AUTOMORPHISMS OF INCIDENCE ALGEBRAS

YURIY DROZD AND PETRO KOLESNIK

ABSTRACT. We study automorphisms of the incidence algebra of a finite quasiordered set \mathbf{M} . In particular, we describe explicitly the group of outer automorphisms and give a criterion for any automorphism of this algebra to be a product of an inner one and an automorphism of \mathbf{M} , which corrects some results of [3].

Let $\mathbf{M} = (\mathbf{M}, \preccurlyeq)$ be a finite quasiordered set, m = #(M). Recall that its *incidence algebra* $\mathbf{I} = \mathbf{k}\mathbf{M}$ over a filed \mathbf{k} is, by definition, the algebra with a basis $\{e_{ij} \mid i, j \in \mathbf{M}, i \preccurlyeq j\}$ and the multiplication $e_{ij}e_{kl} = \delta_{jk}e_{il}$, where δ is the Kronecker symbol [4]¹. In particular, $e_i = e_{ii}$ are primitive orthogonal idempotents and $\sum_i e_i$ is the unit of the algebra \mathbf{I} . Moreover, $i \preccurlyeq j$ in \mathbf{M} if and only if $e_i\mathbf{I}e_j \neq 0$. We are going to study the automorphism group Aut \mathbf{I} of this algebra, more precisely, the group of *outer* automorphisms Out $\mathbf{I} = \operatorname{Aut} \mathbf{I}/\operatorname{Inn} \mathbf{I}$, where Inn \mathbf{I} is the subgroup of *inner* automorphisms, i.e. those of the form $\sigma_a : x \mapsto a^{-1}xa$ for an invertible element $a \in \mathbf{I}$.

If τ is an automorphism of the quasiordered set \mathbf{M} , it induces an automorphism of \mathbf{I} mapping e_{ij} to $e_{\tau i,\tau j}$. We denote the latter by τ too. Thus Aut $\mathbf{I} \supseteq$ Aut \mathbf{M} . Let \sim be the equivalence relation associated with the quasiorder \preccurlyeq , i.e. $i \sim j$ means that $i \preccurlyeq j$ and $j \preccurlyeq i$, and $\widetilde{\mathbf{M}} = \{M_1, M_2, \ldots, M_s\}$ be the set of equivalence classes with respect to \sim . It is obvious that $i \sim j$ if and only if e_i and e_j are conjugate in \mathbf{I} . We also write $i \prec j$ if $i \preccurlyeq j$ but $j \preccurlyeq i$, and $M_k \leqslant M_l$ if $i \preccurlyeq j$ for some (then any) elements $i \in M_k$, $j \in M_l$. Then \preccurlyeq is an order on $\widetilde{\mathbf{M}}$.

The subspace $\mathbf{J} = \langle e_{ij} \mid i \prec j \rangle$ is the radical of the algebra \mathbf{I} and $\mathbf{S} = \langle e_{ij} \mid i \sim j \rangle$ is the semisimple part of \mathbf{I} , i.e. it is a subalgebra such that $\mathbf{S} \oplus \mathbf{J} = \mathbf{I}$. Moreover, if $\#(M_k) = m_k$, then $\mathbf{S} = \prod_{k=1}^s \mathbf{S}_k$, where $\mathbf{S}_k = \langle e_{ij} \mid i, j \in M_k \rangle \simeq \operatorname{Mat}(m_k, \mathbf{k})$. Let $E_k = \sum_{i \in M_k} e_i$ for every equivalence class M_k . Then E_k are central idempotents in \mathbf{S} , namely E_k is the unit element of the component \mathbf{S}_k . We always suppose that the numeration M_1, M_2, \ldots, M_s of the equivalence classes from $\widetilde{\mathbf{M}}$ is such that $M_k \leq M_l$ implies $k \leq l$. Then \mathbf{I} can be considered as the ring of $s \times s$ triangular matrices (a_{kl}) , where $a_{kl} \in E_k \mathbf{I} E_l$ $(k, l = 1, \ldots, s)$. It easily implies

Key words and phrases. Incidence algebra; Partially orderd set; Automorphism; Simplicial complex; Cohomology.

¹Such incidence algebras coincide with *minimal algebras* in the sense of [1, Exercise 3.8].

Proposition 1. Inn $\mathbf{I} \cap \operatorname{Aut} \mathbf{M} = \operatorname{Inn} \mathbf{M}$, where

Inn $\mathbf{M} = \{ \tau \in \operatorname{Aut} \mathbf{M} \mid \tau(M_k) = M_k \text{ for all } k = 1 \dots, s \}.$

In particular, if \preccurlyeq is an order, then $\operatorname{Inn} \mathbf{I} \cap \operatorname{Aut} \mathbf{M} = {\operatorname{id}}$, thus $\operatorname{Aut} \mathbf{I}$ contains the semidirect product $\operatorname{Inn} \mathbf{I} \rtimes \operatorname{Aut} \mathbf{M}$.

We set $\operatorname{Out} \mathbf{M} = \operatorname{Aut} \mathbf{M} / \operatorname{Inn} \mathbf{M}$.

Proposition 2. Out \mathbf{M} is isomorphic to the subgroup of the group Aut $\tilde{\mathbf{M}}$ consisting of all automorphisms τ such that $\#(\tau M_k) = \#(M_k)$ for all $k = 1, \ldots, s$. Especially, if \preccurlyeq is an order, $\tilde{\mathbf{M}} = \mathbf{M}$ and Out $\mathbf{M} =$ Aut \mathbf{M} . (Further we always identify Out \mathbf{M} with this subgroup.)

Proof. Every automorphism σ of \mathbf{M} induces an automorphism $\bar{\sigma}$ of $\tilde{\mathbf{M}}$. Moreover, $\#(\bar{\sigma}M_k) = \#(\sigma(M_k)) = \#(M_k)$ for all k and $\bar{\sigma} = \mathrm{id}$ if and only if $\sigma \in \mathrm{Inn} \mathbf{M}$. On the other hand, let $\tau \in \mathrm{Aut} \tilde{\mathbf{M}}$ and $\#(\tau M_k) = \#(M_k)$ for all k. We fix a bijection $\beta_k : M_k \to \tau M_k$ for every k and define $\sigma \in \mathrm{Aut} \mathbf{M}$ setting $\sigma i = \beta_k i$ if $i \in M_k$. It is evident that σ is indeed an automorphism of \mathbf{M} and $\bar{\sigma} = \tau$.

Recall that the ordered set \mathbf{M} defines a simplicial complex, which we also denote by $\tilde{\mathbf{M}}$. Its *n*-simplicies are sequences (x_0, x_1, \ldots, x_n) , where $x_i \in \tilde{\mathbf{M}}$ and $x_0 \prec x_1 \prec \cdots \prec x_n$. Thus, the groups of *cochains*, *cocycles*, *coboundaries* and *cohomologies* of this complex with the values in any abelian group G are defined, which we denote, respectively, by $C^n(\tilde{\mathbf{M}}, G)$, $Z^n(\tilde{\mathbf{M}}, G)$, $B^n(\tilde{\mathbf{M}}, G)$ and $H^n(\tilde{\mathbf{M}}, G)$.

Proposition 3. Let Sid $\mathbf{I} = \{\psi \in \operatorname{Aut} \mathbf{I} \mid \psi | \mathbf{s} = \operatorname{id}\}$. There is a natural isomorphism Sid $\mathbf{I} \simeq Z^1(\tilde{\mathbf{M}}, \mathbf{k}^{\times})$, which maps Sid $\mathbf{I} \cap \operatorname{Inn} \mathbf{I}$ onto $B^1(\tilde{\mathbf{M}}, \mathbf{k}^{\times})$.

Proof. If $\psi \in \text{Sid } \mathbf{I}$, then $\psi(e_i) = e_i$ for all i. Since $e_i \mathbf{I} e_j = \langle e_{ij} \rangle$ if $i \leq j$, it implies that $\psi(e_{ij}) = \gamma(i, j) e_{ij}$ for some $\gamma(i, j) \in \mathbf{k}^{\times}$. Moreover, if $i \sim i'$ and $j \sim j'$, then $e_{i'j'} = e_{i'}e_{ij}e_{jj'}$, where both $e_{i'i}$ and $e_{jj'}$ belong to \mathbf{S} , wherefrom $\gamma(i, j) = \gamma(i', j')$. Hence ψ can be identified with the cochain $\gamma \in C^1(\tilde{\mathbf{M}}, \mathbf{k}^{\times})$. If $i \prec j \prec k$, then $e_{ij}e_{jk} = e_{ik}$, wherefrom $\gamma(i, j)\gamma(j, k) = \gamma(i, k)$, which means that γ is actually a cocycle. On the other hand, every cocycle $\gamma \in Z^1(\tilde{\mathbf{M}}, \mathbf{k}^{\times})$ induces an automorphism $\psi \in \text{Sid } \mathbf{M}$ such that $\psi(e_{ij}) = \gamma(k, l)e_{ij}$ for $i \in M_k$, $j \in M_l$, $k \prec l$, and $\psi(e_{ij}) = e_{ij}$ for $i \sim j$.

Suppose that $\psi \in \text{Sid } \mathbf{I} \cap \text{Inn } \mathbf{I}$, $\psi = \sigma_a$, where *a* is presented by a matrix (a_{kl}) as above. Since $\sigma_a(b) = b$, i.e. ab = ba for all $b \in \mathbf{S}$, one easily sees that $a_{kl} = 0$ for $k \neq l$ and $a_{kk} = \lambda(k)E_k$. Therefore, $\psi(e_{ij}) = \lambda(k)^{-1}\lambda(l)$ if $i \in M_k$, $j \in M_l$, i.e. the corresponding cocycle is actually a coboundary. On the contrary, if $\gamma \in \mathbb{Z}^1(\tilde{\mathbf{M}}, \mathbf{k}^{\times})$ is a coboundary, $\gamma(k, l) = \lambda(k)^{-1}\lambda(l)$ for some $\lambda \in \mathbb{C}^0(\tilde{\mathbf{M}}, \mathbf{k}^{\times})$, the corresponding automorphism coincides with σ_a , where $a = \sum_{k=1}^s \lambda(k)E_k$.

Obviously, the group Aut \mathbf{M} acts on $C^n(\mathbf{M}, G)$ for any G and the groups of cocycles and coboundaries are stable under this action. Thus Aut \mathbf{M} acts on $H^n(\tilde{\mathbf{M}}, G)$.

Theorem 4. The group $\operatorname{Out} \mathbf{I}$ is isomorphic to the semidirect product $\operatorname{H}^{1}(\tilde{\mathbf{M}}, \mathbf{k}^{\times}) \rtimes \operatorname{Out} \mathbf{M}$.

Proof. Proposition 3 implies that $\mathbf{H} = \mathbf{H}^1(\mathbf{M}, \mathbf{k}^{\times})$ embeds into Out I. Obviously, Out **M** normalizes **H** and $\mathbf{H} \cap$ Out $\mathbf{M} = \{\mathrm{id}\}$. Let $\phi \in$ Aut I, $f_i = \phi(e_i)$. Then f_i are primitive idempotents and $\sum_i f_i = 1$, hence there is an inner automorphism σ such that $\sigma(f_i) = e_{\tau i}$ for some permutation τ of **M** [1, Theorem 3.4.1]. Since $i \preccurlyeq j$ if and only if $e_i \mathbf{I} e_j \neq 0, \tau$ is an automorphism of **M** such that $\tau^{-1} \sigma \phi(e_i) = e_i$ for all $i \in \mathbf{M}$. Therefore, the automorphism $\phi' = \tau^{-1} \sigma \phi$ maps \mathbf{S}_k to \mathbf{S}_k for all k. Since all algebras \mathbf{S}_k are central simple, there is an inner automorphism σ' such that $\sigma' \phi'$ is identical on \mathbf{S} , i.e. $\sigma' \phi' \in \mathrm{Sid} \mathbf{I}$ [1, Theorem 4.4.3]. Thus the image of ϕ in Out I belongs to $\mathbf{H} \cdot \mathrm{Out} \mathbf{M}$, and Out $\mathbf{I} = \mathbf{H} \rtimes \mathrm{Out} \mathbf{M}$.

Let $\mathrm{H}_n(\tilde{\mathbf{M}}) = \mathrm{H}_n(\tilde{\mathbf{M}}, \mathbb{Z})$. Since $\tilde{\mathbf{M}}$ is a finite simplicial complex, this group is finitely generated and can be effectively (and easily) calculated. Recall that $\mathrm{H}^1(\tilde{\mathbf{M}}, G) \simeq \mathrm{Hom}(\mathrm{H}_1(\tilde{\mathbf{M}}), G)$ for any abelian group G [2, Corollary XII.4.6]. Moreover, if $\tilde{\mathbf{M}}$ is connected, $\mathrm{H}_1(\tilde{\mathbf{M}}, \mathbb{Z})$ is isomorphic to $\pi(\tilde{\mathbf{M}})/\pi'(\tilde{\mathbf{M}})$, where $\pi(\tilde{\mathbf{M}})$ is the fundamental group of $\tilde{\mathbf{M}}$ and $\pi'(\tilde{\mathbf{M}})$ is its commutant [2, Theorem VIII.7.1]; therefore, $\mathrm{H}^1(\tilde{\mathbf{M}}, G) \simeq \mathrm{Hom}(\pi(\tilde{\mathbf{M}}), G)$. Note that $\tilde{\mathbf{M}}$ is connected if and only if \mathbf{M} does not split as $\mathbf{M} = X \cup Y$ so that $i \not\preccurlyeq j$ and $j \not\preccurlyeq i$ for any $i \in X, j \in Y$.

In what follows we write H for $H_1(\mathbf{M})$. For any abelian group G we denote by $\Pi(G)$ the set of all prime numbers p such that G contains an element of order p.

Corollary 5. The following conditions are equivalent:

(1) Aut $\mathbf{I} = \operatorname{Inn} \mathbf{I} \cdot \operatorname{Aut} \mathbf{M}$.

(2) Either $#(\mathbf{k}) = 2$ or the group H is finite and $\Pi(\mathbf{H}) \cap \Pi(\mathbf{k}^{\times}) = \emptyset$. Note that if \preccurlyeq is an order and the condition (2) holds, then Aut $\mathbf{M} =$ Inn $\mathbf{M} \rtimes$ Aut \mathbf{M} .

Remark. This corollary shows that Theorem 1 of [3] is not correct, since it implies, in particular, that Aut $\mathbf{I} = \text{Inn } \mathbf{I} \cdot \text{Aut } \mathbf{M}$ for any finite ordered set \mathbf{M} . An easy example, when Aut $\mathbf{I} \neq \text{Inn } \mathbf{I} \cdot \text{Aut } \mathbf{M}$, is the ordered set $\mathbf{M} = \{1, 2, 3, 4 \mid 1 < 3, 1 < 4, 2 < 3, 2 < 4\}$, since $H_1(\tilde{\mathbf{M}}) = \mathbb{Z}$ in this case. If we add one more element 5 with 1 < 5, we get a counterexample with Aut $\mathbf{M} = \{\text{id}\}$ and Aut $\mathbf{I} \neq \text{Inn } \mathbf{I}$ (namely, Aut $\mathbf{I}/\text{Inn } \mathbf{I} \simeq \mathbf{k}^{\times}$).

Corollary 6. Suppose that **k** is algebraically closed.

(1) If char $\mathbf{k} = 0$, then Aut $\mathbf{I} = \text{Inn } \mathbf{I} \cdot \text{Aut } \mathbf{M}$ if and only if $\mathbf{H} = 0$.

YURIY DROZD AND PETRO KOLESNIK

(2) If char $\mathbf{k} = p > 0$, then Aut $\mathbf{I} = \text{Inn } \mathbf{I} \cdot \text{Aut } \mathbf{M}$ if and only if H is a finite p-group.

Remark. Actually, Corollary 6 remains valid for any field **k** such that for every prime $q \neq \operatorname{char} \mathbf{k}$ the cyclotomic polynomial $(x^q - 1)/(x - 1)$ has a root in **k**.

Corollary 7. Suppose that $\mathbf{\tilde{M}}$ is simply connected, i.e. it is connected and its fundamental group is trivial. Then $\operatorname{Aut} \mathbf{I} = \operatorname{Inn} \mathbf{I} \cdot \operatorname{Aut} \mathbf{M}$.

For instance, it holds if the Hasse diagram of \mathbf{M} is a tree.

References

- [1] Drozd, Y. A., Kirichenko, V. V. (1970). *Finite Dimensional Algebras*. Berlin: Springer–Verlag.
- [2] W. S. Massy, W. S. (1991) A Basic Course in Algebraic Topology. New York: Springer-Verlag.
- [3] Spiegel, E. (2001). On the automorphisms of incidence algebras. J. Algebra 239:615-623.
- [4] Spiegel E., O'Donnell C. J. (1997). Incidence Algebras. New York: Marcel Dekker, Inc.

Kyiv Taras Shevchenko University, Department of Mechanics and Mathematics, Volodymyrska 64, 01033 Kyiv, Ukraine

E-mail address: yuriy@drozd.org, petraw@univ.kiev.ua *URL*: drozd.org/~yuriy

4