}(N)=M$. There is a \mathbf{d}_{i} with $i \in[1, l]$ such that $\operatorname{dim} N=\mathbf{d}_{i}$.

Here $M(x)=N(x) \oplus M^{\prime}(x)$ with eigenvalues of $M^{\prime}(x)$ contained in $\left\{\lambda_{1}, \ldots, \lambda_{s}\right\}$. The eigenvalue λ of $M(x)$ is not in $S(X, \mathbf{d})$, therefore, λ is an eigenvalue of $N(x)$. But λ is not in $S\left(Y, \mathbf{d}_{i}\right)$, then $N \cong N^{\prime}$, with N^{\prime} concentrated in Y. This implies that $\theta^{*}\left(N^{\prime}\right)$ is concentrated in X and $M \cong \theta^{*}\left(N^{\prime}\right)$.

Notation 7.3. We recall that if \mathbf{d} and \mathbf{d}^{\prime} are dimension vectors of the bocs $\mathcal{A}=(A, V)$ we say that $\mathbf{d} \leq \mathbf{d}^{\prime}$ if for all indecomposable objects X of $A^{\prime}, \mathbf{d}(X) \leq \mathbf{d}^{\prime}(X)$. Then if \mathcal{D} is a finite set of dimension vectors of \mathcal{A}, we denote by $s(\mathcal{D})$ the set consisting of all vectors in \mathcal{D}, all sums $\mathbf{d}+\mathbf{d}^{\prime}$ with $\mathbf{d}, \mathbf{d}^{\prime} \in \mathcal{D}$, and all vectors \mathbf{e} with $\mathbf{e} \leq \mathbf{f}$ with \mathbf{f} one of the above
dimension vectors. Clearly $s(\mathcal{D})$ is also a finite set.
Definition 7.4. Let $\mathcal{A}=(A, V)$ be a bocs with layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$ and \mathcal{D} be a finite set of dimension vectors of \mathcal{A}. We say that X, an indecomposable object in A^{\prime}, with $A^{\prime}(X, X)=k\left[x, f(x)^{-1}\right] i d_{X}$ is \mathcal{D}-isolated if for any indecomposable $M \in \mathcal{A}$-mod with $\operatorname{dim} M \in s(\mathcal{D})$ and $M(X) \neq 0$, there is a $M^{\prime} \in \mathcal{A}$-mod, concentrated in X with $M \cong M^{\prime}$.

Lemma 7.5. Let $\mathcal{A}=(A, V)$ be a layered bocs as above, which is not of wild representation type, and \mathcal{D} be a finite set of dimension vectors of \mathcal{A} such that for all indecomposable $X \in A^{\prime}$ there is a $\mathbf{d} \in \mathcal{D}$ with $\mathbf{d}(X) \neq 0$, and $a_{1}: X_{1} \rightarrow Y_{1}$. Then
(1) if X_{1} and Y_{1} are both \mathcal{D}-isolated and $\delta\left(a_{1}\right) \in \mathcal{I}_{2} \bar{V}+\bar{V} \mathcal{I}_{1}$ with \mathcal{I}_{1} an ideal of $A^{\prime}\left(X_{1}, X_{1}\right)$, \mathcal{I}_{2} an ideal of $A^{\prime}\left(Y_{1}, Y_{1}\right)$, then $\mathcal{I}_{1}=A^{\prime}\left(X_{1}, X_{1}\right)$ or $\mathcal{I}_{2}=A^{\prime}\left(Y_{1}, Y_{1}\right)$;
(2) if X_{1} is \mathcal{D}-isolated, $A^{\prime}\left(Y_{1}, Y_{1}\right)=\operatorname{kid}_{Y_{1}}, \delta\left(a_{1}\right) \in \bar{V} \mathcal{I}_{1}$ with \mathcal{I}_{1} an ideal of $A^{\prime}\left(X_{1}, X_{1}\right)$, then $\mathcal{I}_{1}=A^{\prime}\left(X_{1}, X_{1}\right)$;
(3) if Y_{1} is \mathcal{D}-isolated, $A^{\prime}\left(X_{1}, X_{1}\right)=\operatorname{kid}_{X_{1}}, \delta\left(a_{1}\right) \in \mathcal{I}_{2} \bar{V}$ with \mathcal{I}_{2} an ideal of $A^{\prime}\left(Y_{1}, Y_{1}\right)$, then $\mathcal{I}_{2}=A^{\prime}\left(Y_{1}, Y_{1}\right)$.

Proof. We have

$$
\text { (*) } \delta\left(a_{1}\right)=\sum_{s \in T_{1}} h_{s} v_{s}+\sum_{s \in T_{2}} v_{s} g_{s}
$$

with $h_{s} \in \mathcal{I}_{2}, g_{s} \in \mathcal{I}_{1}$.
(1) Suppose our claim is not true, then we may assume \mathcal{I}_{1} and \mathcal{I}_{2} are maximal ideals. Then $A^{\prime}\left(X_{1}, X_{1}\right) / \mathcal{I}_{1} \cong k$ and $A^{\prime}\left(Y_{1}, Y_{1}\right) / \mathcal{I}_{2} \cong k$. First assume $X_{1}=Y_{1}$. Take the representation M of A such that $M\left(X_{1}\right)=M_{1} \oplus M_{2}$ with $M_{i}=A^{\prime}\left(X_{1}, X_{1}\right) / \mathcal{I}_{i}$ for $i=1,2$, $M(W)=0$ for $W \neq X_{1}$. Take $M\left(a_{1}\right)$ such that $0 \neq M\left(a_{1}\right)\left(M_{1}\right) \subset M_{2}, M\left(a_{1}\right)\left(M_{2}\right)=0$ and $M\left(a_{j}\right)=0$ for $j>1$. Here $\operatorname{dim} M \in s(\mathcal{D})$, then if M is indecomposable, $M \cong M^{\prime}$ with M^{\prime} concentrated in X_{1}, but this implies that M^{\prime} is indecomposable as A^{\prime}-module, which is not the case because as A^{\prime}-modules, we have $M^{\prime} \cong M \cong M_{1} \oplus M_{2}$. Therefore, $M \cong L_{1} \oplus L_{2}$, with L_{1}, L_{2} indecomposables, and $\operatorname{dim} L_{1}, \operatorname{dim} L_{2}$ are in $s(\mathcal{D})$. Then $L_{1} \cong L_{1}^{\prime}, L_{2} \cong L_{2}^{\prime}$, with $L_{1}^{\prime}, L_{2}^{\prime}$ concentrated in X_{1}, thus $M \cong L=L_{1}^{\prime} \oplus L_{2}^{\prime}$, and $L\left(a_{1}\right)=0$. There is an isomorphism $f=\left(f^{0}, f^{1}\right): M \rightarrow L$. Then from (*) we obtain

$$
L\left(a_{1}\right) f_{X_{1}}^{0}-f_{Y_{1}}^{0} M\left(a_{1}\right)=\sum_{s \in T_{1}} L\left(h_{s}\right) f^{1}\left(v_{s}\right)+\sum_{s \in T_{2}} f^{1}\left(v_{s}\right) M\left(g_{s}\right),
$$

then, since $L\left(a_{1}\right)=0$ and $\mathcal{I}_{1} M_{1}=0$, from the above formula we obtain

$$
f_{Y_{1}}^{0} M\left(a_{1}\right)(M)=f_{Y_{1}}^{0} M\left(a_{1}\right)\left(M_{1}\right) \subset \mathcal{I}_{2} L,
$$

then if $\mathcal{I}_{1}=\mathcal{I}_{2}, \mathcal{I}_{2} L=0$, so $f_{Y_{1}}^{0} M\left(a_{1}\right)(M)=0$. If $\mathcal{I}_{1} \neq \mathcal{I}_{2}, A^{\prime}\left(X_{1}, X_{1}\right)=\mathcal{I}_{1}+\mathcal{I}_{2}$. We have

$$
\begin{gathered}
\mathcal{I}_{1} f_{Y_{1}}^{0} M\left(a_{1}\right)(M) \subset \mathcal{I}_{1} \mathcal{I}_{2} L=0 \\
\mathcal{I}_{2} f_{Y_{1}}^{0} M\left(a_{1}\right)(M) \subset f_{Y_{1}}^{0}\left(\mathcal{I}_{2} M_{2}\right)=0
\end{gathered}
$$

Consequently, $f_{Y_{1}}^{0} M\left(a_{1}\right)=0$, a contradiction to $M\left(a_{1}\right) \neq 0$. Thus we obtain our statement in this case.

Now, assume $X_{1} \neq Y_{1}$, take M the representation of A such that $M\left(X_{1}\right)=A^{\prime}\left(X_{1}, X_{1}\right) / \mathcal{I}_{1}$, $M\left(Y_{1}\right)=A^{\prime}\left(Y_{1}, Y_{1}\right) / \mathcal{I}_{2}, M(Z)=0$ for Z indecomposable non-isomorphic to X_{1} or Y_{1}; $M\left(a_{1}\right) \neq 0$ and $M\left(a_{j}\right)=0$ for all $j>1$. Clearly $\operatorname{dim} M \in s(\mathcal{D})$. We claim that $M \cong L$ with $L\left(a_{1}\right)=0$. In fact if M is indecomposable then $M \cong M^{\prime}$ with M^{\prime} concentrated in X_{1} since $M\left(X_{1}\right) \neq 0$, and $M \cong M^{\prime \prime}$ with $M^{\prime \prime}$ concentrated in Y_{1}, since $M\left(Y_{1}\right) \neq 0$. Thus $X_{1}=Y_{1}$ a contradiction, therefore M is decomposable $M \cong L=L_{1} \oplus L_{2}$ with $L_{1}\left(X_{1}\right) \cong M\left(X_{1}\right), L_{1}\left(Y_{1}\right)=0$ and $L_{2}\left(X_{1}\right)=0, L_{2}\left(Y_{1}\right) \cong M\left(Y_{1}\right)$, consequently, $L_{1}\left(a_{1}\right)=0$ and $L_{2}\left(a_{1}\right)=0$, and, therefore $L\left(a_{1}\right)=0$, proving our claim.

Then there is an isomorphism $\left(f^{0}, f^{1}\right): M \rightarrow L$. Here $f_{X_{1}}^{0}: M\left(X_{1}\right) \rightarrow L\left(X_{1}\right)$ and $f_{Y_{1}}^{0}: M\left(Y_{1}\right) \rightarrow L\left(Y_{1}\right)$ are isomorphisms. From (*) we obtain

$$
L\left(a_{1}\right) f_{X_{1}}^{0}-f_{Y_{1}}^{0} M\left(a_{1}\right)=\sum_{s \in T_{1}} L\left(h_{s}\right) f^{1}\left(v_{s}\right)+\sum_{s \in T_{2}} f^{1}\left(v_{s}\right) M\left(g_{s}\right)=0
$$

consequently, $f_{Y_{1}}^{0} M\left(a_{1}\right)=0$, so $M\left(a_{1}\right)=0$, a contradiction.
(2) We are assuming that X_{1} is \mathcal{D}-isolated, by Definition 7.4, $A^{\prime}\left(X_{1}, X_{1}\right) \neq k i d_{X_{1}}$. Here we suppose $A^{\prime}\left(Y_{1}, Y_{1}\right)=k i d_{Y_{1}}$, then $X_{1} \neq Y_{1}$. If our claim is not true, we may assume that \mathcal{I}_{1} is a maximal ideal and $A^{\prime}\left(X_{1}, X_{1}\right) / \mathcal{I}_{1}=k$. Consider now M, the representation of A, such that $M\left(X_{1}\right)=A^{\prime}\left(X_{1}, X_{1}\right) / \mathcal{I}_{1}, M\left(Y_{1}\right)=k, M(Z)=0$ for Z indecomposable nonisomorphic to X_{1} and to $Y_{1}, M\left(a_{1}\right) \neq 0, M\left(a_{j}\right)=0$ for all $j \geq 2$. If M is indecomposable, then $M \cong M^{\prime}$ with M^{\prime} concentrated in X_{1}, since $M\left(X_{1}\right) \neq 0$, a contradiction to $M\left(Y_{1}\right) \neq$ 0 . If M is decomposable, we may construct a module $L=L_{1} \oplus L_{2}$ and lead to a contradiction similar to (1).
(3) The proof is similar to (2).

Remark 7.6. Let \mathcal{A} be a non wild bocs and $\theta: A \rightarrow B$ any of our reduction functors such that it does not delete marked indecomposable objects. If \mathcal{A} has layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$ and \mathcal{A}^{B} has layer $\left(B^{\prime} ; \omega_{B} ; b_{1}, \ldots, b_{n^{\prime}} ; w_{1}, \ldots w_{m^{\prime}}\right)$, then to each marked $X \in \operatorname{ind} A^{\prime}$ corresponds a marked $X^{m} \in B^{\prime}$ such that $\theta(X)=X^{m} \oplus Y$ with Y either 0 or a sum of non-marked indecomposables. Conversely each marked object in B^{\prime} is equal to some X^{m}. Moreover,
i) if $N \in \mathcal{A}^{B}$-Mod is concentrated in X^{m} then $\theta^{*}(N)$ is concentrated in X.
ii) Suppose $N \in \mathcal{A}^{B}$-Mod is indecomposable with $N\left(X^{m}\right) \neq 0$ and $\theta^{*}(N) \cong M$ with M concentrated in X, then there exists $N^{\prime} \in \mathcal{A}^{B}$-Mod concentrated in X^{m} such that $N^{\prime} \cong N$.

Lemma 7.7. If $\theta: A \rightarrow B$ is a reduction functor and $(e): M \xrightarrow{f} E \xrightarrow{g} N$ is a proper exact sequence in \mathcal{A}^{B}-mod, then $\theta^{*}(e): \theta^{*}(M) \xrightarrow{\theta^{*}(f)} \theta^{*}(E) \xrightarrow{\theta^{*}(g)} \theta^{*}(N)$ is a proper exact sequence in \mathcal{A}-mod (see Definition 4.6).

Proof. Let $f: L \rightarrow H$ be a morphism in \mathcal{A}^{B}-Mod. From the explicit description of θ^{*}
for each of the reduction functors given in section 4 of [5] one can see that if $\left(i, \omega_{B}\right)^{*}(f)$ is a monomorphism (respectively an epimorphism), then $(i, \omega)^{*} \theta^{*}(f)$ is a monomorphism (respectively an epimorphism). We have $\operatorname{dim} E=\operatorname{dim} M+\operatorname{dim} N$, then $\operatorname{dim} \theta^{*}(E)=$ $t^{\theta}(\operatorname{dim} E)=\operatorname{dim} \theta^{*}(M)+\operatorname{dim} \theta^{*}(N)$. Therefore, $\operatorname{dim}_{k} \theta^{*}(E)(X)=\operatorname{dim}_{k} \theta^{*}(M)(X)+$ $\operatorname{dim}_{k} \theta^{*}(N)(X)$, for each $X \in \operatorname{ind} A^{\prime}$. From this and our first observation we may conclude that $\theta^{*}(e)$ is a proper exact sequence, proving our claim.

8 An improvement of the Tame Theorem

In this section, we prove in Theorem 8.5 that given a tame layered bocs \mathcal{A} and a positive integer r, then there is a minimal layered bocs \mathcal{B} and a functor $F: \mathcal{B}$ - $\operatorname{Mod} \rightarrow \mathcal{A}$ Mod, which is a composition of the reduction functors of section 7 , such that for any M representation of \mathcal{A}, with dimension smaller than or equal to r there is a representation N of \mathcal{B} with $F(N) \cong M$. This is an improvement of Theorem A in [5] which needs several minimal bocses.

We recall that if $\mathcal{A}=(A, V)$ is a bocs, then a family \mathcal{F} of non-isomorphic indecomposable objects in \mathcal{A}-mod is called a one-parameter family if there is T an $A-k\left[x, f(x)^{-1}\right]$ bimodule free of finite rank as right $k\left[x, f(x)^{-1}\right]$-module, such that for all $\lambda \in k$ which is not a root of $f(x)$, there is a $N \in \mathcal{F}$ with $T \otimes_{k\left[x, f(x)^{-1}\right]} k[x] /(x-\lambda) \cong N$ and for each $N \in \mathcal{F}$ there is an unique $\lambda \in k$ which is not a root of $f(x)$ with $N \cong T \otimes_{k\left[x, f(x)^{-1}\right]} k[x] /(x-\lambda)$.

Two one-parameter families \mathcal{F}_{1} and \mathcal{F}_{2} are said to be equivalent if there is only a finite number of elements in \mathcal{F}_{1} which are not isomorphic to objects in \mathcal{F}_{2}. It follows from Theorem 5.6 of [6] that if \mathcal{A} is not of wild representation type and \mathcal{D} is a finite set of dimension vectors there is only a finite number $m(\mathcal{A}, \mathcal{D})$ of non-equivalent one-parameter families of objects in \mathcal{A}-mod having dimension vectors in $s(\mathcal{D})$. Observe that the number of \mathcal{D}-isolated objects X in A^{\prime} is smaller than or equal to $m(\mathcal{A}, \mathcal{D})$.

In the following, $\mathcal{A}_{0}=\left(A_{0}, V_{0}\right)$ is a fixed layered bocs which is not of wild representation type and \mathcal{D}_{0} a fixed finite set of dimension vectors of \mathcal{A}_{0}. Consider the family \mathcal{P} of pairs $(\mathcal{A}, \mathcal{D})$ with \mathcal{A} a bocs with layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right), \mathcal{D}$ a finite set of dimension vectors of \mathcal{A} such that there exists $\theta: A_{0} \rightarrow A$ a composition of reduction functors with $\mathcal{A}_{0}^{A}=\mathcal{A}$ and $t^{\theta}(\mathcal{D}) \subset \mathcal{D}_{0}$. We denote by m_{0} the number $m\left(\mathcal{A}_{0}, s\left(\mathcal{D}_{0}\right)\right)$. Observe that since θ^{*} is a full and faithful functor and \mathcal{A}_{0} is not of wild representation type, then \mathcal{A} is not of wild representation type.

If $(\mathcal{A}, \mathcal{D}) \in \mathcal{P}$, for each $X \in \operatorname{ind} A^{\prime}$ which is \mathcal{D}-isolated we have a one-parameter family of representations of \mathcal{A}. To different \mathcal{D}-isolated indecomposables in ind A^{\prime} correspond non-equivalent one-parameter families of representations of \mathcal{A}. By the definition of \mathcal{P}, there exists a composition of reduction functors $\theta: A_{0} \rightarrow A$ with $t^{\theta}(\mathcal{D}) \subset \mathcal{D}_{0}$. Therefore, the image under θ^{*} of the one-parametric family corresponding to a \mathcal{D}-isolated indecomposable in A^{\prime} is a one-parametric family of \mathcal{A}_{0} with dimension vector in $s\left(\mathcal{D}_{0}\right)$. Therefore, the number of \mathcal{D}-isolated indecomposables in A^{\prime} is smaller or equal to m_{0}.

Notation. Suppose \mathcal{A} is a layered bocs which is not of wild representation type and \mathcal{D} is a finite set of dimension vectors of \mathcal{A}. For j a non-negative integer, we denote by
$\mathcal{S}(\mathcal{A}, \mathcal{D})(j)$ the subset of \mathcal{D} consisting of the \mathbf{d} in \mathcal{D} with $\|\mathbf{d}\|=j$.
Take $(\mathcal{A}, \mathcal{D})$ a pair in \mathcal{P}, we define a function $c(\mathcal{A}, \mathcal{D}):\{-1,0,1,2, \ldots, \infty\} \rightarrow\{0,1,2, \ldots\}$ in the following way:

$$
c(\mathcal{A}, \mathcal{D})(\infty)=m_{0}-i(\mathcal{A}, \mathcal{D})
$$

with $i(\mathcal{A}, \mathcal{D})$ the number of indecomposables in A^{\prime} which are \mathcal{D}-isolated.

$$
c(\mathcal{A}, \mathcal{D})(-1)=n
$$

where n is the number of a_{i} in the layer of \mathcal{A}. For j a non-negative integer we put

$$
c(\mathcal{A}, \mathcal{D})(j)=\operatorname{Card} \mathcal{S}(\mathcal{A}, \mathcal{D})(j)
$$

The functions $c(\mathcal{A}, \mathcal{D})$ belong to \mathcal{H}, the set of functions

$$
f:\{-1,0,1, \ldots, \infty\} \rightarrow\{0,1, \ldots,\}
$$

with $f(x)=0$ for almost all $x \in\{-1,0,1, \ldots, \infty\}$.
If f, g are elements in \mathcal{H} we put $f<g$ if there is a s in $\{-1,0,1, \ldots, \infty\}$ such that $f(s)<g(s)$ and $f(u)=g(u)$ for $u \in\{-1,0,1, \ldots, \infty\}, u>s$. Clearly if we have an infinite sequence of elements in \mathcal{H} with:

$$
f_{1} \geq f_{2} \geq \ldots \geq f_{m} \geq f_{m+1} \geq \ldots
$$

then there exists l such that for all $m>l, f_{m}=f_{l}$.
Notation. If $\theta: A \rightarrow B$ is any of our reduction functors and \mathcal{D} is a finite set of dimension vectors of \mathcal{A}, we say that θ^{*} is \mathcal{D}-covering if for each $M \in \mathcal{A}$-mod with $\operatorname{dim} M \in \mathcal{D}$ there exists a $N \in \mathcal{A}^{B}-\bmod$ with $\theta^{*}(N) \cong M$. If $\theta: A \rightarrow B$ is a composition of our reduction functors, we denote by \mathcal{D}^{B} the set of $\mathbf{d}^{\prime} \in \operatorname{Dim}\left(\mathcal{A}^{B}\right)$ such that $t^{\theta}\left(\mathbf{d}^{\prime}\right) \in \mathcal{D}$.

In the statement of the following Lemma, we use the notation of Remark 7.6.
Lemma 8.1. Let $\theta: A \rightarrow B$ be any of our reduction functors such that it does not delete marked objects. Then if X is \mathcal{D}-isolated, one has that X^{m} is \mathcal{D}^{B}-isolated. Conversely if θ is a regularization or the deletion of an object W such that $\mathbf{d}(W)=0$ for all $\mathbf{d} \in \mathcal{D}$ and X^{m} is \mathcal{D}^{B}-isolated then X is \mathcal{D}-isolated.

Proof. Suppose X is \mathcal{D}-isolated in \mathcal{A}. We shall prove that X^{m} is \mathcal{D}^{B}-isolated in \mathcal{A}^{B}. For this take an indecomposable $N \in \mathcal{A}^{B}$-mod, with $\operatorname{dim} N \in s\left(\mathcal{D}^{B}\right)$ and $N\left(X^{m}\right) \neq 0$. Consider $M=\theta^{*}(N)$, then following the notation of Remark 7.6, $M(X)=N\left(X^{m}\right) \oplus$ $N(Y)$, thus $M(X) \neq 0$, moreover $\operatorname{dim} M \in s(\mathcal{D})$. Since X is \mathcal{D}-isolated, then there exists $M^{\prime} \in \mathcal{A}$-mod, with $M \cong M^{\prime}$ and M^{\prime} concentrated in X. Therefore, by Remark 7.6 there is a N^{\prime} concentrated in X^{m} such that $N \cong N^{\prime}$. From here we conclude that X^{m} is \mathcal{D}^{B}-isolated. This proves the first part of our claim.

Suppose now that θ is a regularization. In this case $t^{\theta}=i d$ and $\mathcal{D}^{B}=\mathcal{D}$. Suppose X^{m} is \mathcal{D}^{B}-isolated, let us prove that X is \mathcal{D}-isolated. Let M be an indecomposable in
\mathcal{A}-mod, with $\operatorname{dim} M \in s(\mathcal{D})$ and $M(X) \neq 0$. Since θ^{*} is an equivalence of categories, there is a $N \in \mathcal{A}^{B}-\bmod$ with $\theta^{*}(N) \cong M$. We have $N\left(X^{m}\right)=M(X)$, and, therefore, $N\left(X^{m}\right) \neq 0$. Moreover, $\operatorname{dim} N \in s\left(\mathcal{D}^{B}\right)$. Since X^{m} is \mathcal{D}^{B}-isolated, there is a $N^{\prime} \in \mathcal{A}^{B_{-}}$ mod, concentrated in X^{m} such that $N^{\prime} \cong N$. We have $M^{\prime}=\theta^{*}\left(N^{\prime}\right)$ is concentrated in X, clearly $M \cong M^{\prime}$, proving our claim.

A similar proof is done for the case θ is the deletion of an indecomposable W with $\mathbf{d}(W)=0$ for all $\mathbf{d} \in \mathcal{D}$.

Lemma 8.2. Let $\theta: A \rightarrow B$ be a reduction functor which is not an unraveling or the deletion of some X for which there is $a \mathbf{d} \in \mathcal{D}$ with $\mathbf{d}(X) \neq 0$. Suppose there is $a \mathbf{d}^{\prime}$ with $t^{\theta}\left(\mathbf{d}^{\prime}\right) \in \mathcal{D}$ and $\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|>\left\|\mathbf{d}^{\prime}\right\|$. Let

$$
r=\max \left\{\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\| \| t^{\theta}\left(\mathbf{d}^{\prime}\right) \in \mathcal{D}, \text { and }\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|>\left\|\mathbf{d}^{\prime}\right\|\right\}
$$

Then for $j>r$,

$$
c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(j)=c(\mathcal{A}, \mathcal{D})(j) \quad \text { and } \quad c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(r)<c(\mathcal{A}, \mathcal{D})(r)
$$

Proof. Let us prove first that for $j \geq r, t^{\theta}$ induces an injective function

$$
t_{j}^{\theta}: \mathcal{S}\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(j) \rightarrow \mathcal{S}(\mathcal{A}, \mathcal{D})(j)
$$

Take $\mathbf{d}^{\prime} \in \mathcal{S}\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(j)$, then $\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\| \geq\left\|\mathbf{d}^{\prime}\right\|=j \geq r$. By definition of $r,\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|=$ $\left\|\mathbf{d}^{\prime}\right\|=j$. Thus, t^{θ} induces a function t_{j}^{θ}. If $t_{j}^{\theta}\left(\mathbf{d}^{\prime}\right)=t_{j}^{\theta}\left(\mathbf{d}^{\prime \prime}\right)$, we have $\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|=\left\|\mathbf{d}^{\prime}\right\|$ and $\left\|t^{\theta}\left(\mathbf{d}^{\prime \prime}\right)\right\|=\left\|\mathbf{d}^{\prime \prime}\right\|$, therefore $\mathbf{d}^{\prime}=\mathbf{d}^{\prime \prime}$. Consequently, t_{j}^{θ} is an injective function.

Suppose $j>r$. Take $\mathbf{d} \in \mathcal{S}(\mathcal{A}, \mathcal{D})(j)$, since θ^{*} does not delete indecomposable objects $X \in \operatorname{ind} A^{\prime}$ for which there is a $\mathbf{f} \in \mathcal{D}$ with $\mathbf{f}(X) \neq 0$ then there is a $\mathbf{d}^{\prime} \in \mathcal{S}\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)$ with $t^{\theta}\left(\mathbf{d}^{\prime}\right)=\mathbf{d}$. We have $r<\|\mathbf{d}\|=\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\| \geq\left\|\mathbf{d}^{\prime}\right\|$. By definition of $r,\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|=\left\|\mathbf{d}^{\prime}\right\|=j$. Thus $\mathbf{d}^{\prime} \in \mathcal{S}\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(j)$. Consequently, t_{j}^{θ} is a bijective function and we have proved the first part of our claim.

For the second part of our claim, take $\mathbf{d}^{\prime} \in \mathcal{D}^{B}$ such that $r=\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|>\left\|\mathbf{d}^{\prime}\right\|$. We have $\mathbf{d}=t^{\theta}\left(\mathbf{d}^{\prime}\right)$ in $\mathcal{S}(\mathcal{A}, \mathcal{D})(r)$. Let us prove that \mathbf{d} is not in the image of $t_{r}^{\theta}: \mathcal{S}\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(r) \rightarrow$ $\mathcal{S}(\mathcal{A}, \mathcal{D})(r)$. If θ is a regularization or deletion of objects, t^{θ} is an injective function and if $\mathbf{d}=t_{r}^{\theta}\left(\mathbf{d}^{\prime \prime}\right)$, with $\left\|\mathbf{d}^{\prime \prime}\right\|=r$, since t^{θ} is injective we have $\mathbf{d}^{\prime}=\mathbf{d}^{\prime \prime}$, a contradiction. We only need consider the case in which θ is an edge reduction of $a_{1}: X_{1} \rightarrow Y_{1}$. Since $\|\mathbf{d}\|=\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|>\left\|\mathbf{d}^{\prime}\right\|, \mathbf{d}\left(X_{1}\right) \mathbf{d}\left(Y_{1}\right) \neq 0$ and if $\mathbf{d}=t^{\theta}\left(\mathbf{d}^{\prime \prime}\right)$ then $r=\left\|t^{\theta}\left(\mathbf{d}^{\prime \prime}\right)\right\|>\left\|\mathbf{d}^{\prime \prime}\right\|$, proving our claim.

Lemma 8.3. Suppose (A, \mathcal{D}) is a pair in \mathcal{P}. Let $\theta: A \rightarrow B$ be the deletion of a nonmarked indecomposable $X \in A^{\prime}$, such that for all $\mathbf{d} \in \mathcal{D}, \mathbf{d}(X)=0$, then $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(u)=$ $c(\mathcal{A}, \mathcal{D})(u)$ for all $u \in\{0,1, . ., \infty\}$.

Proof. By Lemma $8.1 c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(\infty)=c(\mathcal{A}, \mathcal{D})(\infty)$. On the other hand, by our hypothesis, t^{θ} induces a bijective function $t^{\theta}: \mathcal{D}^{B} \rightarrow \mathcal{D}$ and $\left\|t^{\theta}(\mathbf{d})\right\|=\|\mathbf{d}\|$, for all $\mathbf{d} \in \mathcal{D}^{\theta}$.

Therefore, $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(j)=c(\mathcal{A}, \mathcal{D})(j)$ for all non-negative integers j. This proves our claim.

Lemma 8.4. Let $(\mathcal{A}, \mathcal{D})$ be a pair in \mathcal{P}. Suppose that for each $X \in \operatorname{ind} A^{\prime}$ there exists $\mathbf{d} \in$ \mathcal{D} with $\mathbf{d}(X) \neq 0$. Then, if \mathcal{A} is not a minimal bocs, there is a composition of reduction functors $\theta: A \rightarrow B$, with θ^{*} a $s(\mathcal{D})$-covering functor, such that $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)<c(\mathcal{A}, \mathcal{D})$, or there is a change of layer of \mathcal{A} such that if $c^{\prime}(\mathcal{A}, \mathcal{D})$ is the corresponding function we have $c^{\prime}(\mathcal{A}, \mathcal{D})<c(\mathcal{A}, \mathcal{D})$.

Proof. (1) Suppose $a_{1}: X_{1} \rightarrow X_{1}$ and $\delta\left(a_{1}\right)=0$. Since \mathcal{A} is not of wild representation type, then by Proposition 9 of [7] we have $A^{\prime}\left(X_{1}, X_{1}\right)=k i d_{X_{1}}$. Take $B^{\prime}=A^{\prime}\left(a_{1}\right)$ and change the layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots v_{m}\right)$ by the layer $\left(B^{\prime} ; \omega ; a_{2}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$. We have $B^{\prime}\left(X_{1}, X_{1}\right)=k\left[a_{1}\right] i d_{X_{1}}$. Clearly if W is an object non isomorphic to X_{1} in ind A^{\prime}, this object is \mathcal{D}-isolated with respect to the original layer of \mathcal{A} if and only if it is \mathcal{D} isolated with respect to the new layer. Here it is possible that X_{1}, which is not marked with respect to the original layer of \mathcal{A}, becomes a \mathcal{D}-isolated object with respect to the new layer. Therefore, if we denote by $c^{\prime}(\mathcal{A}, \mathcal{D})$ the corresponding function with respect to the new layer we have $c^{\prime}(\mathcal{A}, \mathcal{D})(\infty) \leq c(\mathcal{A}, \mathcal{D})(\infty)$.

The norm of a dimension vector does not depend of the choice of the layer, therefore, $c^{\prime}(\mathcal{A}, \mathcal{D})(j)=c(\mathcal{A}, \mathcal{D})(j)$ for all non-negative integers j. Moreover,

$$
c^{\prime}(\mathcal{A}, \mathcal{D})(-1)=c(\mathcal{A}, \mathcal{D})(-1)-1
$$

Therefore, $c^{\prime}(\mathcal{A}, \mathcal{D})<c(\mathcal{A}, \mathcal{D})$.
(2) Suppose there is a marked $X \in \operatorname{ind} A^{\prime}$ which is not \mathcal{D}-isolated. Take $S=$ $\bigcup_{\mathbf{d} \in s(\mathcal{D})} S(X, \mathbf{d})$, with $S(X, \mathbf{d})$ the sets of Proposition 7.2. Take r the maximal of the numbers $\mathbf{d}(X)$ with $\mathbf{d} \in s(\mathcal{D})$. Consider now the unraveling $\theta: A \rightarrow B$ in X with respect to r and S. Clearly, the functor $\theta^{*}: \mathcal{A}^{B}-\operatorname{Mod} \rightarrow \mathcal{A}$-Mod is a $s(\mathcal{D})$-covering functor. We have $\theta(X)=X^{m} \oplus \bigoplus_{i, j} Z_{i, j}^{i}$. We shall see that X^{m} is \mathcal{D}^{B}-isolated. Take N an indecomposable in $\mathcal{A}^{B}-\bmod$ with $N\left(X^{m}\right) \neq 0$ and $\operatorname{dim} N \in s\left(\mathcal{D}^{B}\right)$, then $\operatorname{dim} \theta^{*}(N) \in s(\mathcal{D})$. We have $\theta^{*}(N)(X)=N\left(X^{m}\right) \oplus \bigoplus_{i, j} N\left(Z_{i, j}\right)^{i} \neq 0$. Take any eigenvalue of $N(x)$, this is an eigenvalue of $\theta^{*}(N)(x)$ which is not in S, therefore, it is not in $S(X, \mathbf{d})$ with $\mathbf{d}=\operatorname{dim} \theta^{*}(N)$. Therefore, by Proposition $7.2, \theta^{*}(N) \cong M$, with M concentrated in X. But this implies that $M(x)$ has only one eigenvalue which is not in S. Therefore, $M \cong \theta^{*}\left(N^{\prime}\right)$ with N^{\prime} concentrated in X^{m}. But $N \cong N^{\prime}$, this proves that X^{m} is \mathcal{D}^{B}-isolated. We have

$$
c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(\infty) \leq c(\mathcal{A}, \mathcal{D})(\infty)-1
$$

Therefore, $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)<c(\mathcal{A}, \mathcal{D})$.
(3) Suppose $a_{1}: X_{1} \rightarrow Y_{1}$ with $\delta\left(a_{1}\right)=0$ and $X_{1} \neq Y_{1}$. Take $\theta: A \rightarrow B$ the reduction of a_{1}. By Lemma 8.1, $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(\infty) \leq c(\mathcal{A}, \mathcal{D})(\infty)$. If there is a $\mathbf{d}^{\prime} \in \mathcal{D}^{B}$ such that $\left\|\theta^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|>\left\|\mathbf{d}^{\prime}\right\|$, by Lemma 8.2, $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)<c(\mathcal{A}, \mathcal{D})$. On the other hand if for all $\mathbf{d}^{\prime} \in \mathcal{D}^{B},\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|=\left\|\mathbf{d}^{\prime}\right\|$, then again by Lemma $8.2, c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(j)=c(\mathcal{A}, \mathcal{D})(j)$ for all non-negative integers j. We have that for all $\mathbf{d} \in \mathcal{D}, \mathbf{d}\left(X_{1}\right) \mathbf{d}\left(Y_{1}\right)=0$. This implies
that for all $\mathbf{d}^{\prime} \in \mathcal{D}^{B}, \mathbf{d}^{\prime}\left(Z_{2}\right)=0$. Take $\theta: B \rightarrow C$ the deletion of Z_{2}. By Lemma 8.3 we have $c\left(\left((\mathcal{A})^{B}\right)^{C},\left(\mathcal{D}^{B}\right)^{C}\right)(u)=c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(u)=c(\mathcal{A}, \mathcal{D})(u)$ for all $u \neq-1$. Moreover, $c\left(\left((\mathcal{A})^{B}\right)^{C},\left(\mathcal{D}^{B}\right)^{C}\right)(-1)=c(\mathcal{A}, \mathcal{D})(-1)-1$, therefore, $\left.c\left(\left(\mathcal{A}^{B}\right)^{C}\right),\left(\mathcal{D}^{B}\right)^{C}\right)<c(\mathcal{A}, \mathcal{D})$.
(4) $\delta\left(a_{1}\right)=v_{1}$. In this case take $\theta: A \rightarrow B$ the regularization of a_{1}. As in the above case if there is a $\mathbf{d}^{\prime} \in \mathcal{D}^{B}$ with $\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|>\left\|\mathbf{d}^{\prime}\right\|$, then $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)<c(\mathcal{A}, \mathcal{D})$. On the other hand if for all $\mathbf{d}^{\prime} \in \mathcal{D}^{B},\left\|t^{\theta}\left(\mathbf{d}^{\prime}\right)\right\|=\left\|\mathbf{d}^{\prime}\right\|$, by Lemma $8.1 c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(\infty)=c(\mathcal{A}, \mathcal{D})(\infty)$. By Lemma 8.2, $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(j)=c(\mathcal{A}, \mathcal{D})(j)$ for all non-negative integers j. Moreover, $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)(-1)=c(\mathcal{A}, \mathcal{D})(-1)-1$. Therefore, $c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)<c(\mathcal{A}, \mathcal{D})$.
(5) $\delta\left(a_{1}\right)=\sum_{s \in T} r_{s} v_{s}$ with $a_{1}: X_{1} \rightarrow Y_{1}, T$ the set of s such that $v_{s} \in \bar{V}\left(X_{1}, Y_{1}\right)$ and $r_{s} \in A^{\prime}\left(Y_{1}, Y_{1}\right) \otimes_{k}\left(A^{\prime}\left(X_{1}, X_{1}\right)\right)^{o p}=H$. If there is a marked object in ind A^{\prime} which is not \mathcal{D}-isolated we may proceed as in (2). Therefore, we may assume that all marked objects in ind A^{\prime} are \mathcal{D}-isolated. The ring H is isomorphic either to k, or to $k\left[x, f(x)^{-1}\right]$, or to $k\left[x, y, f(x)^{-1}, g(y)^{-1}\right]$. Let \mathcal{I} be the ideal of H generated by the elements $\left\{r_{s}\right\}_{s \in T}$. If $\mathcal{I} \neq H$, then $A^{\prime}\left(X_{1}, X_{1}\right) \neq \operatorname{kid}_{X_{1}}$ or $A^{\prime}\left(Y_{1}, Y_{1}\right) \neq i d_{Y_{1}}$. Moreover there are ideals $\mathcal{I}_{2} \subset A^{\prime}\left(Y_{1}, Y_{1}\right)$ and $\mathcal{I}_{1} \subset A^{\prime}\left(X_{1}, X_{1}\right)$ with $\mathcal{I} \subset \mathcal{I}_{2} \otimes_{k}\left(A^{\prime}\left(X_{1}, X_{1}\right)\right)^{o p}+A^{\prime}\left(Y_{1}, Y_{1}\right) \otimes_{k} \mathcal{I}_{1}$, $\mathcal{I}_{2} \neq A^{\prime}\left(Y_{1}, Y_{1}\right)$ and $\mathcal{I}_{1} \neq A^{\prime}\left(X_{1}, X_{1}\right)$. Thus, $\delta\left(a_{1}\right) \in \mathcal{I}_{2} \bar{V}\left(X_{1}, Y_{1}\right)+\bar{V}\left(X_{1}, Y_{1}\right) \mathcal{I}_{1}$ with $\mathcal{I}_{2} \neq A^{\prime}\left(Y_{1}, Y_{1}\right)$ and $\mathcal{I}_{1} \neq A^{\prime}\left(X_{1}, X_{1}\right)$.

Then if $A^{\prime}\left(X_{1}, X_{1}\right) \neq k i d_{X_{1}}$ and $A^{\prime}\left(Y_{1}, Y_{1}\right) \neq k i d_{Y_{1}}$, both X_{1} and Y_{1} are \mathcal{D}-isolated. But this contradicts (1) of Lemma 7.5 (recall that \mathcal{A} is not of wild representation type).

If $A^{\prime}\left(X_{1}, X_{1}\right) \neq k i d_{X_{1}}$ and $A^{\prime}\left(Y_{1}, Y_{1}\right)=k i d_{Y_{1}}$, then X_{1} is marked, so it is \mathcal{D}-isolated, we have $\mathcal{I}_{1} \neq A^{\prime}\left(X_{1}, X_{1}\right)$, and $\mathcal{I}_{2}=0$, but this contradicts (2) of Lemma 7.5. In case $A^{\prime}\left(X_{1}, X_{1}\right)=\operatorname{kid}_{X_{1}}$, then Y_{1} is a marked object in ind A^{\prime}, so it is \mathcal{D}-isolated and this contradicts (3) of Lemma 7.5.

Therefore, $\mathcal{I}=H$ and $1=\sum_{s \in T} u_{i} r_{i}$. This implies that there is a free basis of $\bar{V}\left(X_{1}, Y_{1}\right)$, with one of their elements equal to $\delta\left(a_{1}\right)$, then we may apply case (4).

Theorem 8.5. Let $\mathcal{A}_{0}=\left(A_{0}, V_{0}\right)$ be a layered bocs which is not of wild representation type. Then given a positive integer r there is a composition of reduction functors θ : $A_{0} \rightarrow B$ with \mathcal{A}^{B} a minimal layered bocs such that for all $M \in \mathcal{A}_{0}-\bmod$ with $|M| \leq r$ there exists $N \in \mathcal{B}-\operatorname{Mod}$ with $\theta^{*}(N) \cong M$.

Proof. Take \mathcal{D}_{0} the set of $\mathbf{d} \in \operatorname{Dim}\left(\mathcal{A}_{0}\right)$ such that $\sum_{X \in \operatorname{indA} A_{0}^{\prime}} \mathbf{d}(X) \leq r, \mathcal{D}_{0}$ is a finite set. Denote by \mathcal{P} the family of pairs $(\mathcal{A}, \mathcal{D})$, with \mathcal{A} a layered bocs, \mathcal{D} a finite subset of $\operatorname{Dim}(\mathcal{A})$ such that there is a functor, composition of reduction functors $\theta: A_{0} \rightarrow B$ with $t^{\theta}(\mathcal{D}) \subset \mathcal{D}_{0}$ and θ^{*} a $s\left(\mathcal{D}_{0}\right)$-covering functor.

Let $\mathcal{A}=(A, V)$ be a bocs with layer $\left(A^{\prime} ; \omega ; a_{1}, \ldots, a_{n} ; v_{1}, \ldots, v_{m}\right)$ and \mathcal{D} be a set of dimension vectors of \mathcal{A}, such that $(\mathcal{A}, \mathcal{D})$ is in \mathcal{P}.

For $X \in \operatorname{ind} A^{\prime}$ we denote by \mathbf{d}_{X} the dimension vector of \mathcal{A} such that $\mathbf{d}_{X}(X)=1$ and $\mathbf{d}_{X}(Z)=0$ for $Z \in \operatorname{ind} A^{\prime}$ with $Z \neq X$.

We will consider non-empty sets \mathcal{D} of dimension vectors of \mathcal{A} with the following two conditions:
(a) If $\mathbf{d} \in \mathcal{D}$ and $\mathbf{d}^{\prime}<\mathbf{d}$, then $\mathbf{d}^{\prime} \in \mathcal{D}$.
(b) If X is a marked object in ind A^{\prime} then $\mathbf{d}_{X} \in \mathcal{D}$.

Let $\theta: A \rightarrow B$ be a reduction functor which does not delete marked objects of $\operatorname{ind} A^{\prime}$ and such that $\theta^{*}: \operatorname{Mod}-\mathcal{A}^{B} \rightarrow \operatorname{Mod}-\mathcal{A}$ is a $s(\mathcal{D})$-covering functor, we claim that if \mathcal{D} satisfies properties (a) and (b), then \mathcal{D}^{B} also satisfies these properties. Let $\left(B^{\prime} ; \omega ; b_{1}, \ldots, b_{t} ; w_{1}, \ldots, w_{s}\right)$ be a layer for \mathcal{A}^{B}.

Here θ^{*} is a $s(\mathcal{D})$-covering functor, then \mathcal{D}^{B} is a non-empty set. Suppose now that \mathcal{D} satisfies properties (a) and (b). Property (a) for \mathcal{D}^{B}, follows from the fact that $\mathbf{d}^{\prime}<\mathbf{d}$ in \mathcal{D} implies $t^{\theta}\left(\mathbf{d}^{\prime}\right) \leq t^{\theta}(\mathbf{d})$.

For proving property (b) of \mathcal{D}^{B}, suppose W is a marked object in B^{\prime}. Then following the notation of Lemma 7.6, $W=X^{m}$ for some marked object $X \in \operatorname{ind} A^{\prime}$. Consider $\mathbf{d}_{X^{m}}$, dimension vector of \mathcal{A}^{B}. Then for $Z \in \operatorname{ind} A^{\prime}, Z \neq X$ we have $\theta(Z)=\bigoplus_{i} Z_{i}$ with $Z_{i} \in \operatorname{ind} B^{\prime}, Z_{i} \neq X^{m}$. Then $t^{\theta}\left(\mathbf{d}_{X^{m}}\right)(Z)=\sum_{i} \mathbf{d}_{X^{m}}\left(Z_{i}\right)=0$. We have $\theta(X)=$ $X^{m} \oplus \bigoplus_{j} Y_{j}$ with $Y_{j} \in \operatorname{ind} B^{\prime}, Y_{j} \neq X^{m}$, then $t^{\theta}\left(\mathbf{d}_{X^{m}}\right)(X)=\mathbf{d}_{X^{m}}\left(X^{m}\right)=1$. Consequently, $t^{\theta}\left(\mathbf{d}_{X^{m}}\right)=\mathbf{d}_{X} \in \mathcal{D}$, thus $\mathbf{d}_{X^{m}} \in \mathcal{D}^{B}$, proving our claim.

Now, suppose \mathcal{D} satisfies properties (a) and (b), and $\theta: A \rightarrow B$ is the deletion of all objects $Z \in \operatorname{ind} A^{\prime}$ such that $\mathbf{d}(Z)=0$ for all $\mathbf{d} \in \mathcal{D}$. Since \mathcal{D} satisfies property (b), then θ does not delete marked objects. Therefore, \mathcal{D}^{B} satisfies properties (a) and (b).

Now, if \mathcal{A}^{B} is not a minimal bocs, by Lemma 8.4 there is a reduction functor $\rho: B \rightarrow$ A_{1} such that ρ^{*} is a $s\left(\mathcal{D}^{B}\right)$-covering functor with

$$
c\left(\left(\mathcal{A}^{B}\right)^{A_{1}},\left(\mathcal{D}^{B}\right)^{A_{1}}\right)<c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right),
$$

or there exists a new layer for \mathcal{A}^{B} such that

$$
c^{\prime}\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)<c\left(\mathcal{A}^{B}, \mathcal{D}^{B}\right)
$$

By the proof of Lemma 8.4, we know that ρ does not delete marked objects, then $\left(\mathcal{D}^{B}\right)^{A_{1}}$ satisfies properties (a) and (b). Now for any $Z \in \operatorname{ind} B^{\prime}$ there exists some $\mathbf{d} \in \mathcal{D}^{B}$ with $\mathbf{d}(Z) \neq 0$, thus $\mathbf{d}_{Z} \leq \mathbf{d}$, so by property $(a), \mathbf{d}_{Z} \in \mathcal{D}^{B}$, then \mathcal{D}^{B} also satisfies property (b) with respect to the new layer.

Then starting from $\left(\mathcal{A}_{0}, \mathcal{D}_{0}\right)$, we can construct a sequence of composition of reduction functors:

$$
A_{0} \xrightarrow{\theta_{0}} A_{1} \xrightarrow{\theta_{1}} A_{2} \rightarrow \ldots \xrightarrow{\theta_{l-1}} A_{l},
$$

with sets of dimension vectors $\mathcal{D}_{i}=\left(\mathcal{D}_{i-1}\right)^{A_{i}}$ of $\mathcal{A}_{i}=\left(\mathcal{A}_{i-1}\right)^{A_{i}}$ having conditions (a) and (b), such that all functors θ_{i}^{*} are $s\left(\mathcal{D}_{i}\right)$-covering functors. Moreover, we have a strictly decreasing sequence in \mathcal{H},

$$
c\left(\mathcal{A}_{0}, \mathcal{D}_{0}\right)>c\left(\mathcal{A}_{1}, \mathcal{D}_{1}\right)>\ldots>c\left(\mathcal{A}_{l}, \mathcal{D}_{l}\right)
$$

In \mathcal{H} we can not have infinite strictly decreasing sequences, so there is a sequence of reduction functors as before with \mathcal{A}_{l} a minimal bocs, proving our result.

9 Hom-spaces in $\mathcal{D}(\Lambda)-\bmod$ and in $P(\Lambda)$

We may observe that if Λ_{1} and Λ_{2} are two Morita-equivalent finite-dimensional k-algebras, then Theorem 1.2 is valid for Λ_{1} if and only if it is valid for Λ_{2}. Therefore, without loss of generality, we assume in the rest of the paper that Λ is a basic algebra.

Assume k is an algebraically closed field and $1=\sum_{i=1}^{n} e_{i}$ is a decomposition of the unit element of Λ as a sum of pairwise orthogonal primitive idempotents. Then we have ${ }_{\Lambda} \Lambda=\bigoplus_{i=1}^{n} \Lambda e_{i}$ a decomposition as sum of indecomposable projective Λ-modules and $\Lambda=S \oplus J$ a decomposition as a direct sum of S-S-bimodules, with $J=\operatorname{rad}(\Lambda)$, $S=k e_{1} \oplus \ldots \oplus k e_{n}$ a basic semisimple algebra. We can construct a basis $T=\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ of J with $\alpha_{j} \in e_{s(j)} \operatorname{rad} \Lambda e_{t(j)}$, inductively extending a basis of J^{i} to J^{i-1} by adding elements each of which lies in $e_{s} J e_{t}$ for some s and t. In the following, if L is a right S-modulo we denote its dual with respect to S by $L^{*}=\operatorname{Hom}_{S}(L, S)$. For each element $\alpha_{j} \in e_{s(j)} T e_{t(j)}$ we define the element $\alpha_{j}^{*} \in J^{*}$, by $\alpha_{j}^{*}\left(\alpha_{i}\right)=0$ for $\alpha_{i} \neq \alpha_{j}$ and $\alpha_{j}^{*}\left(\alpha_{j}\right)=e_{t(j)}$, clearly $\alpha_{j}^{*} \in e_{t(j)} J^{*} e_{s(j)}$ the elements α_{j}^{*} form a basis for J^{*}.

In the following, if U_{1}, U_{2}, U_{3} are k-vector spaces we denote by $\left(\begin{array}{cc}U_{1} & 0 \\ U_{2} & U_{3}\end{array}\right)$, the set of matrices of the form $\left(\begin{array}{ll}u_{1} & 0 \\ u_{2} & u_{3}\end{array}\right)$, with $u_{i} \in U_{i}, i=1,2,3$. With the usual sum of matrices and multiplication of scalars in k by matrices, the above set is a k-vector space.

In order to define the Drozd's bocs of Λ we need to consider the following two matrix algebras $A=\left(\begin{array}{cc}S & 0 \\ J^{*} & S\end{array}\right)$, and $A^{\prime}=\left(\begin{array}{cc}S & 0 \\ 0 & S\end{array}\right)$. We are going to define a coalgebra V over A which is isomorphic to the coalgebra given in Proposition 6.1 of [5]. First consider the morphism of S - S-bimodules:

$$
m: J^{*} \xrightarrow{\nu^{*}}\left(J \otimes_{S} J\right)^{*} \cong J^{*} \otimes_{S} J^{*}
$$

where $\nu: J \otimes_{S} J \rightarrow J$ is the multiplication. We have the k-vector spaces $W_{0}=\left(\begin{array}{cc}0 & 0 \\ J^{*} & 0\end{array}\right)$, and $W_{1}=\left(\begin{array}{cc}J^{*} & 0 \\ 0 & J^{*}\end{array}\right)$, the elements of both vector spaces can be multiplied as matrices by the right and the left by elements of A^{\prime}, thus W_{0} and W_{1} are $A^{\prime}-A^{\prime}$-bimodules.

We have a morphism of $A^{\prime}-A^{\prime}$-bimodules,

$$
\underline{m}: W_{1} \rightarrow W_{1} \otimes_{A^{\prime}} W_{1}
$$

such that its composition with the isomorphism

$$
W_{1} \otimes_{A^{\prime}} W_{1} \cong\left(\begin{array}{cc}
J^{*} \otimes_{S} J^{*} & 0 \\
0 & J^{*} \otimes_{S} J^{*}
\end{array}\right)
$$

is the map that sends $\left(\begin{array}{l}h \\ 0 \\ 0\end{array}\right)$ to $\left(\begin{array}{cc}m(h) & 0 \\ 0 & m(g)\end{array}\right)$.
Now, consider the k-vector space $\bar{V}=\left(\begin{array}{cc}J^{*} & 0 \\ M \oplus M & J^{*}\end{array}\right)$, with $M=J^{*} \otimes_{S} J^{*}$, this is an A - A-bimodule with the following actions of A over \bar{V} :

$$
\begin{aligned}
& \left(\begin{array}{cc}
s_{1} & 0 \\
g & s_{2}
\end{array}\right)\left(\begin{array}{cc}
h_{1} & 0 \\
\left(w_{1}, w_{2}\right) & h_{2}
\end{array}\right)=\left(\begin{array}{cc}
s_{1} h_{1} & 0 \\
\left(s_{2} w_{1}+g \otimes h_{1}, s_{2} w_{2}\right) & s_{2} h_{2}
\end{array}\right), \\
& \left(\begin{array}{cc}
h_{1} & 0 \\
\left(w_{1}, w_{2}\right) & h_{2}
\end{array}\right)\left(\begin{array}{cc}
s_{1} & 0 \\
g & s_{2}
\end{array}\right)=\left(\begin{array}{cc}
h_{1} s_{1} & 0 \\
\left(w_{1} s_{1}, w_{2} s_{1}+h_{2} \otimes g\right) & h_{2} s_{2}
\end{array}\right) .
\end{aligned}
$$

The k-linear map $\delta: A \rightarrow \bar{V}$ given by

$$
\delta\left(\left(\begin{array}{ll}
s_{1} & 0 \\
h & s_{2}
\end{array}\right)\right)=\left(\begin{array}{cc}
0 & 0 \\
(m(h),-m(h)) & s_{2}
\end{array}\right)
$$

is a derivation, thus it gives an extension of $A-A$-bimodules:

$$
0 \rightarrow \bar{V} \xrightarrow{i} V \xrightarrow{\epsilon} A \rightarrow 0
$$

where $V=\bar{V} \oplus A$ as right A-modules, and putting $\omega=(0,1)$, the left action of A over V is given by $a(v+\omega b)=a v+\delta(a) b+\omega a b$, for $a, b \in A, v \in \bar{V}$. Here \bar{V} is generated by W_{1} as $A^{\prime}-A^{\prime}$-bimodule. We have:
(a) $A \cong W_{0}^{\otimes}=A^{\prime} \oplus W_{0}$.
(b) The multiplication map $A \otimes_{A^{\prime}} W_{1} \otimes_{A^{\prime}} A \rightarrow \bar{V}$ is an isomorphism.

We have a morphism of A - A-bimodules $\mu: V \rightarrow V \otimes_{A} V$, with $\mu(\omega)=\omega \otimes \omega$ and for $v \in W_{1}, \mu(v)=v \otimes \omega+\omega \otimes v+\lambda(v)$, where λ is the composition of morphisms:

$$
W_{1} \stackrel{m}{\Rightarrow} W_{1} \otimes_{A^{\prime}} W_{1} \rightarrow \bar{V} \otimes_{A} \bar{V} \rightarrow V \otimes_{A} V
$$

The A - A-bimodule V is a coalgebra over A with counit ϵ and comultiplication μ.
We have $1=\sum_{i=1, j=1}^{n, 2} f_{i, j}$ a decomposition of the unit of A as a sum of pairwise orthogonal primitive idempotents, where $f_{i, 2}=\left(\begin{array}{cc}e_{i} & 0 \\ 0 & 0\end{array}\right)$ and $f_{i, 1}=\left(\begin{array}{ll}0 & 0 \\ 0 & e_{i}\end{array}\right)$.

Denote by D the full subcategory of A-proj whose objects are all finite direct sums of objects $A f_{i, j}$. By D^{\prime} we denote the subcategory of D with the same objects as D and such that $D^{\prime}(X, X)=k i d_{X}$ for all $X \in \operatorname{ind} D$ and $D^{\prime}(X, Y)=0$ for $X, Y \in \operatorname{ind} D$ with $X \neq Y$. If $A f$ and $A g$ are in ind D, and $x \in f A g$ we denote by $\nu_{x}: A f \rightarrow A g$ the right multiplication by x.

Now, if W is an A - A-bimodule we denote by $\vartheta(W)$ the $D-D$ bimodule given by $\vartheta(W)(A f, A g)=f W g$ and if $\nu_{x}: A f^{\prime} \rightarrow A f, \nu_{y}: A g \rightarrow A g^{\prime}$ are morphisms then $\vartheta(W)\left(\nu_{x}, \nu_{y}\right): \vartheta(W)(A f, A g) \rightarrow \vartheta(W)\left(A f^{\prime}, A g^{\prime}\right)$ is given by $\vartheta(W)\left(\nu_{x}, \nu_{y}\right)(w)=x w y$ for $w \in \vartheta(W)(A f, A g)$. Similarly, for L a right A-module and M a left A-module we define functors, $\vartheta(L): D \rightarrow \operatorname{Mod}-k$ and $\vartheta(M): D^{o p} \rightarrow \operatorname{Mod}-k$. If $f: W_{1} \rightarrow W_{2}$ is a morphism of A - A-bimodules we have an induced morphism $\vartheta(f): \vartheta\left(W_{1}\right) \rightarrow \vartheta\left(W_{2}\right)$. If $g: W_{2} \rightarrow W_{3}$ is a morphism of A - A-bimodules then $\vartheta\left(f_{2} f_{1}\right)=\vartheta\left(f_{2}\right) \vartheta\left(f_{1}\right)$. The morphisms between left A-modules and right A-modules induce also morphisms between the corresponding functors.

Fixed L a right A-module we have $F: A$-mod $\rightarrow \operatorname{Mod}-k$, given in objects by $F(M)=$ $\vartheta(L) \otimes_{D} \vartheta(M)$ and if $f: M_{1} \rightarrow M_{2}$ is a morphism of left A-modules, then $F(f)=1 \otimes \vartheta(f)$. The functor F is right exact and commutes with direct sums. Consequently, $F \cong W \otimes_{A}$ M, with W the right A-module $\vartheta(L)(A) \cong L$, therefore $\vartheta(L) \otimes_{D} \vartheta(M) \cong L \otimes_{A} M$ an isomorphism natural in L and M.

Now, suppose V_{1} and V_{2} are A - A-bimodules then for $A f, A g \in \operatorname{ind} D$ we have $\left(\vartheta\left(V_{1}\right) \otimes_{D}\right.$ $\left.\vartheta\left(V_{2}\right)\right)(A f, A g)=\vartheta\left(V_{1}\right)(A f,-) \otimes_{D} \vartheta\left(V_{2}\right)(-, A g) \cong \vartheta\left(f V_{1}\right) \otimes_{D} \vartheta\left(V_{2} g\right) \cong f V \otimes_{A} V g$. Now, it is easy to see that in fact we have :

$$
\text { (c) } \quad \vartheta\left(V_{1}\right) \otimes_{D} \vartheta\left(V_{2}\right) \cong \vartheta\left(V_{1} \otimes_{A} V_{2}\right)
$$

The morphism of A-bimodules $\mu: V \rightarrow V \otimes_{A} V$ induces a morphism of D - D-bimodules $\vartheta(\mu): \vartheta(V) \rightarrow \vartheta(V) \otimes_{D} \vartheta(V)$. In a similar way the morphism of A - A bimodules $\epsilon: V \rightarrow A$ induces a morphism of D-D-bimodules $\vartheta(\epsilon): \vartheta(V) \rightarrow \vartheta\left({ }_{A} A_{A}\right) \cong D$. Now it is clear that $\mathcal{D}(\Lambda)=\left(D, V_{D}\right)$ with $V_{D}=\vartheta(V)$ is a bocs, the Drozd's bocs of Λ.

The bocs $\mathcal{D}(\Lambda)$ is isomorphic to the one given in Theorem 4.1 of [8] (see also the bocs given in the proof of Theorem 11 in [7]). We have now a grouplike ω_{D} relative to D^{\prime}, given by $\omega_{A f}=f \omega f \in \vartheta(V)(A f, A f)$. Observe that we have $\vartheta(\mu)\left(\omega_{A f}\right)=\omega_{A f} \otimes \omega_{A f}$. The set of elements $\omega_{A f}$ is called a normal section in [8].

We are now going to construct a layer for $\mathcal{D}(\Lambda)$, with this purpose for each $i=1, \ldots, n$, consider the following elements of D and $V_{D}=\vartheta(V)$,
$b_{i}=\nu_{x(i)} \in D\left(A f_{t(i), 1}, A f_{s(i), 2}\right)=\operatorname{Hom}_{A}\left(A f_{t(i), 1}, A f_{s(i), 2}\right), x(i)=\left(\begin{array}{cc}0 & 0 \\ \alpha_{i}^{*} & 0\end{array}\right) ; v_{i, 1}=$ $\left(\begin{array}{cc}0 & 0 \\ 0 & \alpha_{i}^{*}\end{array}\right) \in \vartheta(V)\left(A f_{t(i), 1}, A f_{s(i), 1}\right)=f_{t(i), 1} V f_{s(i), 1}, v_{i, 2}=\left(\begin{array}{cc}\alpha_{i}^{*} & 0 \\ 0 & 0\end{array}\right)$, an element in $\vartheta(V)\left(A f_{t(i), 2}, A f_{s(i), 2}\right)$ $f_{t(i), 2} V f_{s(i), 2}$.

Consider the set $L=\left(D^{\prime} ; \omega_{D} ; b_{1}, \ldots, b_{n} ; v_{1,1}, \ldots, v_{n, 1}, v_{1,2}, \ldots, v_{n, 2}\right)$. We will see that L is
a layer for $\mathcal{D}(\Lambda)$. Here D^{\prime} is a minimal category, so L. 1 is satisfied. Properties (a), (b) and (c) imply L. 2 and L.4. By (1) of Proposition 3.1 of [8], we have L.3.

For proving $L .5$ observe that $m\left(\alpha_{i}^{*}\right)=\sum_{s, t} \alpha_{i}^{*}\left(\alpha_{s} \alpha_{t}\right) \alpha_{t}^{*} \otimes \alpha_{s}^{*}$, then

$$
\begin{gathered}
\delta_{1}\left(b_{i}\right)=V\left(1, b_{i}\right) \omega_{X_{t(i), 1}}-V\left(b_{i}, 1\right) \omega_{X_{s(i), 2}}=-\delta\left(x_{i}\right)= \\
\sum_{s, t} \alpha_{i}^{*}\left(\alpha_{s} \alpha_{t}\right)\left(v_{t, 1} x_{s}-x_{t} v_{s, 2}\right)=\sum_{s, t} \alpha_{i}^{*}\left(\alpha_{s} \alpha_{t}\right)\left(b_{s} v_{t, 1}-v_{s, 2} b_{t}\right)
\end{gathered}
$$

Then by our choice of the α_{i}, we have $\alpha_{i}^{*}\left(\alpha_{s} \alpha_{t}\right)=0$ for $s \geq i$ or $t \geq i$. This proves L.5, therefore L is a layer for $\mathcal{D}(\Lambda)$.

In the following we put $\mathcal{D}(\Lambda)=\mathcal{D}$ and $X_{i, j}=A f_{i, j}$ for $i=1, \ldots, n ; j=1,2$.
There is an equivalence of categories $\Xi: \mathcal{D}$ - $\operatorname{Mod} \rightarrow P^{1}(\Lambda)$. If $M \in \mathcal{D}$ - Mod then,

$$
\Xi(M): \bigoplus_{i=1}^{n} \Lambda e_{i} \otimes_{k} M\left(X_{1, i}\right) \rightarrow \bigoplus_{i=1}^{n} \Lambda e_{i} \otimes_{k} M\left(X_{2, i}\right)
$$

such that for $m_{i} \in M\left(X_{1, i}\right)$, and $c_{i} \in \Lambda e_{i}$,

$$
\Xi(M)\left(\sum_{i=1}^{n} c_{i} \otimes m_{i}\right)=\sum_{j=1}^{n} c_{s(j)} \alpha_{j} \otimes M\left(b_{j}\right)\left(m_{s(j)}\right) .
$$

For a morphism of the form $f=\left(f^{0}, f^{1}\right): M \rightarrow N$ in \mathcal{D}-Mod, $\Xi(f)$ is given by the pair of morphisms:

$$
\Xi(f)_{u}: \bigoplus_{i=1}^{n} \Lambda e_{i} \otimes_{k} M\left(X_{u, i}\right) \rightarrow \bigoplus_{i=1}^{n} \Lambda e_{i} \otimes_{k} N\left(X_{u, i}\right), \quad u=1,2
$$

such that for $m_{i} \in M\left(X_{i, u}\right)$ and $c_{i} \in \Lambda e_{i}$ we have

$$
\Xi(f)_{u}\left(\sum_{i=1}^{n} c_{i} \otimes m_{i}\right)=\sum_{i=1}^{n} c_{i} \otimes f_{X_{i, u}}^{0}\left(m_{i}\right)+\sum_{j=1}^{n} c_{s(j)} \alpha_{j} \otimes f^{1}\left(v_{j, u}\right)\left(m_{s(j)}\right)
$$

Observe that if M is a proper \mathcal{D} - $k(x)$-bimodule then $\Xi(M)$ is an object in $P^{1}\left(\Lambda^{k(x)}\right)$, and if $f: M \rightarrow N$ is a morphism between proper \mathcal{D} - $k(x)$-bimodules then $\Xi(f)$ is a morphism in $P^{1}\left(\Lambda^{k(x)}\right)$. Therefore Ξ induces an equivalence:

$$
\Xi^{k(x)}: \mathcal{D}-k(x)-\operatorname{Mod}^{p} \rightarrow P^{1}\left(\Lambda^{k(x)}\right)
$$

Lemma 9.1. There are constants l_{1} and l_{2} such that if we have an almost split sequence in $\mathcal{D}(\Lambda)-\bmod$ starting in H^{\prime} and ending in H such that ΞH is not \mathcal{E}-injective, then $\left|H^{\prime}\right| \leq l_{1}|H|$ and $|H| \leq l_{2}\left|H^{\prime}\right|$.

Proof. We put $l=\operatorname{dim}_{k} \Lambda$. Suppose $\Xi H=f: P_{1} \rightarrow P_{2}$, here ΞH is indecomposable and it is not \mathcal{E}-injective. Therefore, ΞH has not direct summands of the form $P \rightarrow 0$, this
implies that $\operatorname{ker} f$ is contained in $\operatorname{rad} P_{1}$, then f induces a monomorphism $P_{1} / \operatorname{rad} P_{1} \rightarrow$ $\operatorname{Im} f / \operatorname{rad} \operatorname{Im} f$, consequently $\operatorname{dim}_{k}\left(P_{1} / \operatorname{rad} P_{1}\right) \leq \operatorname{dim}_{k} \operatorname{Im} f \leq \operatorname{dim}_{k} P_{2}$. Then we have:

$$
\operatorname{dim}_{k} \operatorname{Cok}(\Xi H) \leq \operatorname{dim}_{k} P_{2} \leq \operatorname{dim}_{k} P_{1}+\operatorname{dim}_{k} P_{2} \leq|H| l .
$$

Moreover:

$$
\operatorname{dim}_{k} P_{2} \leq l \operatorname{dim}_{k}\left(P_{2} / \operatorname{rad} P_{2}\right) \leq l \operatorname{dim}_{k} \operatorname{Cok}(\Xi H)
$$

and $|H|=\operatorname{dim}_{k}\left(P_{1} / \operatorname{rad} P_{1}\right)+\operatorname{dim}_{k}\left(P_{2} / \operatorname{rad} P_{2}\right) \leq \operatorname{dim}_{k} P_{2}+\operatorname{dim}_{k} \operatorname{Cok}(\Xi H)$ $\leq(1+l) \operatorname{dim}_{k} \operatorname{Cok}(\Xi H)$.

On the other hand, there is a constant l_{0} such that for all non projective indecomposable $M \in \Lambda-\bmod , \operatorname{dim}_{k} M \leq l_{0} \operatorname{dim}_{k} D \operatorname{tr} M$ (see proof of Theorem D in [5]). By Propositions 3.10 and 3.13, $\operatorname{Cok}\left(\Xi H^{\prime}\right) \cong \operatorname{Dtr} \operatorname{Cok}(\Xi H)$. Then $\operatorname{dim}_{k} \operatorname{Cok}\left(\Xi H^{\prime}\right) \leq l_{0} \operatorname{dim}_{k} \operatorname{Cok}(\Xi H)$. Therefore :

$$
\begin{gathered}
\left|H^{\prime}\right| \leq \operatorname{dim}_{k}\left(\operatorname{Cok}\left(\Xi H^{\prime}\right)\right)(1+l) \leq \\
l_{0} \operatorname{dim}_{k}(\operatorname{Cok}(\Xi H))(1+l) \leq l_{0}|H| l(1+l)=l_{1}|H| .
\end{gathered}
$$

The second part of our statement is proved in a similar way.
Theorem 9.2. Let $\mathcal{D}=(D, V)$ be the Drozd's bocs of a tame algebra Λ. Then $(\mathcal{D}$ $\left.\operatorname{Mod}, \mathcal{E}_{\mathcal{D}}\right)$ is an exact category, with $\mathcal{E}_{\mathcal{D}}$ the class of proper exact sequences. This exact category restricted to \mathcal{D}-mod has almost split sequences in the sense of Definition 2.5. Given a positive integer r, there is a composition of reduction functors $\theta: D \rightarrow B$ with $\mathcal{B}=\left(B, V_{B}\right)=\mathcal{D}^{B}$ a minimal layered bocs having the following properties.
(i) For any indecomposable $M \in \mathcal{D}$-mod with $|M| \leq r$ there is a $N \in \mathcal{B}$-mod with $M \cong \theta^{*}(N)$. Moreover any proper almost split sequence in $\mathcal{D}-\bmod$ starting or ending in an indecomposable M with $|M| \leq r$ is the image under θ^{*} of an almost split sequence (in the sense of Definition 2.1) in \mathcal{B}-mod.
(ii) The image under θ^{*} of a proper exact sequence in \mathcal{B}-mod is a proper exact sequence in \mathcal{D}-mod.
(iii) The image under θ^{*} of a proper almost split sequence in \mathcal{B}-mod is an almost split sequence in \mathcal{D}-mod.
(iv) Let $Z_{1}, \ldots, Z_{\text {s }}$ be all the marked objects of ind B with

$$
R_{i}=B\left(Z_{i}, Z_{i}\right)=k\left[x, h_{i}(x)^{-1}\right], \quad h_{i}(x) \in k[x],
$$

and $M\left(Z_{i}, p, m\right), Q_{Z_{i}}$, the indecomposable objects in \mathcal{B}-Mod defined in section 5 and 6 respectively. Then $B_{i}=\operatorname{Hom}_{B}\left(Z_{i},-\right)$ is a B - R_{i}-bimodule such that $Q_{Z_{i}} \cong B_{i} \otimes_{R_{i}} k(x)$ and $M\left(Z_{i}, p, m\right) \cong B_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$.

Take the D - R_{i}-bimodule $D_{i}=\theta^{*}\left(B_{i}\right)$, then

$$
\theta^{*}\left(Q_{Z_{i}}\right) \cong D_{i} \otimes_{R_{i}} k(x), \quad \text { and } \quad \theta^{*}\left(M\left(Z_{i}, p, n\right)\right) \cong D_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)
$$

Moreover, $\operatorname{dim}\left(D_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)\right)=m \operatorname{dim}_{k(x)}\left(D_{i} \otimes_{R_{i}} k(x)\right)$.

Proof. There is an equivalence $\Xi: \mathcal{D}-\operatorname{Mod} \rightarrow P^{1}(\Lambda)$, observe that if (a) is a pair of composable morphisms $X \rightarrow E \rightarrow Y$ in \mathcal{D}-Mod, $\Xi(a)$ is a sequence in the class \mathcal{E} in $P^{1}(\Lambda)$ if and only if (a) is a proper exact sequence. Therefore if \mathcal{E}_{1} is the class of proper exact sequences in \mathcal{D}-mod, the pair (\mathcal{D}-mod, \mathcal{E}_{1}) is an exact category with almost split sequences, moreover if (a) is a pair of composable morphisms in \mathcal{D}-mod, $\Xi(a)$ is an almost split \mathcal{E}-sequence if and only if (a) is an almost split \mathcal{E}_{1}-sequence.

Take the number $r(1+l)$, with $l=\max \left\{l_{1}, l_{2}\right\}, l_{1}, l_{2}$ the constants of Lemma 9.1. Then by Theorem 8.5 there is a composition of reduction functors $\theta_{1}: D \rightarrow C$ with $\mathcal{C}=\left(C, V_{C}\right)=\mathcal{D}^{C}$ a minimal bocs with layer $\left(C^{\prime} ; \omega ; w_{1}, \ldots, w_{s}\right)$ such that the full and faithful functor $\theta_{1}^{*}: \mathcal{C}$-Mod $\rightarrow \mathcal{D}$-Mod has the property that for all $M \in \mathcal{D}$-Mod with $|M| \leq r$, there is a $N \in \mathcal{C}$-Mod with $\left(\theta_{1}\right)^{*}(N) \cong M$. Take now $\theta_{2}: C \rightarrow B$ the deletion of all marked indecomposable objects $Z \in \operatorname{ind} C$ with $\left|t^{\theta_{1}}\left(\mathbf{d}_{Z}\right)\right|>r$, where $\mathbf{d}_{Z} \in \operatorname{Dim}(\mathcal{C})$ with $\mathbf{d}_{Z}(Z)=1$, and $\mathbf{d}_{Z}\left(Z^{\prime}\right)=0$ for $Z^{\prime} \neq Z, Z^{\prime} \in \operatorname{ind} C$. Then we have $\theta=\theta_{2} \theta_{1}: D \rightarrow B$ and $\mathcal{B}=\left(B, V_{B}\right)=\left((\mathcal{D})^{C}\right)^{B}=\mathcal{D}^{B}$ is a minimal layered bocs.
(i) Take an indecomposable object $M \in \mathcal{D}$-mod with $|M| \leq r$, then there is a $N_{1} \in \mathcal{C}$ \bmod with $\left(\theta_{1}\right)^{*}\left(N_{1}\right) \cong M$. Since N_{1} is an indecomposable object in the minimal bocs \mathcal{C}, then either $M \cong M(Z, p, m)$ for some marked $Z \in \operatorname{ind} C$ or $M \cong S_{Z}$ for some nonmarked $Z \in \operatorname{ind} C$. In the first case $\left|t^{\theta_{1}}\left(\operatorname{dim} N_{1}\right)\right|=m\left|t^{\theta_{1}}\left(\mathbf{d}_{Z}\right)\right|=|\operatorname{dim} M| \leq r$. Thus, $\left|t^{\theta_{1}}\left(\mathbf{d}_{Z}\right)\right| \leq r$. Consequently, in both cases $N_{1}(W)=0$ for W a marked object in ind C with $\left|t^{\theta_{1}}\left(\mathbf{d}_{W}\right)\right|>r$, then there is a $N \in \mathcal{B}$-mod with $N_{1} \cong\left(\theta_{2}\right)^{*}(N)$. Therefore $M \cong \theta^{*}(N)$ proving the first part of (i). For the second part take $M \rightarrow E \rightarrow L$ a proper almost split sequence in \mathcal{D}-mod, then if either M or L have dimension equal or smaller than r, all indecomposable summands of the other terms of the sequence have dimension equal or smaller than $(l+1) r$, consequently our proper almost split sequence is isomorphic to the image under $\left(\theta_{1}\right)^{*}$ of an almost split sequence (in the sense of Definition 2.1) (a_{1}): $M_{1} \rightarrow E_{1} \rightarrow L_{1}$ in \mathcal{C}-mod. Then if M_{1} or L_{1} is an object of the form $M(Z, p, m)$, with Z a marked object in ind C, we have $M_{1} \cong L_{1}$ and $E_{1}=M(Z, p, m-1) \oplus M(Z, p, m+1)$. Here $|M(Z, p, m)| \leq r$ implies $\left|t^{\theta_{1}}\left(\mathbf{d}_{Z}\right)\right| \leq r$, then the sequence $\left(a_{1}\right)$ is the image under $\left(\theta_{2}\right)^{*}$ of an almost split sequence in \mathcal{B}-mod. In case that M_{1} or L_{1} is an object of the form S_{Z} for a non marked object in ind C, then all other terms of $\left(a_{1}\right)$ are sums of objects of the form S_{W} with W a non-marked object in indC. Therefore, again $\left(a_{1}\right)$ is the image under $\left(\theta_{2}\right)^{*}$ of an almost split sequence in \mathcal{B}-mod. This proves the second part of (i).
(ii) Follows from Lemma 7.7.
(iii) Take now Z a marked indecomposable in B and $M(Z, p, 1) \in \mathcal{B}$-mod with p a fixed prime element in $R_{Z}=B(Z, Z)$. By definition of B we have $\left|t^{\theta}\left(\mathbf{d}_{Z}\right)\right| \leq r$ and $\theta_{2}(Z)=Z \in C$. There is a non-trivial proper sequence ending and starting in $M(Z, p, 1)$, since θ^{*} is a full and faithful functor, there is a non-trivial proper exact sequence ending and starting in $\theta^{*}(M(Z, p, 1))$. Then $H=\theta^{*}(M(Z, p, 1))$ is not \mathcal{E}_{1}-projective. Therefore, there is an almost split sequence $(a): H^{\prime} \rightarrow H_{0} \rightarrow H$. By the second part of (i) the sequence (a) is the image under θ^{*} of an almost split sequence (b) in \mathcal{B}-mod. Then using Proposition 2.6 we obtain (iii).
(iv) The first part follows from the definition of θ^{*}. For proving the second part take
X an indecomposable object in D and assume $\theta(X)=\bigoplus_{j=1}^{t} n_{j} Z_{j}$, where Z_{1}, \ldots, Z_{j} are all indecomposable objects of B. Then for each $i \in\{1, \ldots, s\}$:

$$
\begin{gathered}
\operatorname{dim}_{k(x)}\left(\theta^{*} B_{i} \otimes_{R_{i}} k(x)\right)(X)=\operatorname{dim}_{k(x)}\left(B\left(Z_{i}, \theta(X)\right) \otimes_{R_{i}} k(x)\right)= \\
\operatorname{dim}_{k(x)}\left(R_{i}^{n_{i}} \otimes_{R_{i}} k(x)\right)=n_{i} .
\end{gathered}
$$

On the other hand:

$$
t^{\theta}\left(\mathbf{d}_{Z_{i}}\right)(X)=\mathbf{d}_{Z_{i}}(\theta(X))=n_{i}
$$

Therefore $t^{\theta}\left(\mathbf{d}_{Z_{i}}\right)=\operatorname{dim}\left(\theta^{*} B_{i} \otimes_{R_{i}} k(x)\right)$. Then

$$
\operatorname{dim}\left(D_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)\right)=\operatorname{dim}\left(\theta^{*}\left(M\left(Z_{i}, p, m\right)\right)=m t^{\theta}\left(\mathbf{d}_{Z_{i}}\right)\right.
$$

proving (iv).
In the following we put $\Lambda^{k(x)}=\Lambda \otimes_{k} k(x)$.
Definition 9.3. If R is a k-algebra a $P(\Lambda)$ - R-bimodule is a morphism $X=f_{X}: P_{X} \rightarrow$ Q_{X}, where P_{X} and Q_{X} are Λ - R-bimodules which are projectives as left Λ-modules and f_{X} is a morphism of Λ - R-bimodules. If Z is a left R-module, $X \otimes_{R} Z=f \otimes 1: P_{X} \otimes_{R} Z \rightarrow$ $Q_{X} \otimes_{R} Z$.

We recall from section 3 that if $X: P_{X} \rightarrow Q_{X}$ is an object in $p^{1}(\Lambda)$, then $\operatorname{dim} X=$ $\left(\operatorname{dim}\left(\operatorname{top} P_{X}\right), \operatorname{dim}\left(\operatorname{top} Q_{X}\right)\right)$. Then if $H^{\prime} \in \mathcal{D}-\bmod , \operatorname{dim}\left(\Xi H^{\prime}\right)=\operatorname{dim} H^{\prime}$. In case $X \in$ $p^{1}\left(\Lambda^{k(x)}\right)$ we put $\operatorname{dim}_{k(x)} X=\left(\operatorname{dim}_{k(x)}\left(\operatorname{top} P_{X}\right), \operatorname{dim}_{k(x)}\left(\operatorname{top} Q_{X}\right)\right)$, then if $H^{\prime} \in \mathcal{D}-k(x)-$ mod, we have $\operatorname{dim}_{k(x)}\left(\Xi H^{\prime}\right)=\operatorname{dim}_{k(x)} H^{\prime}$.

An indecomposable object $H=f_{H}: P_{H} \rightarrow Q_{H}$ in $P(\Lambda)$ which is not in $p(\Lambda)$ is called generic if P_{H} and Q_{H} have finite length as $\operatorname{End}_{P(\Lambda)}(H)$-modules. A structure of $P(\Lambda)$ - $k(x)$-bimodule for H is called admissible in case $\operatorname{End}_{P(\Lambda)}(H)=k(x)_{m} \oplus \mathcal{R}$, where $\mathcal{R}=\operatorname{radEnd}_{P(\Lambda)}(H)$ and $k(x)_{m}$ denotes the set of morphisms $h: H \rightarrow H$ of the form $h=\left(m(x) i d_{P_{H}}, m(x) i d_{Q_{H}}\right)$ with $m(x) \in k(x)$.

Definition 9.4. Suppose $\hat{T}=f_{\hat{T}}: P_{\hat{T}} \rightarrow Q_{\hat{T}}$ is a $P(\Lambda)$ - R-bimodule with R a finitely generated localization of $k[x]$ and $P_{\hat{T}}, Q_{\hat{T}}$ finitely generated as right R-modules. We say that \hat{T} is a realization of H if $\hat{T} \otimes_{R} k(x) \cong H$. The realization \hat{T} of H over R is called good if:
(i) $P_{\hat{T}}$ and $Q_{\hat{T}}$ are free as right R-modules;
(ii) the functor $\hat{T} \otimes_{R}-: R$-Mod $\rightarrow P(\Lambda)$ preserves isomorphism classes and indecomposable objects;
(iii) for p a prime in R, and n a positive integer $\hat{T} \otimes_{R} S_{p, n}$ is an almost split sequence, where $S_{p, n}$ is the sequence given in (iii) of Definition 1.1.

We are now ready for giving a version of Theorem 1.2 for $P(\Lambda)$.

Theorem 9.5. Let Λ be a finite-dimensional algebra over an algebraically closed field k of tame representation type. Let r be a positive integer. Then there are indecomposable objects in $p^{1}(\Lambda), \hat{L}_{1}, \ldots, \hat{L}_{t}$ with $\left|\hat{L}_{j}\right| \leq r$ for $j=1, \ldots, t$ and generic objects in $P^{1}(\Lambda)$ with admissible structure of $P(\Lambda)-k(x)$-bimodules, H_{1}, \ldots, H_{s} such that for $j=1, \ldots, s, H_{j}$ has a good realization \hat{T}_{j} over R_{j}, a finitely generated localization of $k[x]$, with the following properties:
(i) If X is an indecomposable object in $p^{1}(\Lambda)$ with $|X| \leq r$, then either $X \cong \hat{L}_{j}$ for some $j \in\{1, \ldots, t\}$ or $X \cong \hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$ for some $i \in\{1, \ldots, s\}$, some prime element $p \in R_{i}$ and some natural number m.
(ii) If $X=\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right), Y=\hat{T}_{j} \otimes_{R_{j}} R_{j} /\left(q^{n}\right)$, with $i, j \in\{1, \ldots, s\}$, p a prime in R_{i}, q a prime in R_{j}, and \hat{L}_{u} with $u \in\{1, \ldots, t\}$, then

$$
\begin{gathered}
\operatorname{dim}_{k} \operatorname{rad}_{p^{1}(\Lambda)}^{\infty}(X, Y)=m n \operatorname{dim}_{k(x)} \operatorname{rad}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{i}, H_{j}\right), \\
\operatorname{dim}_{k} \operatorname{rad}_{p^{1}(\Lambda)}^{\infty}\left(X, \hat{L}_{u}\right)=m \operatorname{dim}_{k(x)} \operatorname{rad}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{i}, \hat{L}_{u}^{k(x)}\right), \\
\operatorname{dim}_{k} \operatorname{rad}_{p^{1}(\Lambda)}^{\infty}\left(\hat{L}_{u}, X\right)=m \operatorname{dim}_{k(x)} \operatorname{rad}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(\hat{L}_{u}^{k(x)}, H_{i}\right) .
\end{gathered}
$$

(iii) If $X=\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right), Y=\hat{T}_{j} \otimes_{R_{j}} R_{j} /\left(q^{n}\right)$, then if $i=j$ and $p=q$,

$$
\operatorname{Hom}_{p^{1}(\Lambda)}(X, Y) \cong \operatorname{Hom}_{R_{i}}\left(R_{i} /\left(p^{n}\right), R_{i} /\left(p^{m}\right)\right) \oplus \operatorname{rad}_{p^{1}(\Lambda)}^{\infty}(X, Y)
$$

If $i \neq j$ or $i=j$ and $(p) \neq(q)$:

$$
\operatorname{Hom}_{p^{1}(\Lambda)}(X, Y)=\operatorname{rad}_{p^{1}(\Lambda)}^{\infty}(X, Y)
$$

Moreover:

$$
\operatorname{Hom}_{p^{1}(\Lambda)}\left(\hat{L}_{u}, X\right)=\operatorname{rad}_{p^{1}(\Lambda)}^{\infty}\left(\hat{L}_{u}, X\right), \quad \operatorname{Hom}_{p^{1}(\Lambda)}\left(X, \hat{L}_{u}\right)=\operatorname{rad}_{p^{1}(\Lambda)}^{\infty}\left(X, \hat{L}_{u}\right)
$$

Proof. We apply Theorem 8.5 for the Drozd's bocs $\mathcal{D}=\left(D, V_{D}\right)$ of Λ and the positive integer $r(l+1)$ with $l=\max \left\{l_{1}, l_{2}\right\}$ where l_{1}, l_{2} are the integers given in Lemma 9.1. Then we obtain a minimal layered bocs $\mathcal{B}=\left(B, V_{B}\right)$ having properties $(i)-(i v)$ of Theorem 9.2. We have the reduction functor $\theta: D \rightarrow B$, suppose $\theta\left(X_{j, i}\right)=\bigoplus_{l} n_{j, i}^{l} Z_{l}$ with $j=1,2$ and $i=1, \ldots, n$ given in the beginning of this section.

Let Z_{1}, \ldots, Z_{s} be the marked objects of ind B and Z_{s+1}, \ldots, Z_{s+t} be the non-marked objects. We have B_{i}, R_{i} and D_{i} given in (iv) of Theorem 9.2.

Consider $\hat{T}_{i}=\Xi D_{i} . \hat{T}_{i}=g_{i}: P_{i} \rightarrow Q_{i}$, then:

$$
P_{i}=\bigoplus_{v} \Lambda e_{v} \otimes D_{i}\left(X_{1, v}\right)=\bigoplus_{v} \Lambda e_{v} \otimes_{k} \operatorname{Hom}_{B}\left(Z_{i}, \theta\left(X_{1, v}\right)\right) \cong \bigoplus_{v} \Lambda e_{v} \otimes_{k} n_{1, v}^{i} R_{i} .
$$

Similarly $Q_{i} \cong \bigoplus_{v} \Lambda e_{v} \otimes_{k} n_{2, v}^{i} R_{i}$. If $\lambda \in \Lambda e_{v}$, and $m \in D_{i}\left(X_{1, v}\right)$, then:

$$
g_{i}(\lambda \otimes m)=\sum_{d_{j}: X_{1, s(j)} \rightarrow X_{2, t(j)}, s(j)=v} \lambda \alpha_{j} \otimes \operatorname{Hom}_{B}\left(1, \theta\left(b_{j}\right)\right)(m)
$$

We have

$$
H_{i}=\Xi D_{i} \otimes_{R_{i}} k(x)=f_{i}: P_{H_{i}} \rightarrow Q_{H_{i}}, P_{H_{i}}=P_{i} \otimes_{R_{i}} k(x), Q_{H_{i}}=Q_{i} \otimes_{R_{i}} k(x)
$$

with $f_{i}=g_{i} \otimes 1_{k(x)}$, therefore $H_{i}=\hat{T}_{i} \otimes_{R_{i}} k(x)$.
Moreover, $P_{H_{i}} \cong \bigoplus_{v} n_{1, v}^{i} \Lambda^{k(x)}\left(e_{v} \otimes 1\right)$ and $Q_{H_{i}} \cong \bigoplus_{v} n_{2, v}^{i} \Lambda^{k(x)}\left(e_{v} \otimes 1\right)$.
For $i=1, \ldots, s$ consider the objects $H_{i} \in P^{1}(\Lambda)$. For all $i=1, \ldots, s$ we have an isomorphism induced by the functor $\Xi \theta^{*}$:

$$
\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)=\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)^{0} \oplus \operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)^{1} \rightarrow \operatorname{End}_{P^{1}(\Lambda)}\left(H_{i}\right),
$$

where $\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)^{0}$ denotes the morphisms of the form $\left(f^{0}, 0\right)$ and $\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)^{1}$ denotes the morphisms of the form $\left(0, f^{1}\right)$. Here $\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)^{0} \cong \operatorname{End}_{R_{i}}(k(x))=k(x)_{m}$, where $k(x)_{m}$ denotes the right multiplication by elements of $k(x)$. Here \mathcal{B} is a layered bocs, therefore a morphism $\left(f^{0}, f^{1}\right)$ is an isomorphism if and only if f^{0} is an isomorphism, thus the elements in $\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)^{1}$ are the non-units in $\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)$. Thus since the sum of non-units is again non-unit, $\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)$ is a local ring and its radical is $\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)^{1}$. The image under $\Xi \theta^{*}$ of an element in $\operatorname{End}_{\mathcal{B}}\left(Q_{Z_{i}}\right)^{0}$ is of the form $\left(i d_{P_{H_{i}}} m(x), i d_{Q_{H_{i}}} m(x)\right)$, with $m(x) \in k(x)$. From here we obtain that the $P(\Lambda)-k(x)$-structure of H_{i} is admissible. Clearly, \hat{T}_{i} is a realization of H_{i}.

In order to prove that \hat{T}_{i} is a good realization of H_{i}, we must prove conditions (i), (ii) and (iii) of Definition 9.4. Condition (i) is clear. For proving condition (ii) take $\epsilon_{\mathcal{B}}: V_{\mathcal{B}} \rightarrow B$ the counit of the bocs \mathcal{B}. By Lemma 5.3 the functor $\left(i d_{B}, \epsilon_{\mathcal{B}}\right)^{*}: B$ $\operatorname{Mod} \rightarrow \mathcal{B}$-Mod preserves indecomposables and isomorphism classes. Consider \hat{B}_{i} the full subcategory of B whose unique indecomposable object is Z_{i}, then we have the composition η_{i} of full and faithful functors:

$$
R_{i}-\operatorname{Mod} \rightarrow \hat{B}_{i}-\operatorname{Mod} \rightarrow B \text {-Mod. }
$$

The composition:

$$
R_{i}-\operatorname{Mod} \xrightarrow{\eta_{i}} B-\operatorname{Mod} \xrightarrow{\left(i d_{B}, \epsilon_{\mathcal{E}}\right)^{*}} \mathcal{B}-\operatorname{Mod} \xrightarrow{\theta^{*}} \mathcal{D}-\operatorname{Mod} \xrightarrow{\Xi} P^{1}(\Lambda)
$$

is isomorphic to $\hat{T}_{i} \otimes_{R_{i}}-$. Therefore the functor $\hat{T}_{i} \otimes_{R_{i}}$ - preserves isomorphism classes and indecomposable modules. The condition (iii) of Definition 9.4 is a consequence of (iii) of Theorem 9.2.

Now, we may assume that $\hat{L}_{j}=\Xi \theta^{*}\left(S_{Z_{s+j}}\right)$ for $j=1, \ldots, t$ is such that $\left|\hat{L}_{j}\right| \leq r$.
(i) Take X an indecomposable object in $p^{1}(\Lambda)$ with $|X| \leq r$, then by (i) of Theorem 9.2 there is an indecomposable object N in $\mathcal{B}-\bmod$ with $\Xi \theta^{*}(N) \cong X$. Since N is indecomposable, then $N \cong S_{Z_{s+j}}$ for some $j=1, \ldots, t$ and then either $X \cong \hat{L}_{j}$, or $N \cong M\left(Z_{i}, p, n\right)$ for some $i=1, \ldots, s$, some prime element $p \in R_{i}$ and some positive integer n, in this case by (iv) of Theorem 9.2 we have $M\left(Z_{i}, p, n\right) \cong B_{i} \otimes_{R_{i}} R_{i} /\left(p^{n}\right)$. Then $X \cong \Xi \theta^{*} B_{i} \otimes_{R_{i}} R_{i} /\left(p^{n}\right) \cong \hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{n}\right)$. Thus we have proved i).
(ii) Consider \mathcal{C} the full subcategory of $p^{1}(\Lambda)$ whose objects are the objects of the form $\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$. We have already proved that \hat{T}_{i} is a good realization of H_{i}, then
by property (iii) of Definition 9.4 the category \mathcal{C} consists of whole Auslander-Reiten components of $p^{1}(\Lambda)$, thus \mathcal{C} has property (A) of section 2 , then by Corollary 2.4 for $X=\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right), Y=\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(q^{n}\right), \operatorname{dim}_{k} \operatorname{rad}_{p^{1}(\Lambda)}^{\infty}(X, Y)=\operatorname{dim}_{k} \operatorname{rad}_{\mathcal{C}}^{\infty}(X, Y)=$ $\operatorname{dim}_{k} \operatorname{rad}_{\mathcal{B}}^{\infty}\left(M(Z, p, m), M\left(Z^{\prime}, q, n\right)\right)$.

We recall from the discussion at the beginning of section 6 that the full and faithful functor $\theta^{*}: \mathcal{B}-\operatorname{Mod} \rightarrow \mathcal{A}$-Mod restricts to a full and faithful functor $\left(\theta^{*}\right)^{k(x)}: \mathcal{B}-k(x)-$ $\operatorname{Mod}^{p} \rightarrow \mathcal{D}-k(x)-\operatorname{Mod}^{o p}$. Then the first equality of (ii) follows from that of Proposition 6.5.

Observe that $\hat{L}_{u}^{k(x)}=\Xi \theta^{*}\left(S_{Z_{s+u}}\right)^{k(x)} \cong \Xi \theta^{*}\left(S_{Z_{s+u}}^{k(x)}\right)$. The second and third equality of (ii) follow from those of Proposition 6.5.
(iii) Follows from Corollary 5.11 and from Corollary 2.4.

10 Hom-spaces in Λ-Mod

In this section we discuss the Hom-spaces in Λ-Mod for a tame algebra Λ and prove our main result, Theorem 1.2. For $X=f_{X}: P_{X} \rightarrow Q_{X} \in p(\Lambda)$ we define $|X|=|\operatorname{dim} X|=$ $\operatorname{dim}_{k}\left(P_{X} / \operatorname{rad} P_{X}\right)+\operatorname{dim}_{k}\left(Q_{X} / \operatorname{rad} Q_{X}\right)$.

There is an integer l_{0} such that for any indecomposable non-injective Λ-module M, $\operatorname{dim}_{k} \operatorname{tr} D M \leq l_{0} \operatorname{dim}_{k} M$. Let d be any positive integer greater than $\operatorname{dim}_{k} \Lambda$, consider $d_{0}=d\left(1+l_{0}\right)$ take $s\left(d_{0}\right)=\left(\operatorname{dim}_{k}(\Lambda)+1\right) d_{0}$. If $M \in \Lambda-\bmod$ with $\operatorname{dim}_{k} M \leq d_{0}$ and $X=$ $f_{X}: P_{X} \rightarrow Q_{X}$ is a minimal projective presentation of M, we have $\operatorname{dim}_{k}\left(Q_{X} / \operatorname{rad} Q_{X}\right) \leq d_{0}$ and $\operatorname{dim}_{k}\left(P_{X} / \operatorname{rad} P_{X}\right) \leq \operatorname{dim}_{k}\left(\operatorname{Im} f_{X}\right) \leq \operatorname{dim}_{k} Q_{X} \leq \operatorname{dim}_{k}(M / \operatorname{rad} M) \operatorname{dim}_{k} \Lambda \leq d_{0} \operatorname{dim}_{k} \Lambda$, so $|X| \leq s\left(d_{0}\right)$. Taking the number $r=s\left(d_{0}\right)(1+l)$ in Theorem 9.5 with $l=\max \left\{l_{1}, l_{2}\right\}$, where l_{1} and l_{2} are the constants of Lemma 9.1, we obtain the generic objects in $P(\Lambda)$, H_{1}, \ldots, H_{s} with admissible $\Lambda-k(x)$ structures and the indecomposables in $p^{1}(\Lambda), \hat{L}_{1}, \ldots, \hat{L}_{t}$. For each $i=1, \ldots, s$ we have the realizations \hat{T}_{i} over R_{i} of H_{i}. We have the generic Λ-modules $G_{i}=\operatorname{Cok}\left(H_{i}\right)$ and the following isomorphism of Λ-k (x)-bimodules, $G_{i}=$ $\operatorname{Cok}\left(H_{i}\right) \cong \operatorname{Cok}\left(\hat{T}_{i} \otimes_{R_{i}} k(x)\right) \cong \operatorname{Cok}\left(\hat{T}_{i}\right) \otimes_{R_{i}} k(x)$, with $T_{i}=\operatorname{Cok}\left(\hat{T}_{i}\right)$ a Λ - R_{i}-bimodule finitely generated as right R_{i}-module. The $\Lambda-k(x)$ structure of H_{i} is admissible, then $\operatorname{End}_{P(\Lambda)}\left(H_{i}\right)=k(x)_{m} \oplus \mathcal{R}_{i}$ with \mathcal{R}_{i} a nilpotent ideal. Then, $\operatorname{End}_{\Lambda}\left(G_{i}\right)=k(x) i d_{G_{i}} \oplus$ $\operatorname{radEnd}_{\Lambda}\left(G_{i}\right)$, therefore, the endolength of G_{i} coincides with $\operatorname{dim}_{k(x)} G_{i}$. Consequently, T_{i} is a realization of G_{i}.

Lemma 10.1. G_{i} and T_{i} satisfy the conditions (ii) and (iii) of Definition 1.1.
Proof. Take $W \in R_{i}$-Mod, we claim that $\hat{T}_{i} \otimes_{R_{i}} W$ has not indecomposable direct summands of the form $Z(P)=P \rightarrow 0$. Suppose some indecomposable $Z(P)$ is a direct summand of $\hat{T}_{i} \otimes_{R_{i}} W=\Xi \theta^{*}\left(W^{\prime}\right)$, with $W^{\prime}=\left(i d_{B}, \epsilon_{\mathcal{B}}\right)^{*} \eta_{i}(W)$. Here $Z(P)$ is injective in $P^{1}(\Lambda)$, then $Z(P)=\Xi \theta^{*}\left(S_{Z_{u}}\right)$ for some non-marked indecomposable object $Z_{u} \in B$. Since the functor $\Xi \theta^{*}$ is full and faithful, we have that $S_{Z_{u}}$ is direct summand of W^{\prime}, but this is impossible because $W^{\prime}\left(Z_{u}\right)=0$. The above proves that $\hat{T}_{i} \otimes_{R_{i}} W$ is in $P^{2}(\Lambda)$, the full subcategory of $P^{1}(\Lambda)$ whose objects have not direct summands of the form $Z(P)$.

Now the functor Cok: $P^{2}(\Lambda) \rightarrow \Lambda$-Mod preserves indecomposables and isomorphism classes (see (2) of Lemma 3.2 of [6]). Consequently, the functor $\operatorname{Cok}\left(\hat{T}_{i} \otimes_{R_{i}}-\right) \cong T_{i} \otimes_{R_{i}}-$ preserves indecomposables and isomorphism classes. This proves that T_{i} has property (ii) of Definition 1.1.

For proving condition (iii) of Definition 1.1 take p a prime element in R_{i}. There is an almost split sequence in $p^{1}(\Lambda)$ starting in $\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$, therefore this object is not injective in $p^{1}(\Lambda)$ and therefore its cokernel is not zero. By Proposition 3.13 the image under the functor Cok of the almost split sequence starting in $\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$ is an almost split sequence in Λ-mod. This proves that the Λ - R_{i}-bimodule T_{i} satisfies condition iii) for all $i \in\{1, \ldots, s\}$.

Lemma 10.2. Let $L_{j}=\operatorname{Cok}\left(\hat{L}_{j}\right)$ with $j=1, \ldots$, t. If M is an indecomposable Λ-module with $\operatorname{dim}_{k} M \leq d$, then M has the form given in (i) of Theorem 1.2.

Proof. There is an indecomposable object $X \in p^{1}(\Lambda)$ with $M \cong \operatorname{Cok}(X)$, since $|X| \leq$ $s(d) \leq r, X \cong \hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$ or $X \cong \hat{L}_{j}$. But then either $M \cong \operatorname{Cok}\left(\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)\right) \cong$ $T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$, or $M \cong L_{j}$. This proves the first part of (i). For the second part of (i), by Proposition 5.9 of [1] we have that if X is an indecomposable object in $p^{1}(\Lambda)$ with $\operatorname{Cok}(X)$ non-simple injective, then there is an almost split sequence in $p(\Lambda)$ starting in X and ending in an injective object with all its terms in $p^{1}(\Lambda)$, so this is an almost split sequence in $p^{1}(\Lambda)$. If $\operatorname{Cok}(X)$ is simple then X is injective in $p^{1}(\Lambda)$, if $\operatorname{Cok}(X)$ is projective, then X is projective in $p^{1}(\Lambda)$. Now if $X \cong \hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$, since \hat{T}_{i} is a good realization of H_{i}, there is an almost split sequence starting and ending in X. Therefore, if M is an injective, projective or simple Λ-module, then $M \cong L_{j}$ for some $j=1, \ldots, t$.

Lemma 10.3. Let $X=\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{n}\right), Y=\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right), M=\operatorname{Cok} X, N=\operatorname{Cok} Y$, then the functor Cok induces an isomorphism:

$$
\underline{\text { Cok }}: \operatorname{Hom}_{P^{1}(\Lambda)}(X, Y) / \operatorname{rad}^{\infty}(X, Y) \rightarrow \operatorname{Hom}_{\Lambda}(M, N) / \operatorname{rad}^{\infty}(M, N)
$$

Proof. In fact, take a morphism $u: X \rightarrow Y$ such that $\operatorname{Cok}(u)=0$. Then by Proposition 3.3, u is a morphism which is a sum of compositions of the form $u_{2} u_{1}$ with $u_{1}: X \rightarrow W$, $u_{2}: W \rightarrow Y$ and W an indecomposable injective in $P(\Lambda)$. Then either $W=Z(P)=$ $(P \xrightarrow{0} 0)$ or $W=J(P)=\left(P \xrightarrow{i d_{P}} P\right)$ for some indecomposable projective Λ-module P. In the first case W is also an injective object in $p^{1}(\Lambda)$, then W is not in the Auslander-Reiten component containing X, therefore $u_{2} u_{1} \in \operatorname{rad}^{\infty}(X, Y)$. Now, if $W=J(P)$, we recall (see Lemma 3.6) that there is a right minimal almost split morphism $\sigma(P): R(P) \rightarrow$ $J(P)$, then $u_{1}=\sigma(P) u_{1}^{\prime}$, with $u_{1}^{\prime}: X \rightarrow R(P)$. Here $R(P)$ is injective in $p^{1}(\Lambda)$, then $u_{2} u_{1}=u_{2} \sigma(P) u_{1}^{\prime}$ is in $\operatorname{rad}^{\infty}(X, Y)$, therefore, $u \in \operatorname{rad}^{\infty}(X, Y)$, proving our Lemma.

Lemma 10.4. If $M=T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right), N=T_{j} \otimes_{R_{j}} R_{j} /\left(q^{n}\right), L_{u}^{k(x)}=L_{u}^{k(x)}$ with $i, j \in$ $\{1, \ldots, s\}, u \in\{1, \ldots, t\}, p$ a prime element of R_{i}, q a prime element of R_{j}, then M, N, L_{u} satisfy (iii) of Theorem 1.2.

Proof. Let $M=\operatorname{Cok} X, N=\operatorname{Cok} Y, X, Y \in p^{1}(\Lambda)$. If $i=j$ and $p=q$ by the first formula in (iii) of Theorem 9.5 and Lemma 10.3 we obtain our result. If $i \neq j$ or $(p) \neq(q)$ we have $\operatorname{Hom}_{p^{1}(\Lambda)}(X, Y)=\operatorname{rad}_{p^{1}(\Lambda)}^{\infty}(X, Y)$, thus $\operatorname{Hom}_{\Lambda}(M, N)=\operatorname{rad}_{\Lambda}^{\infty}(M, N)$. Moreover, the third and fourth formula of (iii) of Theorem 9.5 gives $\operatorname{Hom}_{\Lambda}\left(L_{u}, M\right)=\operatorname{rad}_{\Lambda}^{\infty}\left(L_{u}, M\right)$ and $\operatorname{Hom}_{\Lambda}\left(M, L_{u}\right)=\operatorname{rad}_{\Lambda}^{\infty}\left(M, L_{u}\right)$ respectively.

Lemma 10.5. Let $M=T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right), N=T_{j} \otimes_{R_{j}} R_{j} /\left(q^{n}\right)$, for $i, j \in\{1, \ldots, s\}$, pa prime in R_{i}, q a prime in R_{j}. Then

$$
\operatorname{dim}_{k} \operatorname{rad}_{\Lambda}^{\infty}(M, N)=m n \operatorname{dim}_{k(x)} \operatorname{rad}_{\Lambda^{k(x)}}\left(G_{i}, G_{j}\right)
$$

Proof. Suppose $X=\hat{T}_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$ and $Y=\hat{T}_{j} \otimes_{R_{j}} R_{j} /\left(q^{n}\right)$ are minimal projective presentations of M and N respectively. Then if $\mathbf{z}_{u}=\operatorname{dim}_{k(x)} H_{u}$ for $u=1, \ldots, s$, by (iv) of Theorem 9.2 we have $\operatorname{dim}_{k} X=m \mathbf{z}_{i}, \operatorname{dim}_{k} Y=n \mathbf{z}_{j}$.

Suppose now $i \neq j$ or $i=j$ and $(p) \neq(q)$. In this case $\operatorname{Hom}_{\Lambda}(M, N)=\operatorname{rad}_{\Lambda}^{\infty}(M, N)$ and $\operatorname{Hom}_{p^{1}(\Lambda)}(Y, X)=\operatorname{rad}_{p^{1}(\Lambda)}^{\infty}(Y, X)$. Here $\operatorname{Dtr} N \cong N$, then by (3) of Proposition 3.14 and the first equality in (ii) of Theorem 9.5 we obtain

$$
\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}(M, N)=m n\left(\operatorname{dim}_{k(x)} \operatorname{rad}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{j}, H_{i}\right)-g_{\Lambda}\left(\mathbf{z}_{j}, \mathbf{z}_{i}\right)\right) .
$$

On the other hand, since $D \operatorname{tr}_{\Lambda^{k(x)}} G_{j} \cong G_{j}$ (see Proposition 6.5 of [2]) we have

$$
\operatorname{dim}_{k(x)} \operatorname{Hom}_{\Lambda^{k(x)}}\left(G_{i}, G_{j}\right)=\operatorname{dim}_{k(x)} \operatorname{Hom}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{j}, H_{i}\right)-g_{\Lambda^{k(x)}}\left(\mathbf{z}_{j}, \mathbf{z}_{i}\right)
$$

We know from Corollary 2.3 of [2], that the indecomposable projective $\Lambda^{k(x)}$-modules are of the form $P \otimes_{k} k(x)$, with P indecomposable projective Λ-module, then $g_{\Lambda}=g_{\Lambda^{k(x)}}$. Observe that if $i \neq j, \operatorname{rad}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{j}, H_{i}\right)=\operatorname{Hom}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{j}, H_{i}\right)$ and $\operatorname{rad}_{\Lambda^{k(x)}}\left(G_{i}, G_{j}\right)=$ $\operatorname{Hom}_{\Lambda^{k(x)}}\left(G_{i}, G_{j}\right)$, moreover for $i=j$,
$\operatorname{dim}_{k(x)} \operatorname{End}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{i}\right)=1+\operatorname{dim}_{k(x)} \operatorname{radEnd}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{i}\right)$ and $\operatorname{dim}_{k(x)} \operatorname{End}_{\Lambda^{k(x)}}\left(G_{i}\right)=1+\operatorname{dim}_{k(x)} \operatorname{radEnd}_{\Lambda^{k(x)}}\left(G_{i}\right)$. Thus we obtain:

$$
\operatorname{dim}_{k(x)} \operatorname{rad}_{\Lambda^{k(x)}}\left(G_{i}, G_{j}\right)=\operatorname{dim}_{k(x)} \operatorname{rad}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{j}, H_{i}\right)-g_{\Lambda}\left(\mathbf{z}_{j}, \mathbf{z}_{i}\right) .
$$

From here we obtain our equality for $i \neq j$ or $i=j$ and $(p) \neq(q)$.
For $i=j$ and $p=q$ and the first equality of (iii) of Theorem 9.5 we obtain

$$
\operatorname{dim}_{k} \operatorname{Hom}_{p^{1}(\Lambda)}(X, Y)=\min \{m, n\}+m n \operatorname{dim}_{k(x)} \operatorname{radHom}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{i}, H_{i}\right),
$$

therefore

$$
\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}(M, N)=\min \{m, n\}+m n \operatorname{dim}_{k(x)} \operatorname{radHom}_{\Lambda^{k(x)}}\left(G_{i}, G_{i}\right) .
$$

By Lemma 10.4 the first equality of (iii) Theorem 1.2 holds, then we have $\operatorname{dim}_{k} \operatorname{rad}_{\Lambda}^{\infty}(M, N)=m n \operatorname{dim}_{k(x)} \operatorname{radEnd}_{\Lambda^{k(x)}}\left(G_{i}\right)$, obtaining our result.

Lemma 10.6. Let $M=T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$ for $i \in\{1, \ldots, s\}, p$ a prime element in R_{i}, $L_{u}=\operatorname{Cok}\left(\hat{L}_{u}\right)$, for some $u \in\{1, \ldots, t\}$. Then

$$
\operatorname{dim}_{k} \operatorname{rad}_{\Lambda}^{\infty}\left(L_{u}, M\right)=m \operatorname{dim}_{k(x)} \operatorname{rad}_{\Lambda^{k(x)}}\left(G_{i}, L_{u}^{k(x)}\right)
$$

In particular for Λe an indecomposable projective Λ-module there is a $u \in\{1, \ldots, t\}$ such that $\Lambda e \cong L_{u}$, then $\operatorname{dim}_{k} e M=m \operatorname{dim}_{k(x)} e G_{i}$.

Proof. Consider $\mathbf{l}_{u}=\operatorname{dim}_{k} \hat{L}_{u}=\operatorname{dim}_{k(x)} \hat{L}_{u}^{k(x)}$. We have $D \operatorname{tr} M \cong M$, then by (3) of Proposition 3.14 and the second equality of (ii) of Theorem 9.5 we have:

$$
\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}\left(L_{u}, M\right)=m \operatorname{dim}_{k(x)} \operatorname{Hom}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{i}, \hat{L}_{u}^{k(x)}\right)-m g_{\Lambda}\left(\mathbf{z}_{i}, \mathbf{l}_{u}\right) .
$$

We have $\operatorname{Cok} \hat{L}_{u}^{k(x)} \cong\left(\operatorname{Cok} \hat{L}_{u}\right)^{k(x)}=L_{u}^{k(x)}$, thus again by 3) of Proposition 3.14, recalling that $\operatorname{Dtr}_{\Lambda^{k(x)}} G_{i} \cong G_{i}$, we obtain:

$$
\operatorname{dim}_{k(x)} \operatorname{Hom}_{\Lambda^{k(x)}}\left(L_{u}^{k(x)}, G_{i}\right)=\operatorname{dim}_{k(x)} \operatorname{Hom}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(H_{i}, \hat{L}_{u}^{k(x)}\right)-g_{\Lambda}\left(\mathbf{z}_{i}, \mathbf{l}_{u}\right)
$$

From here we obtain the first part of our Lemma. For the second part of the Lemma, observe that by assumption, $\operatorname{dim}_{k} \Lambda \leq d$, then by Lemma 10.4 we obtain our result.

Lemma 10.7. Let $M=T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$ for $i \in\{1, \ldots, s\}$, p a prime in $R_{i}, L_{u}=\operatorname{Cok}\left(\hat{L}_{u}\right)$ for $u \in\{1, \ldots, t\}$. Then

$$
\operatorname{dim}_{k} \operatorname{rad}_{\Lambda}^{\infty}\left(M, L_{u}\right)=m \operatorname{dim}_{k(x)} \operatorname{rad}_{\Lambda^{k(x)}}\left(G_{i}, L_{u}^{k(x)}\right)
$$

Proof. Assume first L_{u} is injective, then we may suppose $L_{u}=D(e \Lambda)$. We have:

$$
\begin{aligned}
& \operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}(M, D(e \Lambda))=\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda^{o p}}(e \Lambda, D(M))=\operatorname{dim}_{k} D(M) e=\operatorname{dim}_{k}(e M) \\
& =m \operatorname{dim}_{k(x)} \operatorname{Hom}_{\Lambda^{k(x)}}\left(G_{i}, D_{x}\left((e \otimes 1) \Lambda^{k(x)}\right)\right)=m \operatorname{dim}_{k(x)} \operatorname{Hom}_{\Lambda^{k(x)}}\left(G_{i},\left(D(e \Lambda)^{k(x)}\right)\right) .
\end{aligned}
$$

Where $D_{x}(-)=\operatorname{Hom}_{k(x)}(-, k(x))$.
Now assume L is not injective. Consider an almost split sequence starting in L :

$$
0 \rightarrow L \xrightarrow{f} \oplus_{s=1}^{m} E_{s} \xrightarrow{g} L^{\prime} \rightarrow 0,
$$

with E_{s} indecomposable for $s=1, \ldots, m$.
By the choice of the integer d_{0}, the objects E_{s} and L^{\prime} are isomorphic to objects L_{v} or $T_{j} \otimes_{R_{j}} R_{j} /\left(p^{m}\right)$, but in this latter case L is in the component of an object of the form $T_{j} \otimes_{R_{j}} R_{j} /\left(p^{m}\right)$, which implies that $L \cong T_{j} \otimes_{R_{j}} R_{j} /\left(p^{n}\right)$ for some n, which is not the case therefore $L^{\prime} \cong L_{v}$ for some $v=1, \ldots, t$. Then $L^{\prime} \cong \operatorname{Cok} \hat{L}_{v}$. Take $\mathbf{l}_{v}=\operatorname{dim} \hat{L}_{v}=$ $\operatorname{dim}_{k(x)} \hat{L}_{v}^{k(x)}$.

By (3) of Proposition 3.14 and the third equality of (iii) of Theorem 9.5 we obtain

$$
\operatorname{dim}_{k} \operatorname{Hom}_{\Lambda}(M, L)=m\left(\operatorname{dim}_{k(x)} \operatorname{Hom}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(\hat{L}_{v}^{k(x)}, H_{i}\right)-g_{\Lambda}\left(\mathbf{l}_{v}, \mathbf{z}_{i}\right)\right) .
$$

On the other hand, by Corollary 2.2 of [2] we have

$$
\operatorname{Dtr}_{\Lambda^{k(x)}}\left(L_{v}^{k(x)}\right) \cong\left(D \operatorname{tr} L_{v}\right)^{k(x)} \cong L^{k(x)} .
$$

Then:

$$
\operatorname{dim}_{k(x)} \operatorname{Hom}_{\Lambda^{k(x)}}\left(G_{i}, L^{k(x)}\right)=\operatorname{dim}_{k(x)} \operatorname{Hom}_{p^{1}\left(\Lambda^{k(x)}\right)}\left(\hat{L}_{v}^{k(x)}, H_{i}\right)-g_{\Lambda}\left(\mathbf{l}_{v}, \mathbf{z}_{i}\right)
$$

From here we obtain our Lemma.

Lemma 10.8. T_{i} is a free right R_{i}-module, for $i=1, \ldots s$.
Proof. Since T_{i} is a finitely generated right R_{i}-module if it is not a free right R_{i}-module there is a primitive idempotent e of Λ such that $e T_{i}=C_{0} \oplus C_{1}$ with C_{0} free and C_{1} a torsion R_{i}-module, then we may assume $C_{1}=\left(\oplus_{j=1}^{a} R_{i} /\left(p^{m_{j}}\right)\right) \oplus C_{2}$ with a prime element $p \in R_{i}$, positive integers m_{j}, and $C_{2} \cong \oplus_{b} R_{i} /\left(q_{b}^{n_{b}}\right)$, where p, q_{b} are coprime in R_{i}. Suppose $m=$ $\min \left\{m_{1}, \ldots, m_{a}\right\}, C_{0} \cong R_{i}^{l}$. Take $M=T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)$, then by the second part of Lemma 10.6, $\operatorname{dim}_{k} e M=m \operatorname{dim}_{k(x)} e G_{i}=m \operatorname{dim}_{k(x)} e T_{i} \otimes_{k(x)} k(x)=m \operatorname{dim} C_{0} \otimes_{k(x)} k(x)=m l$. But $\operatorname{dim}_{k} e M=\operatorname{dim}_{k} e T_{i} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)=\operatorname{dim}_{k} C_{0} \otimes_{R_{i}} R_{i} /\left(p^{m}\right)+\operatorname{dim}_{k}\left(R_{i} /\left(p^{m}\right)\right)^{a}=m l+a m$, a contradiction. Therefore, T_{i} is free as right R_{i}-module proving our result.

Proof (of Theorem 1.2). The Λ - R_{i}-bimodule T_{i} is a good realization of G_{i} over R_{i} for $i=1, \ldots, s$ by Lemma 10.8 and Lemma 10.1.
(i) of Theorem 1.2 follows from Lemma 10.2, (ii) follows from Lemma 10.5, Lemma 10.6 and Lemma 10.7. Finally (iii) follows from Lemma 10.4.

Acknowledgment

The authors thank the referee for several helpful comments, suggestions and corrections.

References

[1] R. Bautista: " The category of morphisms between projective modules", Comm. Algebra, Vol. 32(11), (2004), pp. 4303-4331.
[2] R. Bautista and Y. Zhang: " Representations of a k-algebra over the rational functions over k ", J. Algebra, Vol.(267), (2003), pp. 342-358.
[3] R. Bautista, J. Boza and E. Pérez: "Reduction Functors and Exact Structures for Bocses", Bol. Soc. Mat. Mexicana, Vol. 9(3), (2003), pp. 21-60.
[4] P. Dräxler, I. Reiten, S. O. Smalø, O. Solberg and with an appendix by B. Keller: "Exact Categories and Vector Space Categories", Trans. A.M.S., Vol. 351(2), (1999), pp. 647-682.
[5] W.W. Crawley-Boevey: "On tame algebras and bocses", Proc. London Math. Soc., Vol.56, (1988), pp. 451-483.
[6] W.W. Crawley-Boevey: "Tame algebras and generic modules", Proc. London Math. Soc., Vol. 63, (1991), pp. 241-265.
[7] Yu.A. Drozd: "Tame and wild matrix problems", Amer. Math. Soc. Transl., Vol. 128(2), (1986), pp 31-55.
[8] Yu.A. Drozd: "Reduction algorithm and representations of boxes and algebras", C.R. Math. Acad. Sci. Soc. R. Can., Vol. 23(4), (2001), pp. 91-125.
[9] P. Gabriel and A.V. Roiter: "Representations of finite-dimensional algebras", In: A.I.

Kostrikin and I.V. Shafarevich (Eds.): Encyclopaedia of the Mathematical Sciences, Vol.(73), Algebra VIII, Springer, 1992.
[10] X. Zeng and Y. Zhang: "A correspondence of almost split sequences between some categories", Comm. Algebra, Vol. 29(2), (2001), pp. 557-582.

[^0]: * The first author thanks the support of project "43374F" of Fondo Sectorial SEP-Conacyt. Y. Zhang thanks the support of Important project 10331030 of Natural Science Foundation of China.
 \dagger E-mail: raymundo@matmor.unam.mx
 \ddagger E-mail: yuriy@drozd.org
 § E-mail: xyzeng424@263.net
 『 E-mail: zhangyb@bnu.edu.cn

