
ON NILPOTENT CHERNIKOV p-GROUPS

WITH ELEMENTARY TOPS

YURIY DROZD AND ANDRIANA PLAKOSH

Abstract. The description of nilpotent Chernikov p-groups with ele-
mentary tops is reduced to the study of tuples of skew-symmetric bilinear
forms over the residue field Fp. If p 6= 2 and the bottom of the group
only consists of 2 quasi-cyclic summands, a complete classification is
given. The main tool is the theory of representations of quivers with
involution.
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1. Structure theorem

Recall that a Chernikov p-group [1, 7] G is an extension of a finite direct
sum M of quasi-cyclic p-groups, or, the same, the groups of type p∞, by
a finite p-group H. Note that M is the biggest abelian divisible subgroup
of G, so both M and H are defined by G up to isomorphism. We call H
and M , respectively, the top and the bottom of G. We denote by M (n) a
direct sum of n copies Mi of quasi-cyclic p-groups and fix elements ai ∈Mi

of order p. A Chernikov p-group is defined by an action of a finite p-group
H on a group M (n) and an element from the second cohomology group
H2(H,M (n)) with respect to this action. Such an element is given by a

2-cocycle µ : H × H → M (n), which is defined up to a 2-boundary [5,
Chapter 15]. In what follows it is convenient to denote the operations in the
groups G,H,M by +, so their units are denoted by 0.

It is known [1, Theorem 1.9] that a Chernikov p-group G is nilpotent if

and only if the action of H on M (n) is trivial. In this case a cocycle is a map
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µ : H × H → M (n) such that µ(y, z) + µ(x, y + z) = µ(x + y, z) + µ(x, y)
for all x, y, z ∈ H. We can also suppose that µ is normalized, i.e. µ(0, x) =

µ(x, 0) = 0 for every x ∈ H. A coboundary of a function γ : H → M (n) is
the function ∂γ(x, y) = γ(x) + γ(y)− γ(x+ y).

Let Hm be the elementary abelian p-group with m generators,

Hm = 〈h1, h2, . . . , hm | phi = 0, hi + hj = hj + hi for all i, j 〉.

Let also M
(n)
p = {a ∈ M (n) | pa = 0} = 〈 a1, a2, . . . , an 〉. We denote by

S(n,m) the group of all skew-symmetric maps τ : Hm × Hm → M
(n)
p , i.e.

such bilinear maps that τ(x, x) = 0 for all x (hence τ(x, y) = −τ(y, x) for
all x, y).

Theorem 1.1. (cf. [9]) If Hm acts trivially on M (n), then H2(Hm,M
(n)) '

S(n,m).

Proof. Let G be an extension of M (n) by Hm with the trivial action of Hm

corresponding to a cocycle µ. Then for every x ∈ Hm there is a representa-
tive x̄ ∈ G such that x̄+ ȳ = x+ y + µ(x, y). Set

t(x, y) = [x̄, ȳ] = (x+ y + µ(x, y))− (y + x+ µ(y, x)) = µ(x, y)− µ(y, x),

since all values µ(x, y) are in the center of G. As all commutators are in the
center of G as well, we have

[x+ y, z̄] = (x̄+ ȳ − µ(x, y) + z̄)− (z̄ + x̄+ ȳ − µ(x, y))

= (x̄+ ȳ + z̄)− (z̄ + x̄+ ȳ)

= x̄+ ȳ + z̄ − ȳ − x̄− z̄
= x̄+ ȳ + z̄ − ȳ − z̄ + z̄ − x̄− z̄
= x̄+ [ȳ, z̄] + z̄ − x̄− z̄
= [x̄, z̄] + [ȳ, z̄].

Thus the function t : Hm ×Hm → M (n) is bilinear. Obviously, it is skew-

symmetric. Moreover, pt(x, y) = t(px, y) = t(0, y) = 0, so t(x, y) ∈ M (n)
p .

We denote this function by τ(µ), so defining a map τ : Z2(Hm,M
(n)) →

S(n,m), where Z2 denotes the group of cocycles.
If µ = ∂γ, it is symmetric: µ(x, y) = µ(y, x), hence τ(µ) = 0. On the

contrary, let τ(µ) = 0. Then the group G is commutative. Therefore, its

divisible subgroup M (n) is a direct summand of G [5, Theorem 13.3.1], i.e.

G = M (n) ⊕Hm, so the class of µ in H2(Hm,M
(n)) is zero. It means that

µ is a coboundary. Thus ker τ = B2(Hm,M
(n)), the group of coboundaries.

It remains to prove that τ is surjective. Let t : Hm × Hm → M
(n)
p be

any skew-symmetric function. Set tij = t(hi, hj) and, for any elements x =∑m
i=1 αihi, y =

∑m
j=1 βjhj , set µ(x, y) =

∑
i<j αiβjtij . If z =

∑m
k=1 γkhk,
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then

µ(y, z) + µ(x, y + z) =
∑
i<j

βiγjtij +
∑
i<j

αi(βi + γj)tij ,

µ(x+ y, z) + µ(x, y) =
∑
i<j

(αi + βi)γjtij +
∑
i<j

αiβitij ,

so both sums equal
∑

i<j(αiβj + αiγj + βiγj)tij . Hence µ is a cocycle.
Moreover,

µ(hi, hj)− µ(hj , hi) =

{
tij if i < j,

−tji = tij if i > j,

whence τ(µ) = t. �

Now we can classify all nilpotent Chernikov p-groups which are exten-
sions of M (n) by Hm up to isomorphism. As we have seen, such a group
is generated by the subgroup M (n) and elements (h̄1, h̄2, . . . , h̄m) with the
defining relations

h̄i + a = a+ h̄i,

ph̄i = 0,

[h̄i, h̄j ] = tij

for all a ∈M (n) and all i, j ∈ {1, 2, . . . ,m}, where (tij) is a skew-symmetric

m × m matrix with elements from M
(n)
p . As M

(n)
p ' Fnp , where Fp is the

residue field modulo p, the matrix (tij) can be considered as an n-tuple
A = (A1, A2, . . . , An) of m × m skew-symmetric matrices with elements

from Fp. Recall that both M (n) and Hm are uniquely defined by G.

Theorem 1.2. (cf. [4]) Let G and F be two nilpotent Chernikov p-groups

with tops Hm and bottoms M (n), t and f be the corresponding skew-symmetric

functions Hm × Hm → M
(n)
p . The groups G and F are isomorphic if

and only if there are automorphisms σ of M (n) and θ of Hm such that
f(θ(x), θ(y)) = σ(t(x, y)) for all x, y ∈ Hm.

Proof. As M (n) is the biggest divisible abelian subgroup of G or F , any
isomorphism φ : G→ F maps M (n) to itself, so defines automorphisms σ =
φ|M(n) of M (n) and θ of Hm = G/M (n) = F/M (n). Note that the functions
t and f do not depend on the choice of representatives of elements from H
in G and F . If x̄ is a preimage of x ∈ Hm in G, then x̄′ = φ(x̄) is a preimage
of θ(x) in F . Therefore, f(θ(x), θ(y)) = [x̄′, ȳ′] = φ([x̄, ȳ]) = σ(t(x, y)).

On the other hand, if σ and θ are automorphisms satisfying the condition
of the theorem, the map φ : G→ F such that φ(a) = σ(a) for a ∈M (n) and

φ(x̄) = θ(x) defines an isomorphism between G and F . �

If we identify skew-symmetric functions with n-tuples of skew-symmetric
matrices over the field Fp, this theorem can be reformulated as follows. For
any n-tuple A = (A1, A2, . . . , An) and any invertible matrix Q = (qij) ∈
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GL(n,F) we set A ◦Q = (A′1, A
′
2, . . . , A

′
n), where A′j =

∑n
i=1 qijAi. If the

matrices Ai are of size m×m and P ∈ GL(m,F), we set

P ◦A = (PA1P
>, PA2P

>, . . . , PAnP
>),

where P> denotes the transposed matrix. Obviously, these two operations
commute. The n-tuples A and P ◦A are said to be congruent, and the
n-tuples A and P ◦A ◦Q are called weakly congruent.

Corollary 1.3. Two n-tuples A and A′ of m×m skew-symmetric matrices
over Fp define isomorphic nilpotent Chernikov p-groups with tops Hm and

bottoms M (n) if and only if they are weakly congruent.

Proof. The transformation A 7→ P ◦A corresponds to an automorphism of
Hm ' Fmp given by the matrix P . On the other hand, automorphisms of

M (n) are given by invertible matrices Q from GL(n,Zp), where Zp is the
ring of p-adic integers considered as the endomorphism ring of the group of
type p∞ [7, § 21]. Such an automorphism transforms a sequence of matrices
A to A ◦Q. Moreover, the result only depends on the value of Q modulo p.
As every invertible matrix over Fp can be lifted to an invertible matrix over
Zp, it accomplishes the proof. �

We denote by G(A) the nilpotent Chernikov p-group with the bottom

M (n) and elementary top corresponding to an n-tuple of skew-symmetric
matrices A.

2. Relation with representations of quivers

Theorem 1.2 and Corollary 1.3 reduce the classification of nilpotent Cher-
nikov p-groups with top Hm and bottom M (n) up to isomorphism to a
problem of linear algebra, namely, to the classification of n-tuples of skew-
symmetric bilinear forms over the residue field Fp. If p 6= 2, this problem is
closely related with the study of representations of the so called generalized
Kronecker quiver

Kn = 1

a1
$$a2 ))...

an

88 2 .

Recall this relation [8]. A representation R of Kn over a field k consists
of two finite dimensional vector spaces R(1) and R(2) and n linear maps
R(ai) : R(1) → R(2) (1 ≤ i ≤ n). A morphism f from a representation R
to a representation R′ is a pair of linear maps f(k) : R(k) → R′(k) (k =
1, 2) such that f(2)R(ai) = R′(ai)f(1) for all 1 ≤ i ≤ n. We define an
involution ∗ on the quiver Kn setting 1∗ = 2, 2∗ = 1 and a∗i = −ai for all
1 ≤ i ≤ n. If R is a representation of Kn, we define the dual representation
R∗ setting R∗(k) = R(k∗)∗, where V ∗ denotes the dual vector space to V ,
and R∗(ai) = −R(ai)

∗, where L∗ : W ∗ → V ∗ denotes the dual linear map
to L : V → W . A representation R is said to be self-dual if R∗ = R.
Then R(ai) : R(1) → R(1)∗ is identified with a bilinear form on R(1) and,
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if chark 6= 2, this form is skew-symmetric, since R(ai)
∗ = −R(ai). One

can check (cf. [8]) that a representation R is isomorphic to a self-dual one
if and only if there is a self-dual isomorphism f : R → R∗, i.e. such an
isomorphism that f(2) = f(1)∗. We usually identify a representation R
with the n-tuple of matrices describing the linear maps R(ai).

Let R be an indecomposable representation of Kn which is not isomorphic
to a self-dual one. Then = R⊕R∗ is isomorphic to a self-dual representation
R+, which cannot be decomposed into a direct sum of non-zero self-dual
representations. Namely, R+ is given by the n-tuple of skew-symmetric
matrices

R+(ai) =

(
0 R(ai)

−R(ai)
> 0

)
.

If char k 6= 2, every self-dual representation decomposes into a direct sum
of indecomposable self-dual representations and representations of the form
R+, where R is an indecomposable representation which is not isomorphic
to any self-dual one. Moreover, the direct summands of the form R+ are
defined uniquely up to permutation, isomorphisms of the corresponding in-
decomposable representations R and replacing R by R∗ [8, Theorem 1].

Obviously, if n = 1, there are no indecomposable self-dual representations.
In the next section we will see that the same holds for n = 2. On the
contrary, if n = 3, the representation R such that R(1) = R(2) = k3 and

R(a1) =

 0 1 0
−1 0 0
0 0 0

, R(a2) =

 0 0 1
0 0 0
−1 0 0

, R(a3) =

0 0 0
0 0 1
0 −1 0


is indecomposable and self-dual.

Actually, a classification of representations of the quiver Kn for n > 2
is a so-called wild problem. It means that it contains the classification of
representations of every finitely generated algebra over the field k (see [2]
for precise definitions). The same is true for representations which are not
isomorphic to self-dual. Namely, let n = 3, R(1) = kd, R(2) = k2d,

R(a1) =

(
Id
0

)
, R(a2) =

(
0
Id

)
, R(a3) =

(
X
Y

)
,

where Id is the unit d× d matrix, X,Y are arbitrary square d× d matrices.
Obviously, R is not self-dual. One can easily check that two such represen-
tations given by the pairs (X,Y ) and (X ′, Y ′) are isomorphic if and only if
the pairs (X,Y ) and (X ′, Y ′) are conjugate, i.e. X ′ = SXS−1, Y ′ = SY S−1

for some invertible matrix S. The problem of classification of pairs of square
matrices up to conjugacy is a “standard” wild problem [2]. Thus one cannot
hope to get a more or less comprehensible classification of triples of skew-
symmetric forms. This is even more so for n-tuples with n > 3. In the next
section we will see that for n = 2 the problem is “tame”, hence there is a
quite clear description of the corresponding groups.
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Remark 2.1. If chark = 2, the definition of a skew-symmetric bilinear form
cannot be “linearised”, since the condition B(x, x) = 0 is no more the con-
sequence of the condition B(x, y) = −B(y, x). Hence, we cannot identify
n-tuples of skew-symmetric forms with self-dual representations of the quiver
Kn. Moreover, the results of [8] are also valid only if char k 6= 2. Thus, to
study Chernikov 2-groups, we have to use quite different methods.

3. Case n = 2

If n = 1, G is described by one skew-symmetric matrix A. This matrix
is congruent to a direct sum of k matrices

(
0 1
−1 0

)
and l matrices (0), where

m = 2k + l. It gives a simple description.

Proposition 3.1. A nilpotent Chernikov p-group G with elementary top
and quasi-cyclic bottom M decomposes as Gk × Hl, where Gk is generated
by M and 2k elements h̄1, h̄2, . . . , h̄2k which are of order p, commute with
all elements from M and their commutators [h̄i, h̄j ] for i < j are given by
the rule

[h̄i, h̄j ] =

{
a1 if j = k + i,

0 otherwise,

where a1 is a fixed element of order p from the group M .

Now we consider the case n = 2.
Following the preceding consideration, we classify the pairs of skew-symmetric

bilinear forms over a field k with chark 6= 2. Equivalently, we classify the
self-dual representations of the Kronecker quiver K2 with the involution
1∗ = 2, 2∗ = 1, a∗i = −ai. Recall [3, Chapter XII] that indecomposable
representations of K2 (“matrix pencils”) are given by the following pairs of
matrices;

Rf : Rf (a1) = Id, Rf (a2) = F (f),

R∞,d : R∞,d(a1) = F (xd), R∞,d(a2) = Id,

R−,d : R−,d(a1) =


1 0 0 . . . 0 0
0 1 0 . . . 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 1 0

 ,

R−,d(a2) =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
. . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 1

 ,

R+,d : R+,d(ai) = R−,d(ai)
>.

(3.1)

Here f = f(x) is a polynomial of degree d from k[x] which is a power
of a unital irreducible polynomial and F (f) is the Frobenius matrix with
the characteristic polynomial f(x). The size of the matrices in R−,d is
(d − 1) × d; respectively, the size of the matrices in R+,d is d × (d − 1).



ON NILPOTENT CHERNIKOV p-GROUPS 7

Actually, R+,d = (R−,d)
∗, R∗f ' Rf and R∗∞,d ' R∞,d. Nevertheless, there

are no self-dual indecomposable representations.

Proposition 3.2. Neither of indecomposable representations from the pre-
ceding list is isomorphic to a self-dual one.

Proof. It is evident for R±,d. The representation R∗f is given by the pair

of matrices (−Id,−F (f)>). If it were isomorphic to a self-dual one, there
would be an invertible d×d matrix P such that PId = −IdP ∗ and PF (f) =
−F (f)>P ∗. Hence P is skew-symmetric, and PF (f) = F (f)>P . One easily
checks that it is impossible. The same holds for R∞,d. �

Combining this result with those from [8], we get a complete classification
of pairs of skew-symmetric bilinear forms. We denote by A the set of all pairs
R+, where R ∈ {Rf , R∞,d, R−,d}, and by F the set of functions κ : A→ Z≥0
such that κ(A) = 0 for almost all A. For any function κ ∈ F we set

Aκ =
⊕

A∈AAκ(A).

Theorem 3.3. Let char k 6= 2. Any pair of skew-symmetric bilinear forms
over the field k is congruent to a direct sum Aκ for a uniquely defined func-
tion κ ∈ F.

To obtain a classification of Chernikov p-groups with elementary tops and
the bottom M (2), we also have to answer the question:

Given two functions with finite supports κ, κ′ : A → Z≥0, when are the

pairs Aκ and Aκ
′

weakly congruent?

Evidently, (A1 ⊕A2) ◦Q = (A1 ◦Q)⊕ (A2 ◦Q), so the pairs A and A ◦Q
are indecomposable simultaneously. For every pair A ∈ A we denote by A∗Q
the unique pair from A which is congruent to A ◦Q. The map A 7→ A ∗Q
defines an action of the group g = GL(2, k) on the set A, hence on the set
F of functions κ : A → Z≥0: (Q ∗ κ)(A) = κ(A ∗ Q). Theorem 3.3 implies
the following result.

Corollary 3.4. The pairs Aκ and Aκ
′

are weakly congruent if and only if
the functions κ and κ′ belong to the same orbit of the group g.

Obviously, R+ ◦Q = (R ◦Q)+ for every representation R of the quiver K2.
Thus we have to know when R ◦Q ' R′ for indecomposable representations
from the list (3.1). As R−,d is a unique (up to isomorphism) indecomposable
representation R such that dimR(1) = d−1, dimR(2) = d, we only have to
consider the representations from the set {Rf , R∞,d}. From [3, Chapter XII,
§ 3] it follows that a pair R = (R1, R2) from this set is completely defined by
its homogeneous characteristic polynomial χR(x1, x2) = det(x1R1 − x2R2).
Actually, χRf

= xd2f(x1/x2), where d = deg f , and χR∞,d
= xd2. The group

g naturally acts on the ring k[x1, x2]: Q ◦ f = f(q11x1+q12x2, q21x1+q22x2),
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where Q = (qij), and

χR ◦Q = det
(
(q11R1 + q21R2)x+ (q12R1 + q22R2)

)
=

= det
(
(q11x+ q12)R1 + (q21x+ q22)R2) = Q ◦χR.

We say that an irreducible homogeneous polynomial g ∈ k[x1, x2] is unital
if either g = x2 or its leading coefficient with respect to x1 equals 1. Let
P = P(k) be the set of unital homogeneous irreducible polynomials from

k[x1, x2] and P̃ = P̃(k) = P ∪ {ε}. Note that P actually coincides with the
set of the closed points of the projective line P1

k = Projk[x1, x2] [6]. For
g ∈ P and Q ∈ g, let Q ∗ g be the unique polynomial g′ ∈ P such that
Q ◦ g = λg′ for some non-zero λ ∈ k. (It is the natural action of g on P1

k.)

We also set Q ∗ ε = ε for any Q. It defines an action of g on P̃. Denote
by F̃ = F̃(k) the set of all functions ρ : P̃ × N → Z≥0 such that ρ(g, d) = 0

for almost all pairs (g, d). Define the actions of the group g on F̃ setting

(ρ ∗ Q)(g, d) = ρ(Q ∗ g, d). For every pair (g, d) ∈ F̃ we define a pair of
skew-symmetric forms R(g, d):

R(g, d) =


R+
−,d if g = ε,

R+
∞,d if g = x2,

R+
g(x,1)d

otherwise.

Let Ã = Ã(k) = {R(g, d) | (g, d) ∈ P̃ × N}. For every function ρ ∈ F̃ we

set Ãρ =
⊕

(g,d)∈P̃×NR(g, d)ρ(g,d). The preceding considerations imply the

following theorem.

Theorem 3.5. Let char k 6= 2.

(1) Every pair of skew-symmetric bilinear forms over the field k is weakly

congruent to Ãρ for some function ρ ∈ F̃(k).

(2) The pairs Ãρ and Ãρ
′

are weakly congruent if and only if the func-
tions ρ and ρ′ belong to the same orbit of the group g = GL(2,k).

From Theorem 3.5 and Corollary 1.3 we immediately obtain a classifica-
tion of nilpotent Chernikov p-groups with elementary tops and the bottom
M (2). Namely, for every function ρ ∈ F̃(Fp) set G(ρ) = G(Ãρ).

Theorem 3.6. Let R be a set of representatives of orbits of the group g =
GL(2,Fp) acting on the set of functions F̃(Fp). Then every nilpotent Cher-

nikov p-group with elementary top and the bottom M (2) is isomorphic to the
group G(ρ) for a uniquely defined function ρ ∈ R.

One can easily describe these groups in terms of generators and relations.
Note that all of them are of the form G(A), where A =

⊕s
k=1Ak and all

Ak belong to the set {R+
−,d, R

+
∞,d, R

+
f }. Therefore G(A) is generated by the

subgroup M (2) and elements h̄ki, where 1 ≤ k ≤ s, 1 ≤ i ≤ dk, dk = 2 deg f
if Ak = R+

f , dk = 2d if Ak = R+
∞,d, and dk = 2d−1 if A = R+

−,d. All elements

h̄ki are of order p, commute with the elements from M (2), [h̄ki, h̄lj ] = 0 if
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k 6= l and the values of the commutators [h̄ki, h̄kj ] for i < j, according to
the type of Ak, are given in Table 1. In this table a1 and a2 denote some

fixed generators of the subgroup M
(2)
p .

Table 1.

Ak i, j [h̄ki, h̄kj ]

R+
−,d j = d+ i a1

j = d+ i− 1 a2
otherwise 0

R+
∞,d j = d+ i a2,

j = d+ i− 1 a1,
otherwise 0

R+
f j = d+ i < 2d a1

j = d+ i− 1 a2
i < d, j = 2d −λd−i+1a2
i = d, j = 2d a1 − λ1a2

otherwise 0

where f(x) = xd + λ1x
d−1 + · · ·+ λd

Corollary 3.7. Let G = G(A).

(1) G has a finite direct factor if and only if A ' (R−,1)
k ⊕ A′; then

G ' Hk ×G(A′).
(2) Suppose that G has no finite direct factors. It is decomposable if and

only if A ' (R+
x )k ⊕ (R+

∞,1)
l; then G = Gk ×Gl.

(See Proposition 3.1 for the definition of Gk.)

Proof is evident. �
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