BY A SEMIPRIMITIVE ELEMENT

Yu. A. Drozd, S. A. Ovsienko, and V. M. Futornyi

We define Harish-Chandra S-homomorphism which generalizes the classical Harish-Chandra homomorphism and study its properties. For \mathfrak{G} -modules ($\mathfrak{G} \neq E_7, E_8$), generated by semiprimitive elements we prove the existence of composition sequences.

In this article we construct a generalization of the classical Harish-Chandra homomorphism [1]. We then use our results to study the structure of modules generated by semiprimitive elements [2, 3].

1. The Harish-Chandra S-Homomorphism and Its Properties. Let (5) be a complex simple finite-dimensional Lie algebra of rank n, \mathfrak{H} its cartesian subalgebra, Δ a system of roots of (3, π a basis of the system of roots Δ , $\Delta^+ = \Delta^-(\pi)$ the set of positive roots in Δ with respect to π , $W = W(\Delta)$ the Weyl group of the system Δ , and \mathfrak{G}^{α} the root subspace corresponding to a root α .

Let $\pi = \{\alpha_1, \alpha_2, ..., \alpha_n\}$, $S \subseteq \{1, 2, ..., n\}$, $\pi_S = \{\alpha_i \mid i \in S\}$. Denote by $\Delta_S = \Delta_S(\pi_S)$ a subsystem of roots in Δ generated by π_S . Furthermore, let $\{H_{\alpha} \mid \alpha \in \pi\}$ be a basis of the Cartesian subalgebra $\tilde{\mathfrak{P}}$, such that $\alpha(H_{\alpha}) = 2$ for all $\alpha \in \pi$. Let $\tilde{\mathfrak{P}}_S$ and $\tilde{\mathfrak{P}}^S$ be subalgebras $\langle H_{\alpha} \mid \alpha \in \pi_S \rangle$ and $\{H \in \mathfrak{P} \mid \alpha(H) = 0 \text{ for all } \alpha \in \Delta_S\}$, respectively.

For every $\alpha \in \Delta$ choose $X_{\alpha} \in \mathfrak{G}^{\alpha} \setminus \{0\}$ and define the following subalgebras of \mathfrak{G} :

$$\mathfrak{G}_{S} = \langle X_{\pm \alpha} | \alpha \in \pi_{S} \rangle, \quad \mathfrak{N}_{S}^{+} = \sum_{\alpha \in \Delta^{+} \setminus \Delta_{S}} \mathfrak{G}^{\alpha}, \quad \mathfrak{N}_{S}^{-} = \sum_{\alpha \in \Delta^{+} \setminus \Delta_{S}} \mathfrak{G}^{-\alpha}.$$

Let U(G) be the universal enveloping algebra of the algebra G, and let Z(G) be the center of U(G). Let Q (respectively, Q_S) be the group of radical weights of the system (respectively, Δ_S). Then the G-module structure with respect to adjoint representation on U(G) defines a Q-graduation on it: $U(G) = \bigoplus_{\lambda \in Q} U(G)_{\lambda}$.

<u>LEMMA 1</u>. Let $L_S = U(\mathfrak{G}) \mathfrak{N}_S^+ \cap U(\mathfrak{G})_0$. Then 1) L_S is a two-sided ideal in $U(\mathfrak{G})_0$, 2) $L_S = \mathfrak{N}_S^- U(\mathfrak{G}) \cap U(\mathfrak{G})_0$; 3) $U(\mathfrak{G})_0 = L_S \oplus U(\mathfrak{G}_S)_0 \otimes U(\mathfrak{G}^S)$.

The lemma is proven analogously to Lemma 7.4.2 in [1].

<u>Remarks</u>. 1. Ker $\varphi_{S,\pi} = L_S$. 2. A Harish-Chandra S-homomorphism $\varphi_{S,\pi}$ is uniquely defined by a set $\Delta^+(\pi) \setminus \Delta_S(\pi_S)$. 3. $\varphi_{\emptyset,\pi}$ is the classical Harish-Chandra homomorphism with respect to the basis π . 4. Ker $\times (\varphi_{S,\pi}|_{Z(\mathfrak{C})}) = 0$ and $\varphi_{S,\pi}(Z(\mathfrak{G})) \subset Z(\mathfrak{G}_S) \otimes S(\mathfrak{G}^S)$ where $Z(\mathfrak{G}_S)$ is the center of the universal enveloping algebra $U(\mathfrak{G}_S)$.

It is known that Harish-Chandra ϕ -homomorphisms are in a one-to-one correspondence with bases of the system of roots Δ , i.e., their number is equal to |W|. Harish-Chandra S-homomorphisms are described similarly.

Kiev University. Translated from Ukrainskii Matematicheskii Zhurnal, Vol. 42, No. 8, pp. 1031-1037, August, 1990. Original article submitted June 23, 1989.

UDC 512.554.3

LEMMA 2. Let $S \subset \{1, 2, ..., n\}$, $\Omega = \{\Delta^+(\omega \pi) \setminus \Delta_S(\omega \pi_S) \mid \omega \in W\}$. The group W acts on the set Ω transitively.

The proof is obvious, since $\Delta^+(w\pi) \setminus \Delta_S(w\pi_s) = w \times (\Delta^+(\pi) \setminus \Delta_S(\pi_s))$ for all $W \in W$.

<u>Proposition 1.</u> Let $S \subset \{1, 2, ..., n\}$, WS the Weyl group of the system of roots ΔS , and $N(W_S)$ the normalizer of the group WS in W. Then 1) Harish-Chandra S-homomorphisms are in one-to-one correspondence with cosets W/WS, and 2) Harish-Chandra S-homomorphisms with a fixed root subsystem $\Delta_S(\pi)$ are in one-to-one correspondence with cosets $N(W_S)/W_S$.

<u>Proof:</u> Define a set $\Omega = \{\Delta^+(\varpi\pi) \setminus \Delta_S(\varpi\pi_s) \times | \varpi \in W\}$. The number of different Harish-Chandra S-homomorphisms is equal to $|\Omega|$. Fix a set $\Delta^+(\pi) \setminus \Delta_S(\pi) \in \Omega$. Then $\operatorname{st}(\Delta^+(\pi) \setminus \Delta_S(\pi)) = W_S$ with respect to the action of the group W on Ω . Therefore, assertion 1 follows from Lemma 2. Furthermore, every element $\Delta^+(\varpi\pi) \setminus \Delta_S(\varpi\pi_s)$ of the set Ω uniquely defines a set $\Delta_S(\varpi\pi_s)$, but this correspondence is not injective. This means that there exist two distinct $\varpi_1, \varpi_2 \in W$ such that $\Delta_S(\varpi_1\pi_S) = \Delta_S(\varpi_2\pi_S)$. Consider the natural transitive action of the group W on the set of pairs $\Omega = \{(\Delta^+(\varpi\pi) \setminus \Delta_S(\varpi\pi_S), \Delta_S(\varpi\pi_S)) | \varpi \in W\}$. We see that the number of different Harish-ChandraS-homomorphisms with a fixed $\Delta s(\pi)$ is equal to the number of different elements in $\tilde{\Omega}$ with $\Delta_S(\pi)$ at the second place, i.e., $(\operatorname{st}(\Delta_S(\pi)):\operatorname{st}(\Delta^+(\pi) \setminus \Delta_S(\pi))) = (N(W_S):W_S)$, which proves statement 2.

Let V be some weight \mathfrak{G} -module, i.e., $V = \bigoplus_{\lambda \in \mathfrak{H}^*} V_{\lambda}$, where $V_{\lambda} = \{v \in V \mid Hv = \lambda(H)v \text{ for all } H \in \mathfrak{H}\}$. Let $\sup V = \{\lambda \in \mathfrak{H}^* \mid V_{\lambda} \neq 0\}$. The elements of $\sup V$ are called the weights of the module V.

The following proposition plays an important role in the theory of weight \mathfrak{H} -modules.

LEMMA 3. 1. Let V be an irreducible weight \mathfrak{G} -module and $\lambda \in \operatorname{supp} V$. Then V_{λ} is an irreducible $U(\mathfrak{G})_0$ -module.

2. Let V' be an irreducible U (\mathfrak{G})₀-module such that $Hv = \lambda(H)v$ for all $H \in \mathfrak{H}$, $v \in V'$. Then there exists a unique irreducible weight \mathfrak{G} -module V such that $V_{\lambda} \simeq V'$.

<u>Proof</u>: Let $V_{\lambda} \supset U$ be a proper $U(\mathfrak{G})_0$ -submodule. Then, $U(\mathfrak{G}) U \subseteq V$, which contradicts the irreducibility of V. 2. A weight \mathfrak{G} -module $M = U(\mathfrak{G}) \otimes V'$ has only one maximal submodule \mathfrak{M} and $(M/\mathfrak{M})_{\lambda} \simeq V'$. If L is an irreducible \mathfrak{G} -module and $L_{\lambda} \simeq V'$ then there exists an epimorphism $\chi: M \rightarrow L$. Therefore, $M/\mathfrak{M} \simeq L$. Q.E.D.

<u>LEMMA 4</u>. Every irreducible $U(\mathfrak{G}_S)_0 \otimes S(\mathfrak{H}^S)$ -module V' such that $Hv = \lambda(H)v$ for all $H \in \mathfrak{H}, v \in V'$ extends to an irreducible weight \mathfrak{G} -module V such that $V_{\lambda} \simeq V'$.

Proof: It suffices to use the Harsh-Chandra S-homomorphism and Lemma 3 of section 2.

Lemma 4 allows us to extend irreducible weight &-modules to irreducible weight &-modules.

<u>Definition</u>: 1. An S-primitive element of weight λ with respect to a basis π is a nonzero element v such that $Hv = \lambda(H)v$ for all $H \in \mathfrak{H}$ and $\mathfrak{M}_{S}^{+}v = 0$. 2. An element $v \in V$ is called semi-primitive of weight λ if, for some basis π of the system of roots Δ and some $S \subset \{1, 2, ..., n\}$, v is an S-primitive element of weight λ with respect to π [3].

<u>Remark</u>. The definition of S-primitive elements in the case where $S = \phi$ coincides with the well-known definition of primitive elements.

Proposition 2. Let V be some \mathfrak{G} -module generated by an S-primitive element v of weight λ with respect to a basis π , θ a central character of the module V, and $\theta_S : Z(\mathfrak{G}_S) \to \mathbb{C}$, where $zv = \theta_S(z)$ for all $z \in Z(\mathfrak{G}_S)$. Let λ^S be the restriction of λ to \mathfrak{H}^S . Then $\theta(z) = (\theta_S \otimes \lambda^S)(\varphi_{S,\pi}(z))$ for all $z \in Z(\mathfrak{G})$.

 $\frac{\text{Proof:}}{z = \varphi_{S,\pi}(z) + \sum_{i=1}^{k} u_i a_i. \quad \text{Then } \theta(z) v = zv = \varphi_{S,\pi}(z) v + \sum_{i=1}^{k} u_i a_i v = \varphi_{S,\pi}(z) v = (\theta_S \otimes \lambda^S) (\varphi_{S,\pi}(z))v. \quad \text{Since the the set of the$

module V is generated by the element v, we have $\theta(z) = (\theta_S \otimes \lambda^S)(\varphi_{S,\pi}(z))$.

Let $\delta = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$, $\delta_S = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$, $\Delta_S^+ = \Delta^+ \cap \Delta_S$. Let γ be an automorphism of the algebra

S(\mathfrak{H}) acting as $\gamma(p)(\lambda) = p(\lambda - \delta)^{S}$, where $\lambda \in \mathfrak{H}^{*}$, and p is a polynomial function on \mathfrak{H}^{*} . We similarly define an automorphism γ_{S} of the algebra $S(\mathfrak{Y}_{S})$ by letting $\gamma_{S}(p)(\lambda) = p(\lambda - \delta_{S})$. Let $\gamma^{S} = \gamma|_{S(\mathfrak{H}^{S})}$.

<u>LEMMA 5.</u> Suppose $\varphi_{\emptyset,\pi_S}: U(\mathfrak{G}_S)_0 \to S(\mathfrak{F}_S)$ is a Harish-Chandra S-homomorphism with respect to a basis π_S . Then the following diagram commutes:

$$\begin{array}{c|c} U(\mathfrak{G})_{\mathfrak{g}} & \stackrel{(1 \otimes \gamma^{S})_{\mathfrak{G}} \oplus \mathfrak{G}_{S}, \pi}{\longrightarrow} U(\mathfrak{G}_{S})_{\mathfrak{g}} \otimes S(\mathfrak{H}^{S}) \\ \gamma \circ \mathfrak{q}_{\varnothing, \pi} & & \downarrow \\ S(\mathfrak{H}) & \stackrel{\mathfrak{m}}{\longleftarrow} S(\mathfrak{H}_{S}) \otimes S(\mathfrak{H}^{S}) \end{array}$$

where m is a natural isomorphism of $S(\mathfrak{F})$ onto $S(\mathfrak{F}_S) \otimes S(\mathfrak{F}^S)$.

To prove the above lemma it suffices to note that $\gamma|_{S(\mathfrak{G}_S)} = \gamma_S$. Thus, $\gamma \circ \varphi_{\varnothing,\pi} = m \circ ((\gamma_S \circ \varphi_{\varnothing,\pi_S}) \otimes \gamma^S) \circ \varphi_{S,\pi}$.

Let i be the restriction of a homomorphism $(1 \otimes \gamma^S) \circ \varphi_{S,\pi}$ to $Z(\mathfrak{G})$ and i_S the restriction of a homomorphism $(\gamma_S \circ \varphi_{\emptyset,\pi_S}) \otimes 1$ to $Z(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S)$. Let j be the natural imbedding of $Z(\mathfrak{G})$ into $U(\mathfrak{G})_0$, and j_S the natural embedding of $Z(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S)$ into $U(\mathfrak{G}_S)_0 \otimes S(\mathfrak{H}^S)$. Consider the following commutative diagram:

Lemma 5 implies that the image of the center $Z(\mathfrak{G})$ under the composition mapping $m \circ i_S \circ i$ is equal to $S(\mathfrak{F})^{W'}$.

LEMMA 6. $Z(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S) \simeq S(\mathfrak{H})^{\mathfrak{W}_S}$.

<u>Proof</u>: The commutativity of diagram (1) implies that $Z(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S) \simeq S(\mathfrak{H}_S)^{W_S} \otimes S(\mathfrak{H}^S)$. However, for all $H \in \mathfrak{H}^S$, we have $w \in W_S$ $w(H) = s_{i_1}s_{i_2}, \dots, s_{i_k}(H)$, where s_{i_j} is a reflection by a root $\alpha_{i_j}, j = \overline{1, k}$, where all $\alpha_{i_j} \in \Delta_S$. Consequently, $s_{i_j}(H) = H$ for all j = 1, k, so therefore w(H) = H. Thus, $S(\mathfrak{H}^S) = S(\mathfrak{H}^S)^{W_S}$ and $Z(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S) \simeq S(\mathfrak{H}^S)^{W_S} \simeq S(\mathfrak{H}^S)^{W_S} \simeq S(\mathfrak{H}^S)^{W_S}$. Q.E.D.

Denote an isomorphism $Z(\mathfrak{F}_S) \otimes S(\mathfrak{F}^S) \cong S(\mathfrak{F})^{W_S}$ by ψ_S . Let $N \times (W_S)$ be the normalizer of the group W_S in W. Since for every $w \in N \times (W_S)$ we have $w(S(\mathfrak{F})^{W_S}) \subset S(\mathfrak{F})^{W_S}$, for every $b \in Z(\mathfrak{G}_S) \otimes S(\mathfrak{F}^S)$ we can define

$$wb = \psi_{\mathcal{S}}^{-1} (w\psi_{\mathcal{S}}(b)). \tag{2}$$

Equation (2) defines an action of $N(W_S)$ on $Z(\mathfrak{G}_S) \otimes S(\mathfrak{F}^S)$

 $\underbrace{\text{THEOREM 1.}}_{w \in N(W_S).} 1) \quad i(Z(\mathfrak{G})) \subset (Z(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S))^{N(W_S)}; 2) (1 \otimes \gamma^S) \circ \varphi_{S,\pi}|_{Z(\mathfrak{E})} = (1 \otimes \gamma^S) \circ \varphi_{S,v\pi}|_{Z(\mathfrak{E})} \text{ for all } w \in N(W_S).$

<u>Proof</u>: Since $Z(\mathfrak{G}) \simeq S(\mathfrak{H})^{\mathbb{W}}$, assertion 1 of theorem follows from Lemma 6 and Eq. (2). Furthermore, since an isomorphism $\gamma \circ \varphi_{\mathcal{Q},\pi} : Z(\mathfrak{G}) \cong S(\mathfrak{H})^{\mathbb{W}}$ does not depend on the choice of basis π of the root system Δ and $(1 \otimes \gamma^{S}) \circ \varphi_{S,w\pi}(Z(\mathfrak{G})) \subset Z(\mathfrak{G}_{S}) \otimes S(\mathfrak{H}^{S})$ for all $w \in N(\mathbb{W}_{S})$, assertion 2 of the theorem from the commutativity of the following diagram:

$$Z (\mathfrak{G}) \xrightarrow{i} Z (\mathfrak{G}_{S}) \otimes S (\mathfrak{H}^{S})$$

$$\gamma \circ \varphi_{\varnothing, \pi} \downarrow \qquad \qquad \downarrow \psi_{S}$$

$$S (\mathfrak{H})^{W} \longrightarrow S (\mathfrak{H})^{W_{S}} \rightarrow S (\mathfrak{H}).$$
(9)

Given an algebra A, let A be the set of isomorphism classes of irreducible representations of A. Define a natural mapping on characters $\hat{i}: Z(\mathfrak{G}_S) \otimes S(\mathfrak{g}^S) \rightarrow \hat{Z}(\mathfrak{G})$.

<u>Proposition 3.</u> For every $\theta \in \hat{Z}(\mathfrak{G})$ the set $\hat{i}^{-1}(\theta)$ is finite and $|\hat{i}^{-1}(0)| \leq (W:W_S)$.

<u>Proof</u>: The proof follows from the commutativity of diagram (3) and the fact that the dimension of the quotient field $S(\mathfrak{H})^{W_S}$ over the quotient field $S(\mathfrak{H})^{W}$ is equal to $(W:W_S)$.

2. Properties of Weight 6-Modules Generated by Semiprimitive Elements. In this section we use results of section 1 to study 6-modules generated by semi-primitive elements.

Recall the construction of the universal \mathfrak{G} -module generated by an S-primitive element of weight λ [2]. In the universal enveloping algebra $U(\mathfrak{G})$ define a subalgebra $\Lambda_S = U(\mathfrak{N}_S^+ \oplus \mathfrak{G}^S) + U(\mathfrak{G}s)_0$.

Let (ρ_S, U) be an irreducible representation of the algebra Λ_S such that $\rho_S(a + H)u = \lambda(H)u$ for all $a \in \mathfrak{N}_S^+$, $H \in \mathfrak{H}, u \in U$. Defining an \mathfrak{G} -module $M(S, \pi, \lambda + \delta, \rho_S) = U(\mathfrak{G}) \bigotimes_{\Lambda_S} U$. Clearly, the module $M(S, \pi, \lambda + \delta, \rho_S)$ is a weight \mathfrak{G} -module, $M(S, \pi, \lambda + \delta, \rho_S)_{\lambda} \simeq U$, and every element of this subspace is a generating S-primitive element of weight λ .

The universality of the module is characterized by the following proposition.

<u>Proposition 4.</u> Suppose V is a G-module generated by an S-primitive element v of weight λ with respect to a basis π and V_{λ} is an irreducible $U(\mathbb{G}_S)_0$ -module. Then there exists a unique G-epimorphism $\chi: M(S, \pi, \lambda + \delta, \rho_S) \rightarrow V$ such that $\chi(1 \otimes v) = v$, where (ρ_S, V_{λ}) is the corresponding representation of the algebra Λ_S .

The proof follows from universal properties of the tensor product.

<u>Proposition 5.</u> 1) In $M(S, \pi, \lambda + \delta, \rho_S)$ there exists a maximal (\mathfrak{G}) -submodule N which is different from $M(S, \pi, \lambda + \delta, \rho_S)$, and 2) if V is an irreducible (\mathfrak{G}) -module with an S-primitive element of weight λ with respect to a basis π then $V \simeq M(S, \pi, \lambda + \delta, \rho_S)/N$ where (ρ_S, V_λ) is the corresponding representation of the algebra Λ_S .

The proposition is proven in [3].

Let $L(S, \pi, \lambda + \delta, \rho_S) = M(S, \pi, \lambda + \delta, \rho_S)/N$.

<u>Remark</u>. If S = ϕ then $M(\emptyset, \pi, \lambda, \rho_{\emptyset}) = M(\lambda)$, where $M(\lambda)$ is a Verma module associated with either π or λ .

<u>Proposition 6.</u> Every simple subfactor of a module $M(S, \pi, \lambda + \delta, \rho_S)$ is isomorphic to $L(S, \pi, \mu + \delta, \tilde{\rho}_S)$ for some $\mu \in \mathfrak{H}^*$ and $\tilde{\rho}_S \in \hat{\Lambda}_S$.

The above proposition is proven analogously to a similar result for Verma modules cited in [1].

Fernando cites in [4] still another method of construction of \mathfrak{G} -modules generated by S-primitive elements. Let V be an irreducible weight $P = \mathfrak{G}_S \oplus \mathfrak{N}_S^+ \oplus \mathfrak{H}^S$ -module such that $\mathfrak{N}_S^+ v = 0$ for all $v \in V$. Clearly, V is irreducible as a \mathfrak{G}_S -module. We construct a \mathfrak{G} -module $M_1(S, \pi, V) = U(\mathfrak{G}) \bigotimes V$, which also contains a maximal \mathfrak{G} -submodule N_1 . In addition, $M(S, \pi, \lambda + \delta, \rho_S)/N \simeq M_1(S, \pi, V)/N_1$, where $\lambda \in \operatorname{supp} V, (\rho_S, V_\lambda)$ is the corresponding representation of \wedge_S . Furthermore, Proposition 4 implies that there exists an epimorphim $\chi: M(S, \pi, \lambda + \delta, \rho_S) \to M_1(S, \pi, V)$. Suppose $\mu \in \mathfrak{H}^*$. Let $P_{\mu} = \{\lambda \in \mathfrak{H}^* | \lambda - \mu \in Q\}$. For every $\tau \in P_{\mu}$ let $P_{\tau,S} = \{\lambda \in \mathfrak{H}^* | \lambda - \tau \in Q_S\} \subset P_{\mu}$. Suppose $\theta \in \widehat{Z}(\mathfrak{G})$. Let $K_{\mu,\theta}$ be the category of weight \mathfrak{G} -modules V with a central character θ such that $\operatorname{supp} V \subset P_{\mu}$. Clearly, every module of the form $M(S, \pi, \lambda + \delta, \rho_S)$ is contained in some category $K_{\lambda,\theta}$. Given $V \in K_{\mu,\theta}$, let $T_{S,\pi} \leq \langle V \rangle = \{\lambda \in \operatorname{supp} V | \text{ there exists an } S$ -primitive element $v \in V$ of weight λ with respect to π). Let

$$D(S, \pi, \mu, \theta) = \{ P_{\tau, S} \subset P_{\mu} \mid \exists V \in K_{\mu, \theta} : T_{S, \pi}(V) \cap P_{\tau, S} \neq \emptyset \}.$$

LEMMA 7. $|D(S, \pi, \mu, \theta)| \leq (\mathcal{W}: \mathcal{W}_S)$ for all $S \subset \{1, 2, ..., n\}, \mu \in \mathfrak{H}^*, \theta \in \hat{Z}(\mathfrak{G}).$

<u>Proof</u>: Let V be an irreducible object of a category $K_{\mu,\theta}$ with an S-primitive element of weight λ with respect to the basis π . Then an algebra $Z(\mathfrak{G}_S) \otimes S(\mathfrak{F}^S)$ acts on a $\mathfrak{G}_S \oplus \mathfrak{F}^S$ -module $\sum_{\mathbf{x} \in \mathcal{P}_{\lambda,S}} V_{\mathbf{x}}$ by means of a certain character $\in Z(\mathfrak{G}_S) \widehat{\otimes} S(\mathfrak{F}^S)$. Using Proposition 3, we

conclude the proof.

Now we are ready to prove the main result of this section.

<u>THEOREM 2.</u> Suppose $\mathfrak{G} \neq E_7$, E_8 and (ρ_S, U) is a finite-dimensional irreducible representation of an algebra Λ_S . Then a \mathfrak{G} -module $M(S, \pi, \lambda + \delta, \rho_S)$ has a composition sequence.

<u>Proof</u>: The theorem is proved by induction on $|\pi|$ for all S simultaneously. In the case $|\pi| = 1$ the theorem coincides with the corresponding result for Verma modules [1]. Suppose $|\pi| > 1$ and |S| = p. Let N be a maximal submodule of $M(S, \pi, \lambda + \delta, \rho_S)$. Then $N_{\lambda} = 0$. Since the algebra \mathfrak{G}_S is of type A_p , B_p , C_p , or D_p , a \mathfrak{G}_S -module $\sum_{\mu \in P_{\lambda,S}} N_{\mu}$ and all its submodules

contain a semi-primitive element [3, Theorem 3.2]. Without loss of generality we can assume that all semi-primitive elements are S'-primitive if |S'| = p - 1 and are not S"-primitive if $|S'| . Lemma 7 and the finite-dimensionality of subspaces N_{<math>\lambda$} imply that there exists an epimorphism from a finite direct sum of \mathfrak{G}_{s} -modules of the form $M(S', \pi', \lambda' + \delta_{s}, \rho_{s'})$ into

 $\sum_{\mu \in P_{\lambda,S}} N_{\mu}.$ Applying the induction hypothesis to every module $M(S', \pi', \lambda' + \delta_S, \rho_S)$, we obtain the following composition sequence for the \mathfrak{G}_{S} -module $\sum_{\mu \in P_{\lambda,S}} N_{\mu} : \sum_{\mu \in P_{\lambda,S}} N_{\mu} \supset P_1 \supset ... \supset P_k \supset 0.$ The corresponding chain of \mathfrak{G} -submodules of N is as follows: $N \supset N_1 \supset N_2 \supset ... \supset N_k$, where N_{i+1} is maximal in N_i and $\sum_{\mu \in P_{\lambda,S}} (N_i)_{\mu} = P_i$, $i = \overline{1,k}$. In a module N_k we choose a maximal \mathfrak{G} submodule N_{k+1} . Since the \mathfrak{G}_S -module P_k is irreducible, we have $\sup N_{k+1} \cap P_{\lambda,S} = \emptyset$. Now the assertion of the theorem follows from Lemma 7. Q.E.D.

<u>Remark</u>. The authors are convinced that above theorem holds even when $\mathfrak{G} \in \{E_7, E_8\}$.

Suppose $S \subset \{1, 2, ..., n\}$ and |S| = 1. Then $\mathfrak{G}_S \simeq \mathfrak{sl}(2, \mathbb{C})$ and $\dim L(S, \pi, \lambda + \delta, \rho_S)_{\lambda} = 1$. Given a module $L = L(S, \pi, \lambda + \delta, \rho_S)$, there is an associated character $\beta(L) \in \mathbb{Z}(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S)$ by a means of which $\mathbb{Z}(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S)$ acts on a $\mathfrak{G}_S \oplus \mathfrak{H}^S$ -module $\sum_{\mu \in P_{\lambda,S}} L_{\mu}$. However, for every $\mu \in \mathfrak{H}^*$ and $\beta \in \mathbb{Z}(\mathfrak{G}_S) \otimes S(\mathfrak{H}^S)$ there exist no more than three irreducible weight \mathfrak{G} -modules V with S-primitive elements for which $\operatorname{supp} V \subset P_{\mu}$ and $\beta(B) = \beta$ (see, for example, [5]). Therefore, Proposition 3 implies the following assertion.

<u>THEOREM 3</u>. Suppose that $\mu \in \mathfrak{H}^*$, $\theta \in Z(\mathfrak{G})$, $S \subset \{1, 2, ..., n\}$, and |s| = 1. Then the category $K_{\mu,\theta}$ contains no more than 3/2 |W| irreducible objects V such that $T_{s,\pi}(V) \neq \emptyset$.

<u>Remark</u>. 1) Theorem 3 is false in the case where |S| > 1. This follows, for example, from results cited in [6]. 2) Under the assumptions of Theorem 3 there are infinitely many irreducible modules V in $\bigcup_{u} K_{\mu,\theta}$ such that $T_{S,\pi}(v) \neq \emptyset$.

LITERATURE CITED

- 1. J. Dixmier, Universal Enveloping Algebras [Russian translation], Mir, Moscow (1978).
- 2. V. M. Futornyi, "On a construction of irreducible representations of semisimple Lie algebras," Funkts. Anal. Prilozhen., <u>21</u>, No. 2, 92-93 (1987).
- V. M. Futornyi, "Weight representations of semisimple finite-dimensional Lie algebras," Algebraic Structures and Their Applications, Vishcha Shk. Izdat. Kiev. Inst., Kiev, 142-155 (1988).
- 4. S. L. Fernando, Simple Weight Modules of Complex Reductive Lie Algebras, PhD Thesis, University of Wisconsin, Wisconsin (1983).
- 5. V. M. Futornyi, "A generalization of Verma modules and irreducible representations of the algebra sl(3)," Ukr. Mat. Zh., <u>38</u>, No. 4, 492-497 (1986).
- Yu. A. Drozd, S. A. Ovsienko, and V. M. Futornyi, "Irreducible weight sl(3)-modules," Funkts. Anal. Prilozh., 23, No. 3, 57-58 (1989).