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Abstract. We study automorphisms of the incidence algebra of
a finite quasiordered set M. In particular, we describe explicitly
the group of outer automorphisms and give a criterion for any
automorphism of this algebra to be a product of an inner one and
an automorphism of M, which corrects some results of [3].

Let M = (M,4) be a finite quasiordered set, m = #(M). Recall
that its incidence algebra I = kM over a filed k is, by definition,
the algebra with a basis {eij | i, j ∈ M, i 4 j} and the multiplication
eijekl = δjkeil, where δ is the Kronecker symbol [4]1. In particular,
ei = eii are primitive orthogonal idempotents and

∑
i ei is the unit

of the algebra I. Moreover, i 4 j in M if and only if eiIej 6= 0.
We are going to study the automorphism group Aut I of this algebra,
more precisely, the group of outer automorphisms Out I = Aut I/ Inn I,
where Inn I is the subgroup of inner automorphisms, i.e. those of the
form σa : x 7→ a−1xa for an invertible element a ∈ I.

If τ is an automorphism of the quasiordered set M, it induces an
automorphism of I mapping eij to eτi,τj. We denote the latter by τ too.
Thus Aut I ⊇ AutM. Let ∼ be the equivalence relation associated
with the quasiorder 4, i.e. i ∼ j means that i 4 j and j 4 i, and
M̃ = {M1,M2, . . . ,Ms} be the set of equivalence classes with respect
to ∼. It is obvious that i ∼ j if and only if ei and ej are conjugate in
I. We also write i ≺ j if i 4 j but j 64 i, and Mk 6 Ml if i 4 j for
some (then any) elements i ∈Mk, j ∈Ml. Then 6 is an order on M̃.

The subspace J = 〈eij | i ≺ j〉 is the radical of the algebra I and
S = 〈eij | i ∼ j〉 is the semisimple part of I, i.e. it is a subalgebra such
that S ⊕ J = I. Moreover, if #(Mk) = mk, then S =

∏s
k=1 Sk, where

Sk = 〈eij | i, j ∈Mk〉 ' Mat(mk,k). Let Ek =
∑

i∈Mk
ei for every

equivalence class Mk. Then Ek are central idempotents in S, namely
Ek is the unit element of the component Sk. We always suppose that
the numeration M1,M2, . . . ,Ms of the equivalence classes from M̃ is
such that Mk 6 Ml implies k 6 l. Then I can be considered as the ring
of s × s triangular matrices (akl), where akl ∈ EkIEl (k, l = 1, . . . , s).
It easily implies
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1Such incidence algebras coincide with minimal algebras in the sense of [1, Ex-
ercise 3.8].
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Proposition 1. Inn I ∩ AutM = InnM, where

InnM = {τ ∈ AutM | τ(Mk) = Mk for all k = 1 . . . , s} .

In particular, if 4 is an order, then Inn I ∩ AutM = {id}, thus Aut I
contains the semidirect product Inn I o AutM.

We set OutM = AutM/ InnM.

Proposition 2. OutM is isomorphic to the subgroup of the group
Aut M̃ consisting of all automorphisms τ such that #(τMk) = #(Mk)

for all k = 1, . . . , s. Especially, if 4 is an order, M̃ = M and OutM =
AutM. (Further we always identify OutM with this subgroup.)

Proof. Every automorphism σ of M induces an automorphism σ̄ of
M̃. Moreover, #(σ̄Mk) = #(σ(Mk)) = #(Mk) for all k and σ̄ = id

if and only if σ ∈ InnM. On the other hand, let τ ∈ Aut M̃ and
#(τMk) = #(Mk) for all k. We fix a bijection βk : Mk → τMk for
every k and define σ ∈ AutM setting σi = βki if i ∈Mk. It is evident
that σ is indeed an automorphism of M and σ̄ = τ . �

Recall that the ordered set M̃ defines a simplicial complex, which
we also denote by M̃. Its n-simplicies are sequences (x0, x1, . . . , xn),

where xi ∈ M̃ and x0 ≺ x1 ≺ · · · ≺ xn. Thus, the groups of cochains,
cocycles, coboundaries and cohomologies of this complex with the val-
ues in any abelian group G are defined, which we denote, respectively,
by Cn(M̃, G), Zn(M̃, G), Bn(M̃, G) and Hn(M̃, G).

Proposition 3. Let Sid I = {ψ ∈ Aut I | ψ|S = id}. There is a nat-

ural isomorphism Sid I ' Z1(M̃,k×), which maps Sid I ∩ Inn I onto

B1(M̃,k×).

Proof. If ψ ∈ Sid I, then ψ(ei) = ei for all i. Since eiIej = 〈eij〉 if i 4 j,
it implies that ψ(eij) = γ(i, j)eij for some γ(i, j) ∈ k×. Moreover, if
i ∼ i′ and j ∼ j′, then ei′j′ = ei′ieijejj′ , where both ei′i and ejj′ belong
to S, wherefrom γ(i, j) = γ(i′, j′). Hence ψ can be identified with the

cochain γ ∈ C1(M̃,k×). If i ≺ j ≺ k, then eijejk = eik, wherefrom
γ(i, j)γ(j, k) = γ(i, k), which means that γ is actually a cocycle. On

the other hand, every cocycle γ ∈ Z1(M̃,k×) induces an automorphism
ψ ∈ SidM such that ψ(eij) = γ(k, l)eij for i ∈Mk, j ∈Ml, k ≺ l, and
ψ(eij) = eij for i ∼ j.

Suppose that ψ ∈ Sid I ∩ Inn I, ψ = σa, where a is presented by a
matrix (akl) as above. Since σa(b) = b, i.e. ab = ba for all b ∈ S,
one easily sees that akl = 0 for k 6= l and akk = λ(k)Ek. Therefore,
ψ(eij) = λ(k)−1λ(l) if i ∈Mk, j ∈Ml, i.e. the corresponding cocycle is

actually a coboundary. On the contrary, if γ ∈ Z1(M̃,k×) is a cobound-

ary, γ(k, l) = λ(k)−1λ(l) for some λ ∈ C0(M̃,k×), the corresponding
automorphism coincides with σa, where a =

∑s
k=1 λ(k)Ek. �
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Obviously, the group AutM acts on Cn(M̃, G) for any G and the
groups of cocycles and coboundaries are stable under this action. Thus
AutM acts on Hn(M̃, G).

Theorem 4. The group Out I is isomorphic to the semidirect product
H1(M̃,k×) o OutM.

Proof. Proposition 3 implies that H = H1(M̃,k×) embeds into Out I.
Obviously, OutM normalizes H and H ∩ OutM = {id}. Let φ ∈
Aut I, fi = φ(ei). Then fi are primitive idempotents and

∑
i fi = 1,

hence there is an inner automorphism σ such that σ(fi) = eτi for some
permutation τ of M [1, Theorem 3.4.1]. Since i 4 j if and only if
eiIej 6= 0, τ is an automorphism of M such that τ−1σφ(ei) = ei for
all i ∈ M. Therefore, the automorphism φ′ = τ−1σφ maps Sk to Sk

for all k. Since all algebras Sk are central simple, there is an inner
automorphism σ′ such that σ′φ′ is identical on S, i.e. σ′φ′ ∈ Sid I [1,

Theorem 4.4.3]. Thus the image of φ in Out I belongs to H · Out M̃,
and Out I = H o OutM. �

Let Hn(M̃) = Hn(M̃,Z). Since M̃ is a finite simplicial complex, this
group is finitely generated and can be effectively (and easily) calcu-

lated. Recall that H1(M̃, G) ' Hom(H1(M̃), G) for any abelian group

G [2, Corollary XII.4.6]. Moreover, if M̃ is connected, H1(M̃,Z) is

isomorphic to π(M̃)/π′(M̃), where π(M̃) is the fundamental group

of M̃ and π′(M̃) is its commutant [2, Theorem VIII.7.1]; therefore,

H1(M̃, G) ' Hom(π(M̃), G). Note that M̃ is connected if and only
if M does not split as M = X ∪ Y so that i 64 j and j 64 i for any
i ∈ X, j ∈ Y .

In what follows we write H for H1(M̃). For any abelian group G we
denote by Π(G) the set of all prime numbers p such that G contains
an element of order p.

Corollary 5. The following conditions are equivalent:

(1) Aut I = Inn I · AutM.
(2) Either #(k) = 2 or the group H is finite and Π(H)∩Π(k×) = ∅.

Note that if 4 is an order and the condition (2) holds, then AutM =
InnM o AutM.

Remark. This corollary shows that Theorem 1 of [3] is not correct, since
it implies, in particular, that Aut I = Inn I·AutM for any finite ordered
set M. An easy example, when Aut I 6= Inn I·AutM, is the ordered set
M = {1, 2, 3, 4 | 1 < 3, 1 < 4, 2 < 3, 2 < 4}, since H1(M̃) = Z in this
case. If we add one more element 5 with 1 < 5, we get a counterexample
with AutM = {id} and Aut I 6= Inn I (namely, Aut I/ Inn I ' k×).

Corollary 6. Suppose that k is algebraically closed.

(1) If chark = 0, then Aut I = Inn I · AutM if and only if H = 0.



4 YURIY DROZD AND PETRO KOLESNIK

(2) If chark = p > 0, then Aut I = Inn I · AutM if and only if H
is a finite p-group.

Remark. Actually, Corollary 6 remains valid for any field k such that
for every prime q 6= chark the cyclotomic polynomial (xq − 1)/(x− 1)
has a root in k.

Corollary 7. Suppose that M̃ is simply connected, i.e. it is connected
and its fundamental group is trivial. Then Aut I = Inn I · AutM.

For instance, it holds if the Hasse diagram of M̃ is a tree.
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