ON NILPOTENT CHERNIKOV p-GROUPS WITH ELEMENTARY TOPS

YURIY DROZD AND ANDRIANA PLAKOSH

Abstract

The description of nilpotent Chernikov p-groups with elementary tops is reduced to the study of tuples of skew-symmetric bilinear forms over the residue field \mathbb{F}_{p}. If $p \neq 2$ and the bottom of the group only consists of 2 quasi-cyclic summands, a complete classification is given. The main tool is the theory of representations of quivers with involution.

Contents

1. Structure theorem	6
2. Relation with representations of quivers	4
3. Case $n=2$	6
Acknowledgment	9
References	9

1. Structure theorem

Recall that a Chernikov p-group [1, 7, G is an extension of a finite direct sum M of quasi-cyclic p-groups, or, the same, the groups of type p^{∞}, by a finite p-group H. Note that M is the biggest abelian divisible subgroup of G, so both M and H are defined by G up to isomorphism. We call H and M, respectively, the top and the bottom of G. We denote by $M^{(n)}$ a direct sum of n copies M_{i} of quasi-cyclic p-groups and fix elements $a_{i} \in M_{i}$ of order p. A Chernikov p-group is defined by an action of a finite p-group H on a group $M^{(n)}$ and an element from the second cohomology group $H^{2}\left(H, M^{(n)}\right)$ with respect to this action. Such an element is given by a 2-cocycle $\mu: H \times H \rightarrow M^{(n)}$, which is defined up to a 2-boundary [5, Chapter 15]. In what follows it is convenient to denote the operations in the groups G, H, M by + , so their units are denoted by 0 .

It is known [1, Theorem 1.9] that a Chernikov p-group G is nilpotent if and only if the action of H on $M^{(n)}$ is trivial. In this case a cocycle is a map

[^0]$\mu: H \times H \rightarrow M^{(n)}$ such that $\mu(y, z)+\mu(x, y+z)=\mu(x+y, z)+\mu(x, y)$ for all $x, y, z \in H$. We can also suppose that μ is normalized, i.e. $\mu(0, x)=$ $\mu(x, 0)=0$ for every $x \in H$. A coboundary of a function $\gamma: H \rightarrow M^{(n)}$ is the function $\partial \gamma(x, y)=\gamma(x)+\gamma(y)-\gamma(x+y)$.

Let H_{m} be the elementary abelian p-group with m generators,

$$
\left.H_{m}=\left\langle h_{1}, h_{2}, \ldots, h_{m}\right| p h_{i}=0, h_{i}+h_{j}=h_{j}+h_{i} \text { for all } i, j\right\rangle
$$

Let also $M_{p}^{(n)}=\left\{a \in M^{(n)} \mid p a=0\right\}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$. We denote by $S(n, m)$ the group of all skew-symmetric maps $\tau: H_{m} \times H_{m} \rightarrow M_{p}^{(n)}$, i.e. such bilinear maps that $\tau(x, x)=0$ for all x (hence $\tau(x, y)=-\tau(y, x)$ for all $x, y)$.

Theorem 1.1. (cf. [9]) If H_{m} acts trivially on $M^{(n)}$, then $H^{2}\left(H_{m}, M^{(n)}\right) \simeq$ $S(n, m)$.

Proof. Let G be an extension of $M^{(n)}$ by H_{m} with the trivial action of H_{m} corresponding to a cocycle μ. Then for every $x \in H_{m}$ there is a representative $\bar{x} \in G$ such that $\bar{x}+\bar{y}=\overline{x+y}+\mu(x, y)$. Set

$$
t(x, y)=[\bar{x}, \bar{y}]=(\overline{x+y}+\mu(x, y))-(\overline{y+x}+\mu(y, x))=\mu(x, y)-\mu(y, x)
$$

since all values $\mu(x, y)$ are in the center of G. As all commutators are in the center of G as well, we have

$$
\begin{aligned}
{[\overline{x+y}, \bar{z}] } & =(\bar{x}+\bar{y}-\mu(x, y)+\bar{z})-(\bar{z}+\bar{x}+\bar{y}-\mu(x, y)) \\
& =(\bar{x}+\bar{y}+\bar{z})-(\bar{z}+\bar{x}+\bar{y}) \\
& =\bar{x}+\bar{y}+\bar{z}-\bar{y}-\bar{x}-\bar{z} \\
& =\bar{x}+\bar{y}+\bar{z}-\bar{y}-\bar{z}+\bar{z}-\bar{x}-\bar{z} \\
& =\bar{x}+[\bar{y}, \bar{z}]+\bar{z}-\bar{x}-\bar{z} \\
& =[\bar{x}, \bar{z}]+[\bar{y}, \bar{z}] .
\end{aligned}
$$

Thus the function $t: H_{m} \times H_{m} \rightarrow M^{(n)}$ is bilinear. Obviously, it is skewsymmetric. Moreover, $p t(x, y)=t(p x, y)=t(0, y)=0$, so $t(x, y) \in M_{p}^{(n)}$. We denote this function by $\tau(\mu)$, so defining a map $\tau: Z^{2}\left(H_{m}, M^{(n)}\right) \rightarrow$ $S(n, m)$, where Z^{2} denotes the group of cocycles.

If $\mu=\partial \gamma$, it is symmetric: $\mu(x, y)=\mu(y, x)$, hence $\tau(\mu)=0$. On the contrary, let $\tau(\mu)=0$. Then the group G is commutative. Therefore, its divisible subgroup $M^{(n)}$ is a direct summand of G [5, Theorem 13.3.1], i.e. $G=M^{(n)} \oplus H_{m}$, so the class of μ in $H^{2}\left(H_{m}, M^{(n)}\right)$ is zero. It means that μ is a coboundary. Thus $\operatorname{ker} \tau=B^{2}\left(H_{m}, M^{(n)}\right)$, the group of coboundaries.

It remains to prove that τ is surjective. Let $t: H_{m} \times H_{m} \rightarrow M_{p}^{(n)}$ be any skew-symmetric function. Set $t_{i j}=t\left(h_{i}, h_{j}\right)$ and, for any elements $x=$ $\sum_{i=1}^{m} \alpha_{i} h_{i}, y=\sum_{j=1}^{m} \beta_{j} h_{j}$, set $\mu(x, y)=\sum_{i<j} \alpha_{i} \beta_{j} t_{i j}$. If $z=\sum_{k=1}^{m} \gamma_{k} h_{k}$,
then

$$
\begin{aligned}
\mu(y, z)+\mu(x, y+z) & =\sum_{i<j} \beta_{i} \gamma_{j} t_{i j}+\sum_{i<j} \alpha_{i}\left(\beta_{i}+\gamma_{j}\right) t_{i j}, \\
\mu(x+y, z)+\mu(x, y) & =\sum_{i<j}\left(\alpha_{i}+\beta_{i}\right) \gamma_{j} t_{i j}+\sum_{i<j} \alpha_{i} \beta_{i} t_{i j},
\end{aligned}
$$

so both sums equal $\sum_{i<j}\left(\alpha_{i} \beta_{j}+\alpha_{i} \gamma_{j}+\beta_{i} \gamma_{j}\right) t_{i j}$. Hence μ is a cocycle. Moreover,

$$
\mu\left(h_{i}, h_{j}\right)-\mu\left(h_{j}, h_{i}\right)= \begin{cases}t_{i j} & \text { if } i<j, \\ -t_{j i}=t_{i j} & \text { if } i>j,\end{cases}
$$

whence $\tau(\mu)=t$.
Now we can classify all nilpotent Chernikov p-groups which are extensions of $M^{(n)}$ by H_{m} up to isomorphism. As we have seen, such a group is generated by the subgroup $M^{(n)}$ and elements $\left(\bar{h}_{1}, \bar{h}_{2}, \ldots, \bar{h}_{m}\right)$ with the defining relations

$$
\begin{aligned}
& \bar{h}_{i}+a=a+\bar{h}_{i}, \\
& p \bar{h}_{i}=0, \\
& {\left[\bar{h}_{i}, \bar{h}_{j}\right]=t_{i j}}
\end{aligned}
$$

for all $a \in M^{(n)}$ and all $i, j \in\{1,2, \ldots, m\}$, where $\left(t_{i j}\right)$ is a skew-symmetric $m \times m$ matrix with elements from $M_{p}^{(n)}$. As $M_{p}^{(n)} \simeq \mathbb{F}_{p}^{n}$, where \mathbb{F}_{p} is the residue field modulo p, the matrix $\left(t_{i j}\right)$ can be considered as an n-tuple $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ of $m \times m$ skew-symmetric matrices with elements from \mathbb{F}_{p}. Recall that both $M^{(n)}$ and H_{m} are uniquely defined by G.

Theorem 1.2. (cf. [4) Let G and F be two nilpotent Chernikov p-groups with tops H_{m} and bottoms $M^{(n)}$, t and f be the corresponding skew-symmetric functions $H_{m} \times H_{m} \rightarrow M_{p}^{(n)}$. The groups G and F are isomorphic if and only if there are automorphisms σ of $M^{(n)}$ and θ of H_{m} such that $f(\theta(x), \theta(y))=\sigma(t(x, y))$ for all $x, y \in H_{m}$.

Proof. As $M^{(n)}$ is the biggest divisible abelian subgroup of G or F, any isomorphism $\phi: G \rightarrow F$ maps $M^{(n)}$ to itself, so defines automorphisms $\sigma=$ $\left.\phi\right|_{M^{(n)}}$ of $M^{(n)}$ and θ of $H_{m}=G / M^{(n)}=F / M^{(n)}$. Note that the functions t and f do not depend on the choice of representatives of elements from H in G and F. If \bar{x} is a preimage of $x \in H_{m}$ in G, then $\bar{x}^{\prime}=\phi(\bar{x})$ is a preimage of $\theta(x)$ in F. Therefore, $f(\theta(x), \theta(y))=\left[\bar{x}^{\prime}, \bar{y}^{\prime}\right]=\phi([\bar{x}, \bar{y}])=\sigma(t(x, y))$.

On the other hand, if σ and θ are automorphisms satisfying the condition of the theorem, the map $\phi: G \rightarrow F$ such that $\phi(a)=\sigma(a)$ for $a \in M^{(n)}$ and $\phi(\bar{x})=\overline{\theta(x)}$ defines an isomorphism between G and F.

If we identify skew-symmetric functions with n-tuples of skew-symmetric matrices over the field \mathbb{F}_{p}, this theorem can be reformulated as follows. For any n-tuple $\mathbf{A}=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and any invertible matrix $Q=\left(q_{i j}\right) \in$
$\operatorname{GL}(n, \mathbb{F})$ we set $\mathbf{A} \circ Q=\left(A_{1}^{\prime}, A_{2}^{\prime}, \ldots, A_{n}^{\prime}\right)$, where $A_{j}^{\prime}=\sum_{i=1}^{n} q_{i j} A_{i}$. If the matrices A_{i} are of size $m \times m$ and $P \in \mathrm{GL}(m, \mathbb{F})$, we set

$$
P \circ \mathbf{A}=\left(P A_{1} P^{\top}, P A_{2} P^{\top}, \ldots, P A_{n} P^{\top}\right),
$$

where P^{\top} denotes the transposed matrix. Obviously, these two operations commute. The n-tuples \mathbf{A} and $P \circ \mathbf{A}$ are said to be congruent, and the n-tuples \mathbf{A} and $P \circ \mathbf{A} \circ Q$ are called weakly congruent.

Corollary 1.3. Two n-tuples \mathbf{A} and \mathbf{A}^{\prime} of $m \times m$ skew-symmetric matrices over \mathbb{F}_{p} define isomorphic nilpotent Chernikov p-groups with tops H_{m} and bottoms $M^{(n)}$ if and only if they are weakly congruent.

Proof. The transformation $A \mapsto P \circ \mathbf{A}$ corresponds to an automorphism of $H_{m} \simeq \mathbb{F}_{p}^{m}$ given by the matrix P. On the other hand, automorphisms of $M^{(n)}$ are given by invertible matrices Q from $\operatorname{GL}\left(n, \mathbb{Z}_{p}\right)$, where \mathbb{Z}_{p} is the ring of p-adic integers considered as the endomorphism ring of the group of type $p^{\infty}[7, \S 21]$. Such an automorphism transforms a sequence of matrices \mathbf{A} to $\mathbf{A} \circ Q$. Moreover, the result only depends on the value of Q modulo p. As every invertible matrix over \mathbb{F}_{p} can be lifted to an invertible matrix over \mathbb{Z}_{p}, it accomplishes the proof.

We denote by $G(\mathbf{A})$ the nilpotent Chernikov p-group with the bottom $M^{(n)}$ and elementary top corresponding to an n-tuple of skew-symmetric matrices A.

2. Relation with representations of Quivers

Theorem 1.2 and Corollary 1.3 reduce the classification of nilpotent Chernikov p-groups with top H_{m} and bottom $M^{(n)}$ up to isomorphism to a problem of linear algebra, namely, to the classification of n-tuples of skewsymmetric bilinear forms over the residue field \mathbb{F}_{p}. If $p \neq 2$, this problem is closely related with the study of representations of the so called generalized Kronecker quiver

Recall this relation [8]. A representation R of K_{n} over a field \mathbb{k} consists of two finite dimensional vector spaces $R(1)$ and $R(2)$ and n linear maps $R\left(a_{i}\right): R(1) \rightarrow R(2)(1 \leq i \leq n)$. A morphism f from a representation R to a representation R^{\prime} is a pair of linear maps $f(k): R(k) \rightarrow R^{\prime}(k)(k=$ $1,2)$ such that $f(2) R\left(a_{i}\right)=R^{\prime}\left(a_{i}\right) f(1)$ for all $1 \leq i \leq n$. We define an involution * on the quiver K_{n} setting $1^{*}=2,2^{*}=1$ and $a_{i}^{*}=-a_{i}$ for all $1 \leq i \leq n$. If R is a representation of K_{n}, we define the dual representation R^{*} setting $R^{*}(k)=R\left(k^{*}\right)^{*}$, where V^{*} denotes the dual vector space to V, and $R^{*}\left(a_{i}\right)=-R\left(a_{i}\right)^{*}$, where $L^{*}: W^{*} \rightarrow V^{*}$ denotes the dual linear map to $L: V \rightarrow W$. A representation R is said to be self-dual if $R^{*}=R$. Then $R\left(a_{i}\right): R(1) \rightarrow R(1)^{*}$ is identified with a bilinear form on $R(1)$ and,
if char $\mathbb{k} \neq 2$, this form is skew-symmetric, since $R\left(a_{i}\right)^{*}=-R\left(a_{i}\right)$. One can check (cf. [8]) that a representation R is isomorphic to a self-dual one if and only if there is a self-dual isomorphism $f: R \rightarrow R^{*}$, i.e. such an isomorphism that $f(2)=f(1)^{*}$. We usually identify a representation R with the n-tuple of matrices describing the linear maps $R\left(a_{i}\right)$.

Let R be an indecomposable representation of K_{n} which is not isomorphic to a self-dual one. Then $=R \oplus R^{*}$ is isomorphic to a self-dual representation R^{+}, which cannot be decomposed into a direct sum of non-zero self-dual representations. Namely, R^{+}is given by the n-tuple of skew-symmetric matrices

$$
R^{+}\left(a_{i}\right)=\left(\begin{array}{cc}
0 & R\left(a_{i}\right) \\
-R\left(a_{i}\right)^{\top} & 0
\end{array}\right) .
$$

If char $\mathbb{k} \neq 2$, every self-dual representation decomposes into a direct sum of indecomposable self-dual representations and representations of the form R^{+}, where R is an indecomposable representation which is not isomorphic to any self-dual one. Moreover, the direct summands of the form R^{+}are defined uniquely up to permutation, isomorphisms of the corresponding indecomposable representations R and replacing R by R^{*} [8 , Theorem 1].

Obviously, if $n=1$, there are no indecomposable self-dual representations. In the next section we will see that the same holds for $n=2$. On the contrary, if $n=3$, the representation R such that $R(1)=R(2)=\mathbb{k}^{3}$ and

$$
R\left(a_{1}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), R\left(a_{2}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right), R\left(a_{3}\right)=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)
$$

is indecomposable and self-dual.
Actually, a classification of representations of the quiver K_{n} for $n>2$ is a so-called wild problem. It means that it contains the classification of representations of every finitely generated algebra over the field \mathbb{k} (see [2] for precise definitions). The same is true for representations which are not isomorphic to self-dual. Namely, let $n=3, R(1)=\mathbb{k}^{d}, R(2)=\mathbb{k}^{2 d}$,

$$
R\left(a_{1}\right)=\binom{I_{d}}{0}, R\left(a_{2}\right)=\binom{0}{I_{d}}, R\left(a_{3}\right)=\binom{X}{Y},
$$

where I_{d} is the unit $d \times d$ matrix, X, Y are arbitrary square $d \times d$ matrices. Obviously, R is not self-dual. One can easily check that two such representations given by the pairs (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ are isomorphic if and only if the pairs (X, Y) and $\left(X^{\prime}, Y^{\prime}\right)$ are conjugate, i.e. $X^{\prime}=S X S^{-1}, Y^{\prime}=S Y S^{-1}$ for some invertible matrix S. The problem of classification of pairs of square matrices up to conjugacy is a "standard" wild problem [2]. Thus one cannot hope to get a more or less comprehensible classification of triples of skewsymmetric forms. This is even more so for n-tuples with $n>3$. In the next section we will see that for $n=2$ the problem is "tame", hence there is a quite clear description of the corresponding groups.

Remark 2.1. If char $\mathbb{k}=2$, the definition of a skew-symmetric bilinear form cannot be "linearised", since the condition $B(x, x)=0$ is no more the consequence of the condition $B(x, y)=-B(y, x)$. Hence, we cannot identify n-tuples of skew-symmetric forms with self-dual representations of the quiver K_{n}. Moreover, the results of 8 are also valid only if char $\mathbb{k} \neq 2$. Thus, to study Chernikov 2-groups, we have to use quite different methods.

$$
\text { 3. CASE } n=2
$$

If $n=1, G$ is described by one skew-symmetric matrix A. This matrix is congruent to a direct sum of k matrices $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and l matrices (0), where $m=2 k+l$. It gives a simple description.

Proposition 3.1. A nilpotent Chernikov p-group G with elementary top and quasi-cyclic bottom M decomposes as $G_{k} \times H_{l}$, where G_{k} is generated by M and $2 k$ elements $\bar{h}_{1}, \bar{h}_{2}, \ldots, \bar{h}_{2 k}$ which are of order p, commute with all elements from M and their commutators $\left[\bar{h}_{i}, \bar{h}_{j}\right]$ for $i<j$ are given by the rule

$$
\left[\bar{h}_{i}, \bar{h}_{j}\right]= \begin{cases}a_{1} & \text { if } j=k+i \\ 0 & \text { otherwise }\end{cases}
$$

where a_{1} is a fixed element of order p from the group M.
Now we consider the case $n=2$.
Following the preceding consideration, we classify the pairs of skew-symmetric bilinear forms over a field \mathbb{k} with char $\mathbb{k} \neq 2$. Equivalently, we classify the self-dual representations of the Kronecker quiver K_{2} with the involution $1^{*}=2,2^{*}=1, a_{i}^{*}=-a_{i}$. Recall [3, Chapter XII] that indecomposable representations of K_{2} ("matrix pencils") are given by the following pairs of matrices;

$$
\begin{align*}
R_{f}: & R_{f}\left(a_{1}\right)=I_{d}, R_{f}\left(a_{2}\right)=F(f), \\
R_{\infty, d}: & R_{\infty, d}\left(a_{1}\right)=F\left(x^{d}\right), R_{\infty, d}\left(a_{2}\right)=I_{d}, \\
R_{-, d}: & R_{-, d}\left(a_{1}\right)=\left(\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & 0 \\
0 & 1 & 0 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots \ldots \ldots \ldots & \ldots \\
0 & 0 & 0 & \ldots & 1 & 0
\end{array}\right), \tag{3.1}\\
& R_{-, d}\left(a_{2}\right)=\left(\begin{array}{cccccc}
0 & 1 & 0 & \ldots & 0 & 0 \\
0 & 0 & 1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots \ldots \ldots & \ldots \\
0 & 0 & 0 & \ldots & 0 & 1
\end{array}\right), \\
R_{+, d}: & R_{+, d}\left(a_{i}\right)=R_{-, d}\left(a_{i}\right)^{\top} .
\end{align*}
$$

Here $f=f(x)$ is a polynomial of degree d from $\mathbb{k}[x]$ which is a power of a unital irreducible polynomial and $F(f)$ is the Frobenius matrix with the characteristic polynomial $f(x)$. The size of the matrices in $R_{-, d}$ is $(d-1) \times d$; respectively, the size of the matrices in $R_{+, d}$ is $d \times(d-1)$.

Actually, $R_{+, d}=\left(R_{-, d}\right)^{*}, R_{f}^{*} \simeq R_{f}$ and $R_{\infty, d}^{*} \simeq R_{\infty, d}$. Nevertheless, there are no self-dual indecomposable representations.

Proposition 3.2. Neither of indecomposable representations from the preceding list is isomorphic to a self-dual one.

Proof. It is evident for $R_{ \pm, d}$. The representation R_{f}^{*} is given by the pair of matrices $\left(-I_{d},-F(f)^{\top}\right)$. If it were isomorphic to a self-dual one, there would be an invertible $d \times d$ matrix P such that $P I_{d}=-I_{d} P^{*}$ and $P F(f)=$ $-F(f)^{\top} P^{*}$. Hence P is skew-symmetric, and $P F(f)=F(f)^{\top} P$. One easily checks that it is impossible. The same holds for $R_{\infty, d}$.

Combining this result with those from [8], we get a complete classification of pairs of skew-symmetric bilinear forms. We denote by \mathfrak{A} the set of all pairs R^{+}, where $R \in\left\{R_{f}, R_{\infty, d}, R_{-, d}\right\}$, and by \mathfrak{F} the set of functions $\kappa: \mathfrak{A} \rightarrow \mathbb{Z}_{\geq 0}$ such that $\kappa(\mathbf{A})=0$ for almost all \mathbf{A}. For any function $\kappa \in \mathfrak{F}$ we set $\mathfrak{A}^{\kappa}=\bigoplus_{\mathbf{A} \in \mathfrak{A}} \mathbf{A}^{\kappa(\mathbf{A})}$.

Theorem 3.3. Let char $\mathbb{k} \neq 2$. Any pair of skew-symmetric bilinear forms over the field \mathfrak{k} is congruent to a direct sum \mathfrak{A}^{κ} for a uniquely defined function $\kappa \in \mathfrak{F}$.

To obtain a classification of Chernikov p-groups with elementary tops and the bottom $M^{(2)}$, we also have to answer the question:

Given two functions with finite supports $\kappa, \kappa^{\prime}: \mathfrak{A} \rightarrow \mathbb{Z}_{\geq 0}$, when are the pairs \mathfrak{A}^{κ} and $\mathfrak{A}^{\kappa^{\prime}}$ weakly congruent?

Evidently, $\left(\mathbf{A}_{1} \oplus \mathbf{A}_{2}\right) \circ Q=\left(\mathbf{A}_{1}{ }^{\circ} Q\right) \oplus\left(\mathbf{A}_{2}{ }^{\circ} Q\right)$, so the pairs \mathbf{A} and $\mathbf{A} \circ Q$ are indecomposable simultaneously. For every pair $\mathbf{A} \in \mathfrak{A}$ we denote by $\mathbf{A} * Q$ the unique pair from \mathfrak{A} which is congruent to $\mathbf{A} \circ Q$. The map $\mathbf{A} \mapsto \mathbf{A} * Q$ defines an action of the group $\mathfrak{g}=\operatorname{GL}(2, \mathbb{k})$ on the set \mathfrak{A}, hence on the set \mathfrak{F} of functions $\kappa: \mathfrak{A} \rightarrow \mathbb{Z}_{\geq 0}:(Q * \kappa)(\mathbf{A})=\kappa(A * Q)$. Theorem 3.3 implies the following result.

Corollary 3.4. The pairs \mathfrak{A}^{κ} and $\mathfrak{A}^{\kappa^{\prime}}$ are weakly congruent if and only if the functions κ and κ^{\prime} belong to the same orbit of the group \mathfrak{g}.

Obviously, $R^{+} \circ Q=(R \circ Q)^{+}$for every representation R of the quiver K_{2}. Thus we have to know when $R{ }^{\circ} Q \simeq R^{\prime}$ for indecomposable representations from the list (3.1). As $R_{-, d}$ is a unique (up to isomorphism) indecomposable representation R such that $\operatorname{dim} R(1)=d-1, \operatorname{dim} R(2)=d$, we only have to consider the representations from the set $\left\{R_{f}, R_{\infty, d}\right\}$. From [3, Chapter XII, §3] it follows that a pair $R=\left(R_{1}, R_{2}\right)$ from this set is completely defined by its homogeneous characteristic polynomial $\chi_{R}\left(x_{1}, x_{2}\right)=\operatorname{det}\left(x_{1} R_{1}-x_{2} R_{2}\right)$. Actually, $\chi_{R_{f}}=x_{2}^{d} f\left(x_{1} / x_{2}\right)$, where $d=\operatorname{deg} f$, and $\chi_{R_{\infty, d}}=x_{2}^{d}$. The group \mathfrak{g} naturally acts on the ring $\mathbb{k}\left[x_{1}, x_{2}\right]: Q \circ f=f\left(q_{11} x_{1}+q_{12} x_{2}, q_{21} x_{1}+q_{22} x_{2}\right)$,
where $Q=\left(q_{i j}\right)$, and

$$
\begin{aligned}
\chi_{R \circ Q} & =\operatorname{det}\left(\left(q_{11} R_{1}+q_{21} R_{2}\right) x+\left(q_{12} R_{1}+q_{22} R_{2}\right)\right)= \\
& =\operatorname{det}\left(\left(q_{11} x+q_{12}\right) R_{1}+\left(q_{21} x+q_{22}\right) R_{2}\right)=Q \circ \chi_{R} .
\end{aligned}
$$

We say that an irreducible homogeneous polynomial $g \in \mathbb{k}\left[x_{1}, x_{2}\right]$ is unital if either $g=x_{2}$ or its leading coefficient with respect to x_{1} equals 1 . Let $\mathbb{P}=\mathbb{P}(\mathbb{k})$ be the set of unital homogeneous irreducible polynomials from $\mathbb{k}\left[x_{1}, x_{2}\right]$ and $\tilde{\mathbb{P}}=\tilde{\mathbb{P}}(\mathbb{k})=\mathbb{P} \cup\{\varepsilon\}$. Note that \mathbb{P} actually coincides with the set of the closed points of the projective line $\mathbb{P}_{\mathbb{k}}^{1}=\operatorname{Proj} \mathbb{k}\left[x_{1}, x_{2}\right]$ [6]. For $g \in \mathbb{P}$ and $Q \in \mathfrak{g}$, let $Q * g$ be the unique polynomial $g^{\prime} \in \mathbb{P}$ such that $Q \circ g=\lambda g^{\prime}$ for some non-zero $\lambda \in \mathbb{k}$. (It is the natural action of \mathfrak{g} on $\mathbb{P}_{\mathfrak{k}}^{1}$.) We also set $Q * \varepsilon=\varepsilon$ for any Q. It defines an action of \mathfrak{g} on $\tilde{\mathbb{P}}$. Denote by $\tilde{\mathfrak{F}}=\tilde{\mathfrak{F}}(\mathbb{k})$ the set of all functions $\rho: \tilde{\mathbb{P}} \times \mathbb{N} \rightarrow \mathbb{Z}_{\geq 0}$ such that $\rho(g, d)=0$ for almost all pairs (g, d). Define the actions of the group \mathfrak{g} on $\tilde{\mathfrak{F}}$ setting $(\rho * Q)(g, d)=\rho(Q * g, d)$. For every pair $(g, d) \in \tilde{\mathfrak{F}}$ we define a pair of skew-symmetric forms $R(g, d)$:

$$
R(g, d)= \begin{cases}R_{-, d}^{+} & \text {if } g=\varepsilon \\ R_{\infty, d}^{+} & \text {if } g=x_{2} \\ R_{g(x, 1)^{d}}^{+} & \text {otherwise }\end{cases}
$$

Let $\tilde{\mathfrak{A}}=\tilde{\mathfrak{A}}(\mathbb{k})=\{R(g, d) \mid(g, d) \in \tilde{\mathbb{P}} \times \mathbb{N}\}$. For every function $\rho \in \tilde{\mathfrak{F}}$ we set $\tilde{\mathfrak{A}}^{\rho}=\bigoplus_{(g, d) \in \tilde{\mathbb{P}} \times \mathbb{N}} R(g, d)^{\rho(g, d)}$. The preceding considerations imply the following theorem.
Theorem 3.5. Let char $\mathbb{k} \neq 2$.
(1) Every pair of skew-symmetric bilinear forms over the field \mathbb{k} is weakly congruent to $\tilde{\mathfrak{A}}^{\rho}$ for some function $\rho \in \tilde{\mathfrak{F}}(\mathbb{k})$.
(2) The pairs $\tilde{\mathfrak{A}}^{\rho}$ and $\tilde{\mathfrak{A}}^{\rho^{\prime}}$ are weakly congruent if and only if the functions ρ and ρ^{\prime} belong to the same orbit of the group $\mathfrak{g}=\mathrm{GL}(2, \mathbb{k})$.
From Theorem 3.5 and Corollary 1.3 we immediately obtain a classification of nilpotent Chernikov p-groups with elementary tops and the bottom $M^{(2)}$. Namely, for every function $\rho \in \tilde{\mathfrak{F}}\left(\mathbb{F}_{p}\right)$ set $G(\rho)=G\left(\tilde{\mathfrak{A}}^{\rho}\right)$.
Theorem 3.6. Let \mathfrak{R} be a set of representatives of orbits of the group $\mathfrak{g}=$ $\mathrm{GL}\left(2, \mathbb{F}_{p}\right)$ acting on the set of functions $\tilde{\mathfrak{F}}\left(\mathbb{F}_{p}\right)$. Then every nilpotent Chernikov p-group with elementary top and the bottom $M^{(2)}$ is isomorphic to the group $G(\rho)$ for a uniquely defined function $\rho \in \mathfrak{R}$.

One can easily describe these groups in terms of generators and relations. Note that all of them are of the form $G(\mathbf{A})$, where $\mathbf{A}=\bigoplus_{k=1}^{s} \mathbf{A}_{k}$ and all \mathbf{A}_{k} belong to the set $\left\{R_{-, d}^{+}, R_{\infty, d}^{+}, R_{f}^{+}\right\}$. Therefore $G(\mathbf{A})$ is generated by the subgroup $M^{(2)}$ and elements $\bar{h}_{k i}$, where $1 \leq k \leq s, 1 \leq i \leq d_{k}, d_{k}=2 \operatorname{deg} f$ if $\mathbf{A}_{k}=R_{f}^{+}, d_{k}=2 d$ if $\mathbf{A}_{k}=R_{\infty, d}^{+}$, and $d_{k}=2 d-1$ if $\mathbf{A}=R_{-, d}^{+}$. All elements $\bar{h}_{k i}$ are of order p, commute with the elements from $M^{(2)},\left[\bar{h}_{k i}, \bar{h}_{l j}\right]=0$ if
$k \neq l$ and the values of the commutators $\left[\bar{h}_{k i}, \bar{h}_{k j}\right]$ for $i<j$, according to the type of \mathbf{A}_{k}, are given in Table 1. In this table a_{1} and a_{2} denote some fixed generators of the subgroup $M_{p}^{(2)}$.

Table 1.

\mathbf{A}_{k}	i, j	$\left[\bar{h}_{k i}, \bar{h}_{k j}\right]$
$R_{-, d}^{+}$	$j=d+i$	a_{1}
	$j=d+i-1$	a_{2}
	otherwise	0
$R_{\infty, d}^{+}$	$j=d+i$	a_{2},
	$j=d+i-1$	a_{1},
	otherwise	0
R_{f}^{+}	$j=d+i<2 d$	a_{1}
	$j=d+i-1$	a_{2}
	$i<d, j=2 d$	$-\lambda_{d-i+1} a_{2}$
	$i=d, j=2 d$	$a_{1}-\lambda_{1} a_{2}$
	otherwise	0

where $f(x)=x^{d}+\lambda_{1} x^{d-1}+\cdots+\lambda_{d}$

Corollary 3.7. Let $G=G(\mathbf{A})$.
(1) G has a finite direct factor if and only if $\mathbf{A} \simeq\left(R_{-, 1}\right)^{k} \oplus \mathbf{A}^{\prime}$; then $G \simeq H_{k} \times G\left(\mathbf{A}^{\prime}\right)$.
(2) Suppose that G has no finite direct factors. It is decomposable if and only if $\mathbf{A} \simeq\left(R_{x}^{+}\right)^{k} \oplus\left(R_{\infty, 1}^{+}\right)^{l}$; then $G=G_{k} \times G_{l}$.
(See Proposition 3.1 for the definition of G_{k}.)
Proof is evident.
Acknowledgment. The authors are grateful to Igor Shapochka who initiated this investigation.

References

[1] S. N. Chernikov, Groups with given properties of a system of subgroups. Nauka, Moscow (1980)
[2] Y. Drozd, Reduction algorithm and representations of boxes and algebras. Comtes Rendue Math. Acad. Sci. Canada. 23 (2001), 97-125.
[3] F. R. Gantmacher, The Theory of Matrices. Fizmatlit, (2004).
[4] P. M. Gudivok, I. V. Shapochka, On the Chernikov p-groups. Ukr. Mat. Zh. 51(3) (1999), 291-304.
[5] M. Hall, The Theory of Groups. The Macmillan Company, New York, (1959).
[6] R. Hartshorne, Algebraic Geometry. Springer, (1977).
[7] A. G. Kurosh, The Theory of Groups. Nauka, (1967).
[8] V. V. Sergejchuk, Classification problems for systems of forms and linear mappings. Izv. Akad. Nauk SSSR, Ser. Mat. 51 (1987), 1170-1190.
[9] I. V. Shapochka, On classification of nilpotent Chernikov p-groups. Nauk. Visn. Uzhgorod. Univ., Ser. Mat. 10-11 (2005), 147-151.

Institute of Mathematics, National Academy of Sciences of Ukraine, and Max-Plank-Institut für Mathematik, Bonn

E-mail address: drozd@imath.kiev.ua, y.a.drozd@gmail.com
E-mail address: andrianalomaga@mail.ru
URL: http://www.imath.kiev.ua/~drozd

[^0]: 1991 Mathematics Subject Classification. Primary 20E22; Secondary 20F50, 15A22, 15A63.

 Key words and phrases. Chernikov p-groups, skew-symmetric forms, quivers with involution, matrix pencils.

