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We define Harish-Chandra S-homomorphism which generalizes the classical Harish- 
Chandra homomorphism and study its properties. For @-modules (@~ E~, E~). gener- 
ated by semiprimitive elements we prove the existence of composition sequences. 

In this article we construct a generalization of the classical Harish-Chandra homo- 
morphism [i]. We then use our results to study the structure of modules generated by semi- 
primitive elements [2, 3]. 

i. The Harish-Chandra S-Homomorphism and Its Properties. Let @~ be a complex simple 
finite-dimensional Lie algebra of rank n, ~ its cartesian subalgebra, A a system of roots 
of ~, ~ a basis of the system of roots ~, A ~= A:(=) the set of positive roots in A with 
respect to ~, W= W(A) the Weyl group of the system A, and @~ the root subspace correspond- 
ing to a root ~. 

L e t  ~ = { ~ l , ~ ,  ~n}, S ~ {  1 9, .,I@ ~s={~ i i~S} .  Deno te  by As=As(~s) a s u b s y s t e m  o f  

r o o t s  in  A g e n e r a t e d  by wS. F u r t h e r m o r e ,  l e t  { H e l l , n }  be a b a s i s  o f  t h e  C a r t e s i a n  s u b a l -  
g e b r a ~ ,  such  t h a t  ~ ( H ~ ) = 2  f o r  a l l  ~ ~ ~. L e t  ~s  and ~s  be s u b a l g e b r a s  ( H a [ ~ s )  and 
{HE~I~(H)'=0 for all ~ As} , respectively. 

For every ~ e 5 choose X~@~{0} and define the following subalgebras of @: 

~E ~+ \ ~'S ~E~+\  8S 

Let U(@) be the universal enveloping algebra of the algebra (g, and let Z((~) be the center 
of U(@). Let Q (respectively, Qs) be the group of radical weights of the system (respec- 
tively, AS). Then the O3-module structure with respect to adjoint representation on U(Cr 
defines a Q-graduation on it: U((~)= ~U((~)~ 

gEQ 

LEMMA I. Let Ls=U(63) 92+@U(~)o �9 Then i) Ls is a two-sided ideal in U(@)0, 2) 

Ls = ~ U  (03) N U (C~) o ; 3 ) U (~3)o = Ls �9 U (a3s)o | U (~s). 

The lemma is proven analogously to Lemma 7.4.2 in [i]. 

Definition: A Harish-Chandra S-homomorphism (with respect to a basis ~) is a projec- 
tion ~s,~ : U (~)o ~ U (~s)o ~ S (~s). 

Remarks .  1. I<er ~s.==Ls 2. A H a r i s h - C h a n d r a  S-homomorphism qs.= i s  u n i q u e l y  

d e f i n e d  by a s e t  &+(n)\AS(ms).  3. ~a.= i s  t h e  c l a s s i c a l  H a r i s h - - C h a n d r a  homomorphism w i t h  
r e s p e c t  t o  t h e  b a s i s  ~. 4. I<er • (~s,=lz(e))= 0 and ~s.=(Z(~))c Z(| | S ( ~  where  Z(@s) 
i s  t h e  c e n t e r  o f  t h e  u n i v e r s a l  e n v e l o p i n g  a l g e b r a  U(~s). 

It is known that ~arish-Chandra ~-homomorphisms are in a one-to-one correspondence 
with bases of the system of roots &, i.e., their number is equal to IWI. Harish-Chandra 
S-homomorphisms are described similarly. 
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LEMMA 2. Let S~{I,~ ..... n}, ~Q={A +(~n)\As(w~s) I mERe} The group W acts on the set 

transitively. 

The proof is obvious, since A~(w~)~As(w~s )=~v • (A#(x)\AS(~s)) for all W e W. 

Proposition i. Let S~{l,2,...,n} , WS the Weyl group of the system of roots ~S, and 

N(Ws) the normalizer of the group WS in W. Then i) Harish-Chandra S-homomorphisms are in 
one-to-one correspondence with cosets W/WS, and 2) Harish-Chandra S-homomorphisms with a 
fixed root subsystem As(~) are in one-to-one correspondence with cosets N (~/Ws. 

Proof: Define a set Q={A+(wn)~As(~a) X I m~}. The number of different Harish-Chandra 
S-homomorphisms is equal to I l. Fix a set A + ( ~ ) \ A s ( a ) 6 Q .  Then St(A + ( a ) ~ & s ( ~ ) )  = W S  with 

respect to the action of the group W on g. Therefore, assertion 1 follows from Lemma 2. 

Furthermore, every element A+(~x)~s(WX~) of the set ~ uniquely defines a set As(w~<), 
but this correspondence is not injective. This means that there exist two distinct ~, u~IV 
such that As(m~s)= As(~s)~ Consider the natural transitive action of the group W on 
the set of pairs ~={(A+(~)~As(~s), ~s(~s))[~E~}. We see that the number of different 

Harish--ChandraS-homomorphisms with a fixed As(~) is equal to the number of different ele- 
ments in ~ with As(~) at the second place, i.e., (st(As(=)):st(A+(x)\As(=)))=(N(~s): W's), which 
proves statement 2. 

Let V be some weight ~-module, i.e,, V= ~Vz , where V~.= {v6V[Hv=k(H)~ for all 
~66" 

HE~} . Let suppP'={XE~*l~'z=~0} The elements of supp V are called the weights of the 
module V. 

The following proposition plays an important role in the theory of weight ~-modules. 

LEMMA 3. I. Let V be an irreducible weight ~-module and ~EsuppV. Then Vi is an 

irreducible U (~)0" module. 

2. Let V' be an irreducible U (~)0-module such that Hv=X(H)v for all HEi?, vEV'. 
Then there exists a unique irreducible weight ~-module V such that V~V'. 

Proof: Let V~U be a proper U(~)0-submodule. Then, U((~)U~V , which contradicts 

the irreducibility of V. 2. A weight ~-.moduleAd=U(~) | V'has only one maximal submodule 
u(~)o 

9~ and {A4/~)~ ~ V' If L is an irreducible ~-module and L~ ~---V' then there exists an epi- 

morphism %:7%4-~L Therefore, A4/~--~L Q.E.D. 

LEMMA 4. Every irreducible U(~s)o~S(~S)-module V' such that Hv=~(H)~ for all 

HE~, vEV' extends to an irreducible weight ~-module V such that V~_V '. 

Proof: It suffices to use the Harsh-Chandra S-homomorphism and Lemma 3 of section 2. 

Lemma 4 allows us to extend irreducible weight ~-modules to irreducible weight Q-modules. 

Definition: i. An S-primitive element of weight k with respect to a basis ~ is a non- 
zero element v such that Hu= >~(H)v for all HE~ and ~v=0. 2. An element v E V is 

called semi-primitive of weight k if, for some basis ~ of the system of roots A and some 

S ~ {I, 2 ..... n}, v is an S-primitive element of weight ~ with respect to ~ [3]. 

Remark. The definition of S-primitive elements in the case where S = ~ coincides with 
the well-known definition of primitive elements. 

Proposition 2. Let V be some ~-module generated by an S-primitive element v of weight 
with respect to a basis ~, e a central character of the module V, and Os:Z(~s)-.~, where 
ZV=Os(Z) for all zEZ(~s) Let ~s be the restriction of ~ to ~s Then O(z)=(~s@~S)(~s,~(z)) 
for all z6Z(~). 

Proof: For every zEZ((~) there exist ul, u2 ..... ukEU(~) and a,,a~,...,a~E~+s such that 

Z = ~S,~t (Z) 2r- E uiai" Then e (z) v = zv = q~s,= (z) v -t- E utaiv = q~s,= (z) v = ( e s  ~ %s)(q~s,~(z))~. S i n c e  t h e  
L~L ~=1 

module V is generated by the element v, we have O(z)=(f)sN%S)(eps.,(z)). 
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~ ~ 1 ~ ~- a+ 
Let 6=~ ~, 6s=-~- ~, As = (~As. Let y be an automorphism of the algebra 

=Ea+ =EZ~S-f" 
S(f0) acting as ?(p)(s163 , where X~*, and p is a polynomial function on $*, 
We similarly define an automorphism 7s of the algebra S(~ s) by letting ys(P)(X)=P(s 
Let ?s = Tls(fos). 

LEMMA 5. Suppose ~.~s : U((~s)0-+S(~s) is a Harish-Chandra S-homomorphism with respect 

to a basis ~s" Then the following diagram commutes: 

U (~)o +~ ~s~~ U (~6s)o | S (~s) 

7o~,~,~ (?s o q'~,=s) | 1, 
,I, m ~' 

s (~_,) <- s (~gs) | s (9  s) 

where m is a natural isomorphism of S(~) onto S(~s) @S(~s). 

To prove the above lemma it suffices to note that g ls = ? s  
(6s) 

((?s o r ) | ys) o Cps, w 

Thus,  ?o~e. = m o  

Let i be the restriction of a homomorphism (1 |  o~s .  = to Z(~) and i s the restriction 

of a homomorphism (gs o~.~s)| ] to Z(~s)| s) Let j be the natural imbedding of Z(@) 

into U(m)0 , and Js the natural embedding of Z(@s) | s) into U(~s)o| Consider 

the following commutative diagram: 

Z(~i)  i m o i  s 
+ z (ms) | s (,~s) -, S ($)) 

i I is 
$ (l | ?s)~e~s.= ~. m o ((?s o cp~,xs) | 1) 

U(~)o + U ((gS)o | S ($)s) , S (~). 

(1)  

Lemma 5 implies that the image of the center Z(~) under the composition mapping mois) oi is 
equal to S(~)w. 

LEMMA 6. Z (@s) | S (&s) ..~ S (~) ws. 

Proof: The commutativity of diagram (i) implies that Z ( ~ s ) |  s (~S )~ - - -S (~s )~"s (~s (~  s) How- 

ever, for all HE$0 s , we have mEWs w(H) --- s, s, ,si-(H) , where si4 is a reflection by a root 
] 2 '  " '"  R j 

~i/, ] = I-~ , where all ~r . Consequently, sg(H )= H for all j = i, k, so therefore w(H) = 

H. Thus, S (~0 s) = S (los) •s and Z ((~s) ~ S ($3 s) ~_ S (lOs) ws ~ S (~S)Ws~--. S (~) ws . Q.E.D. 

Denote an isomorphism Z(fOs)@S(~s)-~S([o) yes by @s" Let NX (Ws) be the normaiizer of 

the group Ws in W. Since for every wEN • (Ws) we have w(S(fo)Ws)r-S(~) ws , for every 

bEZ(~s)~S(& s) we can define 

~b = ~-L (ml~s (b)). (2 )  

Equation (2) defines an action of N(Ws) on Z(~s)~S(~ s) 

THEOREM i. i) i(z(m))~-(z((gs)@S($ps))N~s); 2)(l| | ) for all 

w E N (Ws). 

Proof: Since Z((~)~---S(~) w , assertion 1 of theorem follows from Lemma 6 and Eq. (2). 

Furthermore, since an isomorphism?o~o.a:Z(($)_~S(&)mdoe s not depend on the choice of basis ~r 

of the root system k and (I | Z(O}s)| s) for all wEN(Ws) , assertion 2 of 
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the theorem from the commutativity of the following diagram: 

i z (N) -> z (~r | s (~s) 

,oq~e.., I I*s 
S (&)~ ,~ S (,~)~s _,. S (,~). 

(9) 

Given an algebra A, let A be the set of isomorphism classes of irreducible representa- 
tions of A. Define a natural mapping on characters ~:Z(~s)@S(~s)-~ Z(~). 

Proposition 3. For every OEZ,(~3) the set t (0) is finite and ]~'-I(0)I~(W'Ws) 

Proof: The proof follows from the commutativity of diagram (3) and the fact that the 

dimension of the quotient field S(~) ~'s over the quotient field S(~) ~v is equal to (W:Ws). 

2. Properties of Weight ~-Modules Generated by Semiprimitive Elements. In this sec- 
tion we use results of section 1 to study ~-modules generated by semi-primitive elements. 

Recall the construction of the universal ~-module generated by an S-primitive element 
of weight X [2]. In the universal enveloping algebra U(~) define a subalgebra As=U(~ ~s) 

+ U (~s)o. 

Let (Ps, U) be an irreducible representation of the algebra A s such that Ps(a§ If)u=k(H)u 
for all aC91+s,HE.~,u6U Defining an ~-module M(S,~,k-~6,Ps)=U(OJ)| Clearly, the 

A S 

module M(S,r~,~-6, P s) is a weight ~j-module, M(S,x,)~-6, ps)x~.~U, and every element of this 

subspace is a generating S-primitive element of weight ~. 

The universality of the module is characterized by the following proposition. 

Proposition 4. Suppose V is a ~-module generated by an S-primitive element v of weight 
% with respect to a basis ~ and V l is an irreducible U(~s)o-module. Then there exists a 
unique ~-epimorphism X:M(S,~,k~-6, Ps)-+V such that x(l ~)=v , where (Ps, Vx) is the 

corresponding representation of the algebra A s . 

The proof follows from universal properties of the tensor product. 

Proposition 5. i) In M(S,~,X+6, ps ) there exists a maximal ~-submodule N which is 

different from M(S,~,X+8, p s) , and 2) if V is an irreducible ~-module with an S-primitive 
element of weight X with respect to a basis ~ then V~__M(S,~,~+6, ps)/N where (Ps'VX) is the 

corresponding representation of the algebra As. 

The proposition is proven in [3]. 

Let L(S, ~,~ q- t~, ps),= M(S,~,~,+ 6, ps)/N. 
Remark. If S = ~ then M (~,~, k,p~) = M ~) , where M ~) is a Verma module associated 

with either ~ or X. 

Proposition 6. Every simple subfactor of a module M(S,=, )~-~6,ps) is isomorphic to 

L(S,r~,p.-}-6,-ps) for some ~E~* and Os6~. 
The above proposition is proven analogously to a similar result for Verma modules cited 

in [i]. 

Fernando cites in [4] still another method of construction of @6-modules generated by 
S-primitive elements. Let V be an irreducible weight P=~s~92~(5~S-module such that 

97~v-----0 for all v ~ V. Clearly, V is irreducible as a ~s-module. We construct a ~--module 

A41(S, =I,V)=U((~) ~ V , which also contains a maximal (~--submodule N I. In addition, .~4(S, 
u~P) 

x, X ~- 6, ps)/N ,~ M I(S, ~i, V)/N I , where % 6supp V, (Ps' Vx) is the corresponding representation of A s. 

Furthermore, Proposition 4 implies that there exists an epimorphim %: Ad (S,~, k ~- 6, Ps)-'+M1(S,~, V). 
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Suppose ~E[)* �9 Let $. -- {>~E,D*IX--~EQ} For every ~P~ let P-..s = {KE~*[t~ 
--zEQs}~-P~- Suppose 06Z((~) Let K~,~ be the category of weight [@-modules V with a 
central character ~ such that suppV~-~P, . Clearly, every module of the form M(S.x, Xq-6, Ps) 

is contained in some category K~,e. Given VEK~,0 , let Ts,.~< (V)={KESuDDVI there exists an 

S-primitive element v ~ V of weight i with respect to ~). Let 

D (S, a, p., O) = {Pr ~ P,, [ 5V E K~,o : Ts.= (V) ~ P~,s 4= Zd}. 

LEMMA 7. ID(S,~,b,O)I-.~(W:L~s) f o r  a l l  S ~ { 1 , 2  ..... hi, ~E ~*, OCZ.(~). 

Proof: Let V be an irreducible object of a category Ku, 0 with an S-primitive element of 

weight X with respect to the basis ~. Then an algebra Z(CSs)| s) acts on a ~5sE~s- 

module .~ P'~ by means of a certain character EZ(6Js)~S(~ s) Using Proposition 3, we 

XEP~.,S 
conc l ude  the  p r o o f .  

Now we are ready to prove the main result of this section. 

THEOREM 9 Suppose C$-~-E~, s and (0 s U) is a finite-dimensional irreduclbi~_ repre 

sentation of an algebra A s . Then a W-module M(S,~,}~ '--6, ps ) has a composition sequence. 

Proof: The theorem is proved by induction on I~I for all S simultaneously. In the case 
,v = 1 the theorem coincides with the corresponding result for Verma modules [I]. Suppose 

> 1 and IS[ = p. Let N be a maximal submodule of M(S,~,Xq-6, Ps). Then N\ = O. Since 

the algebra (~s is of type Ap, Bp, Cp, or Dp, a ~6s-module V A'~ and all its submodules 

~6PMs 

contain a semi-primitive element [3, Theorem 3.2j. Without loss of generality we can assume 

that all semi-primitive elements are S'-primitive if I S'I = p - i and are not S"-primitive if 
IS"[ < p - i. Lemma 7 and the finite-dimensionality of subspaces NX imply that there exists 
an epimorphism from a finite direct sum of ~s-modules of the form M(S',a',X'q-6s, pa:, ) into 

~, N~. Applying the induction hypothesis to every module M(S',~',X'q-6S, Os,) , we obtain 
~.EPMS 

the following composition sequence for the ~s-module =J~ N~" /~ N~PI~.... ~P~:D0. 
~EPK,s U, EP~. 

The corresponding chain of ~-submodules of N is as follows: N~I~N~...~N, , where 

Ni+ ! is maximal in N i and V (N3~=p~, i : I-~. In a module N k we choose a maximal L~- 

submodule Nk+ I. Since theWs-module Pk is irreducible, we have suppN~+inPa.s= Z. Now the 

assertion of the theorem follows from Lemma 7. Q.E.D. 

Remark. The authors are convinced that above theorem holds even when ~E{Ev, Ea}. 

Suppose Sc{1,9- ..... n} and IS[ = i. Then ~s--~-sl(2,~) and dim/(S,=, ~,q-5, Ps)x= ,[. Given 
A 

a module L=L(S,a,K+6, ps ) , there is an associated character ~(L)6Z((~s)| a means of 

which Z(~s) ~ S(~ s) acts on a ~s ~) ~s -module ~__~ d~ However, for every ~s and 
...... ~Pk,s 

~6Z((~s)~S(~ s) there exist no more than three irreducible weight @-modules V with S-primitive 

elements for which suppV~P~ and 8(B) = ~ (see, for example, [5]). Therefore, Proposition 3 

implies the following assertion. 

THEOREM 3. Suppose that ~6~ *, O6Z(~), Sc~],,2 .... n} , and Isl = I. Then the category 

K~, 8 contains no more than 3/2 IWI irreducible objects V such that Ts.~(V)v-~. 

Remark. i) Theorem 3 is false in the case where IS[ > i. This follows, for example, 

from results cited in [6]. 2) Under the assumptions of Theorem 3 there are infinitely many 

irreducible modules V in U ]~,e such that Ys, a(v)=/=f~ . 
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