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Abstract We develop the theory of minors of non-commutative schemes. This study is
motivated by applications in the theory of non-commutative resolutions of singularities
of commutative schemes. In particular, we construct a categorical resolution for non-
commutative curves and in the rational case show that it can be realized as the derived
category of a quasi-hereditary algebra.
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1 Introduction

Let B be a ring and P be a finitely generated projective left B-module. We call the
ring A = Bp = (Endp P)°P a minor of B. It turns out that the module categories of
B and A are closely related.
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e The functors F = P®4_ and H = Hom 4 (P", _) from A-Mod to B-Mod are fully
faithful, where P = Hompg (P, B). In other words, A-Mod can be realized in two
different ways as a full subcategory of B-Mod, see Theorem 4.3.

e The functor G = Hompg(P,_): B-Mod — A-Mod is exact and essentially sur-
jective. Moreover, we have adjoint pairs (F, G) and (G, H). In other words, G is a
bilocalization functor. If

I=Ip=Im(P®4PY — B)

and B = B/I then the category B-Mod is the kernel of G and A-Mod is equivalent
to the Serre quotient of B-Mod modulo B-Mod, see Theorem 4.3 (ii).

e Under certain additional assumptions one can show that the global dimension of
B is finite provided the global dimensions of A and B are finite, see Lemma 5.1.

The described picture becomes even better when we pass to the (unbounded) derived
categories D(A-Mod), D(B-Mod) and D(B-Mod) of the rings A, B and B introduced
above. Let DG be the derived functor of G, LF be the left derived functor of F and RH
be the right derived functor of H.

e Then we have adjoint pairs (LF, DG) and (DG, RH), the functors LF and RH are
fully faithful and the category D(A-Mod) is equivalent to the Verdier localiza-
tion of D(B-Mod) modulo its triangulated subcategory D (B-Mod) consisting of
complexes with cohomologies from B-Mod, see Theorem 4.5.

e Moreover, we have a semi-orthogonal decomposition

D(B-Mod) = (D5 (B-Mod), D(A-Mod)),

see Corollary 2.6.

One motivation to deal with minors comes from the theory of non-commutative crepant
resolutions. Let A be a commutative normal Gorenstein domain and F' be a reflexive
A-module such that the ring

A F
— — op _
B = Br =Ends(A®F) —(F\/ E>’

where E = (Endy F)°P, is maximal Cohen—Macaulay over A and of finite global
dimension. Van den Bergh [37] suggested to view B as a non-commutative crepant
resolution of A showing that, under some additional assumptions, the existence of a
non-commutative crepant resolution implies the existence of a commutative one. If
we take the idempotent e = ((1) 8) € B and pose P = Be then it is easy to see that
A = Bp. Thus, dealing with non-commutative (crepant) resolutions of singularities,
we naturally come into the framework of the theory of minors.

In [16] it was observed that there is a close relation between coherent sheaves over
the nodal cubic C = V(zy? — x> — x2z) C P? and representations of the finite
dimensional algebra A given by the quiver with relations
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o Bi
X\ X\
L T Biray = Bray = 0.
@2 B2

An explanation of this fact was given in [8]. Let J be the ideal sheaf of the singular
point of C and A = Endc (O @7J). Consider the ringed space (C, A) and the category
A-mod of coherent left A-modules on C. The derived category D”(A-mod) has a
tilting complex, whose (opposite) endomorphism algebra is isomorphic to A what
implies that the categories Db (A-mod) and D?(A-mod) are equivalent. On the other
hand, the triangulated category Perf(C) of perfect complexes on C is equivalent to a
full subcategory of D”(A-mod). In fact, we deal here with a sheaf-theoretic version
of the construction of minors: the commutative scheme (C, O) is a minor of the non-
commutative scheme (C, A). The goal of this article is to establish a general framework
for the theory of minors of non-commutative schemes.

In Sect. 2, we review some key results on localizations of abelian and triangulated
categories used in this article. In Sect. 3, we discuss the theory of non-commutative
schemes, elaborating in particular a proof of the result characterizing the triangulated
category Perf(A) of perfect complexes over a non-commutative scheme (X, A) as
the category of compact objects of the unbounded derived category of quasi-coherent
sheaves D(A) (Theorem 3.14). Section 4 is devoted to the definition of a minor (X, A)
of a non-commutative scheme (X, B) and the study of relations between (X, A) and
(X, B). In Sect. 5, we introduce the notion of quasi-hereditary non-commutative
schemes, which generalizes the notions of quasi-hereditary semiprimary rings [11,13]
and quasi-hereditary orders [24] and study their properties. In Sect. 6, we elaborate
the theory of strongly Gorenstein non-commutative schemes. Section 7 deals with
non-commutative curves. In particular, we study here hereditary non-commutative
curves. In the final Sect. 8, as an application of the elaborated technique, we construct
a categorical resolution for any (reduced) non-commutative curve (Theorem 8.2). We
call it the Konig resolution, since it is an analogue of the construction proposed by
Konig [25]. If this curve is rational, we construct a tilting complex, which shows that
this categorical resolution can be realized as the derived category of modules over a
finite dimensional quasi-hereditary algebra (Theorem 8.5). In particular, it gives an
estimate of the Rouquier dimension of the perfect derived category of coherent sheaves
over a non-commutative curve (Corollary 8.6). For “usual” (commutative) curves this
result is contained in [9].

2 Bilocalizations

Recall that a full subcategory C of an abelian category A is said to be thick (or Serre
subcategory) if, for any exact sequence 0 — C' — C — C” — 0, the object C
belongs to € if and only if both C” and C” belong to C. Then the quotient category
A/C is defined and we denote by ITe the natural functor A — A/C. It is exact,
essentially surjective and Ker [1Te = C. For instance, if G: A — B is an exact functor
among abelian categories, its kernel KerG is a thick subcategory of A and G factors
as Gollgerg, where G : A/Ker G — B.
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314 1. Burban et al.

Analogously, if C is a full subcategory of a triangulated category A, it is said to be
thick if it is triangulated (i.e. closed under shifts and cones) and closed under taking
direct summands. Then the quotient triangulated category A/C is defined and we
denote by ITe the natural functor A — A/C. It is exact (triangulated), essentially
surjective and Ker [1e = C. For instance, if G: A — B is an exact (triangulated)
functor among triangulated categories, its kernel Ker G is a thick subcategory of A
and G factors as GoIlger g, where G: A/Ker G — B.

If F: A — B is a functor, we denote by ImF its essential image, i.e. the full
subcategory of B consisting of objects B such that there is an isomorphism B >~ FA
for some A € A. We usually use this term when F is a full embedding (i.e. is fully
faithful), so ImF ~ A.

We use the following well-known facts related to these notions.

Theorem 2.1 (I) Let A, B be abelian categories, G: A — B be an exact functor
which has a left adjoint (right adjoint) F: B — A such that the natural morphism
1y — GoF (respectively, GoF — 13) is an isomorphism. Let C = Ker G.
(@) G = Golle, where G is an equivalence AJC —> B and its quasi-inverse
functor is F = IgoF.
(b) F is a full embedding and its essential image ImF coincides with the left
(respectively, right) orthogonal subcategory of C, i.e. the full subcategory

e ={A€ObA:Hom(A, C) =Ext'(A,C) =0 forall C € ObC}
(respectively,
€t ={A €ObA:Hom(C, A) =Ext'(C, A) =0 forall C € ObC}.)

(¢) C= (+@)* (respectively, C = +(C1)).
(d) The embedding functor C — A has a left (respectively, right) adjoint.

(II) Let A, B be triangulated categories, G: A — B be an exact (triangulated)
functor which has a left adjoint (right adjoint) F: B — A such that the natural
morphism 13 — GoF (respectively, GoF — 1) is an isomorphism. Let C =
Ker G.

(@) G = Golle, where G is an equivalence AJC —> B and its quasi-inverse
functor is F = TeoF.

(b) F is a full embedding and its essential image ImF coincides with the left
(respectively, right) orthogonal subcategory of C, i.e. the full subcategory'

e = {A € ObA :Hom(A, C) =0 forall C € Ob€}
(respectively,

€t ={A eObA:Hom(C, A) =0 forall C € ObC}.)

! Note that in the book [31] the notations for the orthogonal subcategories are opposite to ours. The latter
seems more usual, especially in the representation theory, see, for instance, [2,19]. In [17] the objects of
the right orthogonal subcategory G are called C-closed.
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(¢) C= (+@)* (respectively, C = +(C1)).
(d) The embedding functor C — A has a left (respectively, right) adjoint, which
induces an equivalence A/+C = @ (respectively, A/Ct =5 @).

Proof Statement (Ia) is proved in [17, Chapter III, Proposition 5] if F is right adjoint
of G. The case of left adjoint is just a dualization. The proof of statement (Ila) is quite
analogous. Therefore, from now on we can suppose that B = A/C. Then statements
(Ib) and (IIb) are just [17, p.371, Chapter III, Lemma 2 and Corollary] and [31,
Theorem 9.1.16]. Statements (Ic) and (IIc) are [19, Corollary 2.3] and [31, Corol-
lary 9.1.14]. Thus statement (IId) also follows from [31, Theorem 9.1.16]. In the
abelian case the left (respectively, right) adjoint J to the embedding € — A is given
by the rule A — Cok W(A) (respectively, A +— Ker W(A)), where W is the natural
morphism FoG — 1 4 (respectively, 1 4 — FoG). O

Remark 2.2 Note that in the abelian case the composition ITieod (respectively,
[Te1oJ) need not be an equivalence. The reason is that the subcategory e ¢eh
need not be thick (see [19]).

A thick subcategory € of an abelian or triangulated category A is said to be local-
izing (colocalizing) if the canonical functor G: A — A/C has a right (respectively,
left) adjoint F. Neeman [31] calls F a Bousfield localization (respectively, a Bous-
field colocalization).* In this case the natural morphism GoF — 1 4/¢ (respectively,
14/e — GoF)isanisomorphism [17, Chapter III, Proposition 3], [31, Lemma 9.1.7].
If € is both localizing and colocalizing, we call it bilocalizing and call the category
A/C (or any equivalent one) a bilocalization of A. We also say in this case that G is a
bilocalization functor. In other words, an exact functor G: A — B is a bilocalization
functor if it has both left adjoint F and right adjoint H and the natural morphisms
1g — GF and GH — 13 are isomorphisms.

Corollary 2.3 Let G: A — B be an exact functor between abelian or triangulated
categories which has both left adjoint F and right adjoint H. In order that G will be a
bilocalization functor it is necessary and sufficient that one of the natural morphisms
1 — GoF or GoH — 13 be an isomorphism.

Proof Let, for instance, the first of these morphisms be an isomorphism. Then there
is an equivalence of categories G: A/Ker G —> B such that G = GIle, where
€ = Ker G. So we can suppose that B = A/C and G = Ile. Thus the morphism
GH — 14 is an isomorphism, since H is right adjoint to G. O

Corollary 2.4 Let C be a localizing (colocalizing) thick subcategory of an abelian
category A, De(A) be the full subcategory of D(A) consisting of all complexes C*
such that all cohomologies H' (C*) are in C. Suppose that the Bousfield localization
(respectively, colocalization) functor F has right (respectively, left) derived functor.
Then De(A) is also a localizing (colocalizing) subcategory of A and D(A/C) ~
DA)/De(A).

2 Actually, Neeman uses this term for triangulated categories, but we will use it for abelian categories too.
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Proof We consider the case of a localizing subcategory C, denote by G the canonical
functor A — A/C and by F its right adjoint. As G is exact, it induces an exact functor
D(A) — D(A/C) acting on complexes componentwise. We denote it by DG; it is
both right and left derived of G. Obviously, Ker DG = D¢ (A). Since GoF — 1 4/¢
is an isomorphism, the morphism DGoRF — 1p4,e) is also an isomorphism, so we
can apply Theorem 2.1 (II). O

Remark 2.5 If € is localizing and A is a Grothendieck category, the right derived
functor RF exists [2], so D(A/C) ~ De(A). We do not know general conditions
which ensure the existence of the left derived functor LF in the case of colocalizing
categories, though it exists when A is a category of quasi-coherent modules over a
quasi-compact separated non-commutative scheme and F is tensor product or inverse
image, see Proposition 3.12.

Miyatchi [29] proved that always D (A/C) =~ iD‘é (A), where o € {+, —, b}.

We recall that a sequence (Aj, A», ..., A,) of triangulated subcategories of a trian-
gulated category A is said to be a semi-orthogonal decomposition of A if Hom(A, A”)
=0forA e A;, A e Ajandi > j, and for every object A € A there is a chain of
morphisms

0= Ay 2 Ay 20 D Ay Boa I 4y = a

such that Cone f; € A; [26].

Corollary 2.6 Let G: A — B be an exact functor among triangulated categories,
F: B — A be its right (left) adjoint such that the natural morphism ¢: 13 — GF
(respectively, Wr: GF — 1) is an isomorphism. Then (Im F, Ker G) (respectively,
(Ker G, Im F)) is a semi-orthogonal decomposition of A.

Proof We consider the case of left adjoint. If A = FB and A’ € KerG, then
Hom 4 (A, A’) ~ Homg (GA, B) = 0. On the other hand, consider the natural mor-
phism f: FGA — A. Then Gf is an isomorhism, whence Cone f € Ker G. So we
canset A; = FGA, f1 = f. O

3 Non-commutative schemes

Definition 3.1 e A non-commutative scheme is a pair (X, A), where X is a scheme
(called the commutative background of the non-commutative scheme) and A
is a sheaf of Ox-algebras, which is quasi-coherent as a sheaf of Oy-modules.
Sometimes we say “non-commutative scheme A" not mentioning its commutative
background X. We denote by X the set of closed points of X.

e A non-commutative scheme (X, A) is said to be affine (separated, quasi-compact)
if so is its commutative background X. It is said to be reduced if A has no nilpotent
ideals.

e A morphism of non-commutative schemes f: (Y, B) — (X, A)isapair (fx, f%),
where fx: Y — X is a morphism of schemes and f* is a morphism of f;lox-
algebras fy 'A — B. In what follows we usually write f instead of fx.
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e Given a non-commutative scheme (X, A), we denote by A-Mod (respectively,
by A-mod) the category of quasi-coherent (respectively, coherent) sheaves of A-
modules. We call objects of this category just A-modules (respectively, coherent
A-modules).

o If f: (Y, B) — (X, A)isamorphism of non-commutative schemes, we denote by
f*: A-Mod — B-Mod the functor of inverse image which maps an A-module M
to the B-module B& -1 4 f ~IM. If the map fy is separated and quasi-compact,
we denote by f,: B-Mod — A-Mod the functor of direct image. It follows from
[20, Sections 0.1, 1.9.2] that these functors are well-defined. Moreover, f* maps
coherent modules to coherent ones.

In this paper we always suppose non-commutative schemes separated and quasi-
compact.

Remark 3.2 1f (X, A) is affine, i.e. X = Spec R for some commutative ring R, then
A = A" is a sheafification of an R-algebra A. A quasi-coherent A-module is just
a sheafification M~ of an A-module M, so A-Mod >~ A-Mod and we identify these
categories. If, moreover, A is noetherian, then A-mod coincides with the category
A-mod of finitely generated A-modules.

If X is separated and quasi-compact, A-Mod is a Grothendieck category. In partic-
ular, every quasi-coherent A-module has an injective envelope. We denote by A-Inj
the full subcategory of A-Mod consisting of injective modules.

The inverse image functor f* for a morphism of non-commutative schemes usually
does not coincide with the inverse image functor f§ with respect to the morphism of
their commutative backgrounds. We can guarantee it if B = f§.A, for instance, if ¥
is an open subset of X and B = Aly.

Definition 3.3 e The center of A is the subsheaf cen A C A such that
(cen A)(U) = {oz e A(U) : aly € cenA(V) forall V C U},

where cen A denotes the center of a ring A.
e We say that a non-commutative scheme (X, A) is central, if the natural homomor-
phism Oy — A maps Oy bijectively onto the center cen A of A.

Note that if (X, A) is affine, X = Spec R and A = A™, then cen A = (cen A)™.
Proposition 3.4 End 1 4-moq > End 1 4-1nj > I'(X, cen A).

Proof Leta € I'(X, cen A). Given any M € A-Mod, define (M) : M — M by the
rule: «(M)(U): M(U) — M(U) is the multiplication by « |y for every open U C X.
Obviously, it is a morphism of A-modules. Moreover, if f € Hom 4 (M, N), one
easily sees that fa(M) = a(N) f, so « defines an element from End1 4-p0q-
Conversely, let A € End 1 4-moq. Let U € X be an open subset, j: U — X be
the embedding. Then A(U) = A(j,j*A) is an element from End 4 (j,j*A) = A(U).
Since A is an endomorphism of the identity functor, A(U) is in cenA(U). Moreover,
if V. C U is another open subset, j': V — X is the embedding, the restriction
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homomorphism r: j,j*A — j.j*A gives the commutative diagram

. ()
JxJ A ——= juj A

MV)

jLiA S A
It implies that (V) = A(U)|y. In particular, A(X) = « is an element from I'"(X,
cen A) and A(U) coincides with the multiplication by « |y . Thus we obtain an isomor-
phism End 1 4-pmoq =~ I'(X, cen A).

There is the restriction map End 1 4-mog — End 1 4. On the other hand, consider
an injective copresentation of an A-module M, i.e. an exact sequence 0 — M N
Iy — I with injective modules Jp¢ and ;. Let 4 € End 1 4-jj. Then there
is a unique homomorphism A(M): M — M such that A(Ing)apng = apneA(M). Let
0—> N Jn — Ui be an injective copresentation of another A-module N and f €
Hom 4 (M, N). Extending f to injective copresentations, we obtain a commutative
diagram

anm

0 M Int .
lf J/fo J/fl
0 N N gy 70

It implies that

anAN) f = 20 ax f = 2(IN) foan
= for(UnDan = foant A(M) = an fAM),

whence it follows that A(N) f = fA(M), so we have extended X to a unique endo-
morphism of 1 4-pmoq- O

Proposition 3.5 Ler C = cen A, X' = Spec C be the spectrum of the (commutative)
Ox-algebra C, ¢: X' — X be the structural morphism, and A' = ¢~ A.

A’ is an Oy -algebra, so (X', A) is a central non-commutative scheme.

For any F € A-Mod the natural map F — ¢.¢*F is an isomorphism.’

For any ¥ € A’-Mod the natural map ¢*¢F — F' is an isomorphism.

The functors ¢* and ¢, establish an equivalence of the categories A-Mod and
A’-Mod as well as of A-mod and A’-mod.

Thus, when necessary, we can suppose, without loss of generality, that our non-com-
mutative schemes are central.

3 Note that in this situation ¢* = ¢~ 1.
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Proof All claims are obviously local, so we can suppose that X = Spec R and X' =
Spec R’, where R’ is the center of the R-algebra A = I'(X, A). Then all claims are
trivial. O

We call a non-commutative scheme (X, A) noetherian if the scheme X is noethe-
rian and A is coherent as a sheaf of Ox-modules. Note that if (X, A) is noetherian,
the central non-commutative scheme (X, A’) constructed in Proposition 3.5 is also
noetherian. Indeed, if an affine non-commutative scheme (Spec R, A™) is noetherian,
then A is a noetherian algebra, i.e. C = cen A is noetherian and A is a finitely
generated C-module.

Definition 3.6 Let (X, A) be noctherian.

e We denote by Ip A the full subcategory of A-mod consisting of locally projective
modules P, i.e. such that P, is a projective A,-module for every x € X.

e We say that A has enough locally projective modules if for every coherent A-
module M there is an epimorphism P — M, where P € Ip.A. Since every quasi-
coherent module is a sum of its coherent submodules, for every quasi-coherent
A-module M there is an epimorphism P — M, where P is a coproduct of modules
from Ip A.

An important example arises as follows. We say that a noetherian non-commutative
scheme (X, A) is quasi-projective if there is an ample Oyx-module L [21, Sec-
tion 4.5]. Note that in this case X is indeed a quasi-projective scheme over the ring
R =@, (X, L%

Proposition 3.7 Every quasi-projective non-commutative scheme (X, A) has enough
locally projective modules.

Proof Let L be an ample Ox-module, M be any coherent A-module. There is an
epimorphism of Ox-modules nOx — M®@XL®’” for some m, hence also an epi-
morphism F = nL®™ — M. Since Hom 4 (A®@, F, M) =~ Homg, (F, M), it
gives an epimorphism of A-modules A®o, F — M, where A®o, F € IpA. O

We define an invertible A-module as an A-module J such that End 4J >~ A°P and the
natural map Homu (J, A)® 49 — (End 4J)°P >~ A is an isomorphism. For instance,
the modules constructed in the preceding proof are direct sums of invertible modules.
On the contrary, one easily proves that, if A is noetherian and cenA = Oy, any
invertible A-module J is isomorphic to A®@, L, where L = Hom-4(J,J) and L is
an invertible O x-module. (We will not use this fact.)

We denote by CA the category of complexes of A-modules, by HoA the category
of complexes modulo homotopy and by DA the derived category D(A-Mod). We
also use the conventional notations C° A, Ho° A and D° A, where o € {+, —, b}. We
denote by ‘DA the full subcategory of compact objects C* from DA, i.e. such that the
natural morphism

Ll;Homp 4 (€%, F7) — Homp 4 (C* ], F?)

is bijective for any coproduct | |;J7.
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320 1. Burban et al.

Recall that a complex J° is said to be K-injective [36] if for every acyclic complex C*
the complex Hom*(C*, J*) is acyclic too. We denote by K-inj A the full subcategory of
HoA consisting of K-injective complexes and by K-injy A its full subcategory consisting
of acyclic K-injective complexes.

Proposition 3.8 Let (X, A) be a non-commutative scheme (separated and quasi-
compact).

(i) For every complex C* in CA there is a K-injective resolution, i.e. a K-injective
complex J* € CA together with a quasi-isomorphism C* — J°.
(ii)) DA ~ K-inj A /K-injyA.

Proof As the category A-Mod is a Grothendieck category, (i) follows immediately
from [2, Theorem 5.4] (see also [36, Lemma 3.7, Proposition 3.13]). Then (ii) follows
from [36, Proposition 1.5]. O

A complex F* is said to be K-flat [36] if for every acyclic complex 8° of right A-
modules the complex F*® 4 8° is acyclic. The next result is quite analogous to [1,
Proposition 1.1] and the proof just repeats that of the cited paper with no changes.

Proposition 3.9 Let (X, A) be a non-commutative scheme. Then for every complex
C* in CA there is a K-flat replica, i.e. a K-flat complex F* quasi-isomorphic to C°.

Remark 3.10 1f (X, A) is noetherian and has enough locally projective modules, every
complex from C~A has a locally projective (hence flat) resolution. Then [36, Theo-
rem 3.4] implies that for every complex C from CA there is an Lp-resolution, i.e. a
K-flat complex F* consisting of locally projective modules together with a quasi-
isomorphism F* — C* For instance, it is the case if (X,.A) is quasi-projective
(Proposition 3.7).

A complex J° is said to be weakly K-injective if for every acyclic K-flat complex F°
the complex Hom* (3, J°) is exact.

Proposition 3.11 ([36, Propositions 5.4, 5.15]) Let f: (X, A) — (Y, B) be a mor-
phism of non-commutative scheme.
o IfF* € CB is K-flat, then so is also f*F*. If, moreover, F* is K-flat and acyclic,
then f*3F* is acyclic too.
e IfJ € CA is weakly K-injective, then f,J is weakly K-injective. If, moreover, J is
weakly K-injective and acyclic, then f,J is acyclic too.

Proposition 3.12 ([36, Section 6]) Let (X, A) be a non-commutative scheme.

(i) The derived functors RHom®, (3%, G*) and R Hont, (F°, §*) exist and can be cal-
culated using a K-injective resolution of G* or a weakly K-injective resolution of
G* and a K-flat replica of F*.

(ii) The derived functor F° é) 4 G°, where G° € DA, exists and can be calculated
using a K-flat replica either of F* or of G°. Moreover, if G* is a complex of A-B-
bimodules, where B is another sheaf of O x-algebras, there are isomorphisms of
functors

@ Springer
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L

RHomg (F°®.4 5%, M*) >~ RHom 4 (F°, RHomg (G°, M?)),
L

RHomp (F* R 4 G°, M*) >~ RHom 4 (F°*, RHomg (G°, M*)).

(iii) For every morphism f: (X, A) — (Y, B) the derived functors L f*: DB —
DA and R fy: DA — DB exist. They can be calculated using, respectively,
K-flat replicas in CB and weakly K-injective resolutions in CA. Moreover, there
are isomorphisms of functors

RHom’; (7° R £:.G*) ~ RHom’,; (L f*J, G*),
RHomy (F%, R £.G°) =~ R fiRHom'y (L f*F*, G°).

@iv) If g: (Y, B) — (Z, ©) is another morphism of non-commutative schemes, then
L(gf)* = Lf*oLg* and R(gf)+ ~ Rg:°R fi.

If the considered non-commutative schemes have enough locally projective modules
(for instance, are quasi-projective), one can replace in these statements K-flat replicas
by Lp-resolutions.

Inparticular, let f: A — B be ahomomorphism of rings. We consider B as an algebra
over a subring S (an arbitrary one) of its center and A as an algebra over a subring R C
cenA N f~1(S). Then we can identify f with its sheafification f~: (Spec S, B~) —
(Spec R, A™). In this context the functors (f~)* and (f ™), are just sheafifications,
respectively, of the “back-up” functor p M +— 4 M and the “change-of-scalars” functor
AN +— pB®uN.

Definition 3.13 A complex C* in CA is said to be perfect if for every point x € X there
is an open neighbourhood U of x such that C|y is quasi-isomorphic to a finite complex
of locally projective coherent modules. We denote by Perf A the full subcategory of
DA consisting of perfect complexes.

The following result is well-known in commutative and affine cases [30,35]. Though
the proof in non-commutative situation is almost the same, we include it for the sake
of completeness. Actually, we reproduce the proof of Rouquier with slight changes.

Theorem 3.14 Let (X, A) be a non-commutative scheme (quasi-compact and sepa-
rated). Then DA is compactly generated and DA = Perf A.

Proof Let U C X be an open affine subset of X, Ay be the restriction of A onto
U,CU = X\U, j = jy: U — X be the embedding. Then the inverse image
functor j*: A-Mod — Ay-Mod is exact and the natural morphism j* j, — 1 4,,-Mod
is an isomorphism (actually, identity). Therefore Kerj* is a localizing subcategory
and Ay-Mod =~ A-Mod/Ker j*. Note that Ker j; consists of the A-modules M such
that suppM < CU. Then Ker L j, is a localizing subcategory of DA and DAy ~
DA/Ker L j,. This kernel coincides with the full subcategory Dgy; A of DA consisting
of complexes whose cohomologies are supported on CU .

If W € X is another open affine subset, then the subcategories Dp;; A and Doy A
intersect properly in the sense of [35, 5.2.3]. Recall that it means that jj, ju, j;;F = 0
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as soon as j;}i’r" = 0, what follows, for instance, from [21, Corollary 1.5.2] applied to
the cartesian diagram of affine morphisms (open embeddings)

vnw . u

b e

w " x

Therefore, if X = Ulm:l Ui is an open affine covering of X, then {Dg U,-‘A} is a cocov-
ering of the triangulated category DA as defined in [35,5.3.3]. If S € {1,2,...,m}
does not contain i, Us = Ujes Uj, then ﬂjes DDUJ-A = Dgy A and the image
of DEUSA in DAy, coincides with Dy,\ysAy;. There are sections fi, f,..., fk €
A =T'(U;, Ox) such that U; \Us = V(f1, f2, ..., fx) as a closed subset of U;. The
following lemma shows that the subcategory Dy,\u Ay, is compactly generated in
DAy, .

Lemma 3.15 Let A be an algebra over a commutative ring O and I = (f1, f2, ..., fr)
be a finitely generated ideal in O. Let K*(I) be the corresponding Koszul complex.

Denote by A-Mody the full subcategory of A-Mod consisting of all modules M such

that for every element a € M there is m such that I'""a = 0. Denote by Dy A the full
subcategory of DA consisting of all complexes such that their cohomologies belong

to A-Modj. Then Dy A is generated by the complex K (I) = A®o K*(I).

Proof Note that Homp 4 (K% (I), C*) =~ Homp o (K*(I), C*) for every C* € DA.
If C* € DyA is non-exact, then Homp g (K*(I), C*[n]) # 0 for some n by [35,
Proposition 6.6]. It proves the claim. |

Evidently, K% (I) is compactin DA. So we can now use [35, Theorem 5.15]. It implies
that DA is compactly generated and a complex C® in DA is compact if and only if
Jpy, €* is compact in DAy, for every 1 < i < m. As Uj is affine, compact complexes
in DAy, are just perfect complexes. Therefore, it is true for DA too. O

4 Minors

Definition 4.1 Let (X, B) be anon-commutative scheme, P be alocally projective and
locally finitely generated B-module, A = (Endp P)°P. The non-commutative scheme
(X, A) is called a minor of the non-commutative scheme (X, B).*

In this situation we consider P as B-A-bimodule (left over B, right over A). Let
PY = Homp (P, B). It is an A-B-bimodule, locally projective and locally finitely
generated over B. The following statements are evidently local, then they are well-
known.

Proposition 4.2 The natural homomorphism P — Homgp (PY, B) is an isomorphism.
Moreover, A >~ EndgP¥ ~ P'QxP.

4 In the affine case this notion was introduced in [14]. Actually, the main results of this section are just
global analogues of those from [14].

@ Springer



Minors and resolutions of non-commutative schemes 323

We consider the following functors:

F=P®4_: A-Mod — B-Mod,
G = Homp (P, _): B-Mod — A-Mod,
H = Homy (P, _): A-Mod — B-Mod.

Note that G is exact and G >~ PY®5 _, so both (F, G) and (G, H) are adjoint pairs of
functors. If the non-commutative scheme (X, B) is noetherian, so is also (X, A) and
these functors map coherent sheaves to coherent ones.

WesetJp = Im{up: PQ4PY — B}, where u(pQy) = y(p).

Theorem 4.3 (i) G is a bilocalization functor, thus C is a bilocalizing subcategory,
A-Mod ~ B-Mod/C, where C = Ker F = P+ and both F andH are full embeddings
A-Mod — B-Mod (usually with different images).

(i1)) € = {M € B-Mod : JpM = 0} =~ (B/Ip)-Mod.

(iii) InF = L@ coincides with the full subcategory of B-Mod consisting of all
modules M such that for every point x € X there is an exact sequence Py —
Py — My — 0, where Py, Py are multiples of P (i.e. direct sums, maybe infinite,
of its copies). We denote this subcategory by P-Mod.

(iii") ImH = C coinsides with the full subcategory of B-Mod consisting of all
modules M such that there is an exact sequence 0 — M — Jg — J|, where
J; € H(A-Inj).> We denote this subcategory by P™-Mod.

Proof Theorem 2.1 and Corollary 2.3 show that, to prove claims (i), (iii) and (iii"), it
is enough to prove the following statements.

Proposition 4.4 (i) The natural morphism ¢: 1 g-moq — GoF is an isomorphism.
(i) ImF = P-Mod.
(iii) ImH = P"M-Mod.

Proof As the claims (i) and (ii) are local, we can suppose that the non-commuta-
tive scheme (X, B) is affine, so replace B-Mod by B-Mod, where B = I'(X, B).
Then P = P~ for some finitely generated projective B-module and A = A™, where
A = (EndgP)°P. Hence we can also replace A-Mod by A-Mod and P-Mod by P-Mod,
the full subcategory of B-Mod consisting of all modules N such that there is an exact
sequence P| — Py— N — 0, where P; are multiples of P.

Obviously, ¢ (A) is an isomorphism. Since F and G preserve arbitrary coproducts,
¢ (F) is an isomorphism for any free A-module F.Let M € A-Mod. There is an exact
sequence F1 — Fy — M — 0, where Fy, F are free modules, which gives rise to a
commutative diagram with exact rows

F Fy M 0

l¢7(F1) l¢>(F0) l¢(M)

GoF(F}) — GoF(Fy) — GoF(M) — 0.

5 Note that all B-modules from H(A-Inj) are injective.
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As the first two vertical arrows are isomorphisms, so is ¢ (M), which proves claim (i).
Moreover, we get an exact sequence F(F1) — F(Fp) — F(M) — 0, where F(F;) are
multiples of F(A) = P. Therefore, F(M) € P-Mod.

Consider now the natural morphism v : FoG — 1p-pmoqg. This time ¢ (P) is an
isomorphism. Let now N be a B-module such that there is an exact sequence P; —
Py — N — 0, where P; are multiples of P. Then there is a commutative diagram
with exact rows

FoG(P;) —= FoG(Py) —=FoG(N) =0
llﬁ(Pl) llﬁ(l’o) \LW(N)
P Py N 0.

The first two vertical arrows are isomorphisms, so ¥ (/N) is also an isomorphism. It
proves claim (iii).

The proof of (iii") is quite analogous to that of (iii), so we omit it. Note that the
condition M € P'"M-Mod also turns out to be local, since it means that the natural map
M — HoG(M) is an isomorphism. [ |

Statement (ii) is also local, so we only have to prove it for a ring B, a finitely
generated projective B-module P and the ideal Ip = Im up. It follows from [10,
Proposition VII.3.1] that Ip P = P. Therefore, if f: P — M is non-zero, then
IpImf = Imf # 0, hence IpM # 0. On the contrary, if I[pM # O, there is
an element u € M, elements p; € P and homomorphisms y;: P — B such that
Y i vilpi)u #0.Let B: B — M maps 1 tou and y* = By;. Then at least one of the
homomorpisms y; is non-zero. O

The functor G is exact, so it induces a functor DG: DB — DA mapping a complex
F* to GF*. It is both left and right derived functor of G. We can also consider the left
derived functor LF of F and the right derived functor RH of H, both being functors
DA — DB. Obviously, DG maps D°B to D°A, where o € {+, —, b}, LF maps
D~A to D™B and RH maps D+ A to DT B.

Theorem 4.5 (i) The functors (LF, DG) and (DG, RH) form adjoint pairs.

(ii) DG is a bilocalization functor, Ker DG = DeB, where C = Ker G is a bilocal-
izing subcategory, DA >~ DB/DeB and both LF and RH are full embeddings
DA — DB (usually with different images).

(iii) The functor LF maps DA to DB.

(iv) (Ker DG, ImLF) as well as (Im RH, Ker DG) are semi-orthogonal decomposi-
tions of DB.

(v) ImLF = L (DeB) coincides with the full subcategory Dg of DB consisting of
complexes quasi-isomorphic to K-flat complexes F* such that for every x € X
and every component F* the localization F )’C is a direct limit of modules from
add P,. The same is true if we replace D by D~

(vp) If A and B have enough locally projective modules (for instance, if X is quasi-
projective), Im LF coincides with the full subcategory DP of DB consisting of
complexes quasi-isomorphic to K-flat complexes F* such that 3")‘; € Add P, for
every i € 7 and every point x € X. The same is true if we replace D by D~

@ Springer



Minors and resolutions of non-commutative schemes 325

(V') ImRH = (DeB) " coincides with the full subcategory DP™ of DB consisting
of complexes quasi-isomorphic to K-injective complexes consisting of modules
from H(A-Inj). The same is true if we replace D by DT.

Note that the condition in (v') can also be verified locally at every point x € X.

Proof (i) Let F° be a K-flat replica of M* € DA and J* be an injective resolution of
N* € DB. Then LFM* = FF* and DGN* = GJ*. As P € Ip B, the complex FF* is
K-flat and the complex GJ* is K-injective. By Proposition 3.12 (ii),

RHom (FF*, J°) = Hom% (F3*, J*) >~ Hom®; (F°, GJ*) = RHom 4 (5, GJ*).
Taking zero cohomologies, we obtain that
Homsg (FF°, J°) >~ Hom 4 (F°, GJ*).

Choose now a K-flat replica G* of N* and a K-injective resolution J* of M°. Then
DGN* = GS°* and RHM* = HJ". By [36, Proposition 5.14], HJ* is weakly K-injective.
By Proposition 3.12 (ii) and [36, Proposition 6.1],

RHom 4 (GS*, §°) = Hom®; (GS", °) >~ Hom%; (§°, HJ*) = RHom (§°, HJ*).

Taking zero cohomologies, we obtain that
Hom 4 (GS", J*) ~ Homg (5% HJ")

(i) follows now from Theorems 4.3 and 2.1.

(ii1) As the right adjoint DG of LF preserves arbitrary coproducts, LF maps compact
objects to compact ones.

(iv) follows from Corollary 2.6.

(v) The construction of [1, Proposition 1.1] gives for any complex M* € DA a quasi-
isomorphic K-flat complex F* such that all its components J* are flat. Moreover, J*
is left bounded if so is M*. By [6, Chapter X, Section 1, Theorem 1], . ~ h_r)n L,
where LZ are projective finitely generated A -modules, hence belong to addA. Then
LFM® >~ FJ*. As F preserves direct limits and FA ~ P, FJ} ~ lim FL! and FL! €
add P,.. Hence M* € DE}.

On the contrary, let N* € @2. We can suppose that it is K-flat and for every i € Z
and every x € X we can present N)"C as li)n N, where N’ € add P,. Then the complex
GN* is also K-flat [36, Proposition 5.4], so LFoDG(N°®) >~ FG(N*). As the natural
map FG(P) — P is an isomorphism, the same is true for all modules N, hence also

n?

for N'. Therefore, the natural map LFoDG(N) — N is an isomorphism.

(vp) is proved quite analogously to the proof of (v), taking into account that in this
situation every complex is quasi-isomorphic to a K-flat complex of locally projective
modules.

(V') is also proved analogously to (v). O
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Recall that € = Ker G =~ (B/Jp)-Mod. There is one special case when the category
Ker DG can be described analogously.

Theorem 4.6 Suppose that the ideal I is flat as a right B-module. Then Ker DG =~
D(B/Ip).

Proof LetJ = Jp, Q = B/J. One easily sees that > = J. We identify DQ with the full
triangulated subcategory of DB, obviously contained in Ker DG. Let F* € Ker DG,
i.e. its cohomologies are indeed Q-modules. We can suppose that F° is K-flat. Ten-
soring it with the exact sequence 0 — J — B — Q — 0, we obtain an exact
sequence of complexes 0 — J®pF* — F* — Q®pF* — 0. Since J is flat,
H*(I®pF*) ~IQx H*(F*). Note that TQ 3 Q ~ J/J% = 0, whence @5 M = 0 for
any Q-module. Therefore, H*(J®3 F*) = 0, hence F* is quasi-isomorphic to Q@3 F°,
which is in DQ. O

Example 4.7 An important special case of minors appears as the endomorphism con-
struction. Let A be a non-commutative scheme, F be a coherent A-module and
Ag = Endy (A F)P. Then A is identified with the algebra of matrices

AT
‘AH: = (9'/ 8>9

where 7' = Homg (F, A) and € = (EndgF)P. If Py = (éﬂ,) considered as Ag-
module, then A >~ (Endy,P5)°, so A is a minor of Az and the categories .A-Mod
and DA are bilocalizations, respectively, of Ag-Mod and DA 4. The corresponding

functors are

Fr=Psr®a—,
Gf}' == }[omﬂg(g)g'v — )7
Hy = Homa, (Py, ).

Note that P =~ (A ¥) as right Ag-module and, by the construction, we have Pg =~
Hom g (P, A). Theorem 4.3 (ii) then implies that the kernel € of Gg: Ag-Mod —
A-Mod is equivalent to £/J5-Mod, where J5 is the image of the natural map
F'®4F — &. This construction will be crucial in Sect. 8.

5 Heredity chains

We consider an application of minors to global dimensions and semi-orthogonal
decompositions. Let (X, B) be a non-commutative scheme, M be a B-module. We
call sup{i : f;(tiB (M, _) # 0} the local projective dimension of the B-module
M and denote it by Ip.dimgM. If (X, B) is noetherian and M is coherent, then
Ip.dimgM = sup {pr.dimg M, : x € X}.

Lemma 5.1 Let (X, B) be a non-commutative scheme, P be a locally projective and
locally finitely generated B-module, A = (EndpP)P and B = B/Ip. Suppose that
P is flat as right A-module,
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lpdlmgﬁfy = d,
gl.dimA = n,
gl.dim B = m.

Then gl.dim B < max {m+d+2, n}.

Proof Let B = B/Jp. Then lp.dimgﬁ = d + 1, and from the spectral sequence
Ext%(.’!\/[, Exth (B, _)) :>Ext%+q(3v£, _) it follows that pr.dimgM < m +d + 1

for every B-module M. Consider the functors G = Homy (P, _) and F = PR _.
Since the morphism GFG — G, arising from the adjunction, is an isomorphism, the
kernel and the cokernel of the natural map «: FGM — M are annihilated by G, so are
actually B-modules. It implies that Ext’, (M, N) 2 Ext, (FGM, N) if i > m+d +2,
so pr.dimg M < max {m +d +2, pr.dimg FGM}. As both functors F and G are exact,
Extly (F_, _) >~ Ext’; (_, G_), so pr.dimz FGM < n. O

Definition 5.2 e Let (X, B) and (X, A) be two non-commutative schemes. A relat-
ing chain between B and A is a sequence (B, Py, Bo, P2, ..., Py, Byy1), where
By = B, Byy1 = A, every P;, 1 < i < r,is a locally projective and
locally finitely generated B;-module which is also flat as right A;-module, where
A = (‘megi'}’i)()p, and B;11 = ‘Bi/j(p,. forl <i<r.

o The relating chain is said to be flat if, for every 1 < i < r, Jp, is flat as right
B;-module. Note that it is the case if the natural map P;®4,P; — B; is a
monomorphism.

e The relating chain is said to be pre-heredity if, for every 1 < i < r, Jp, is locally
projective as left B;-module. If it is both pre-heredity and flat, it is said to be
heredity.

e Iftherelating chain is heredity and all non-commutative schemes A; are hereditary,
i.e. gl.dim A; < 1, we say that the non-commutative scheme B is quasi-hereditary
of level r. (Thus quasi-hereditary of level 0 means hereditary.)

We fix a relating chain (B, P, Bo, P2, ..., P, B,41) between B and A and keep
the notations of Definition 5.2.

Corollary 5.3 Let gl.dim A; < n and lp.dimgi(]fpl. <dforall <i <r. Then
gl.dim B < r(d+2)+max {gl.dim A, n —d —2}. If this relating chain is pre-heredity,
then gl.dim B < gl.dim A + 2r.

Using Theorems 4.5 (iv), 4.6 and induction, we also get the following result.

Corollary 5.4 Ifthis relating chain is flat, there are semi-orthogonal decompositions
T Trs oo, T and (T4, Ty, ..., T, T) of DB such that T; ~ T ~ DA;, 1 <i <r,
and T ~ DA.

Note that, as a rule, T; # T/.

Corollary 5.5 If a non-commutative scheme B is quasi-hereditary of level r, then
gl.dimB < 2r + 1 and there are semi-orthogonal decompositions (T,7T,, ..., T1)
and (T}, 7%, ..., 7., T) of DB such that T; ~ T/, 1 < i < r, as well as T, is
equivalent to the derived category of a hereditary non-commutative scheme.
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Remark 5.6 Suppose that (X, B) is affine: X = Spec R and B = B".

If B is semiprimary, then B is quasi-hereditary with respect to our definition if and
only if B is quasi-hereditary in the classical sense of [11,13].

If R is a discrete valuation ring and B is an R-order in a separable algebra, then B
is quasi-hereditary with respect to our definition if and only if B is quasi-hereditary
in the sense of [24].

Example 5.7 Consider the endomorphism construction of Example 4.7. Suppose that
J is flat as right €-module, F” is locally projective as left E-module and the natural
map 15 F®¢ F — A is amonomorphism. Let P = () and A = A/Im 115 Then
one can easily verify that (Ag, P, A) is a heredity relating chain. Therefore, if both
& and A are quasi-hereditary, so is Ag. These conditions hold, for instance, if A is
noetherian and reduced, F is coherent torsion free and € is hereditary (the situation
which will be explored in Sect. 8).

6 Strongly Gorenstein schemes

In this section we only consider noetherian non-commutative schemes.

Definition 6.1 Let (X, .A) be anoetherian non-commutative scheme. We call it strong-
ly Gorenstein if X is equidimensional, A is Cohen—Macaulay as Ox-module and
inj.dim 4A = dim X.6

Recall that an A-module M is injective if and only if A,-modules M, are injective
for all x € X (the proof from [22, Proposition 7.17] remains valid in non-
commutative situation too). We need some basic facts about injective dimension for
non-commutative rings. Now R denotes a noetherian commutative local ring with
the maximal ideal and the residue field k = R/m, A denotes an R-algebra finitely
generated as R-module. Let also t = rad A and A = A/t. As usually, for every ideal
I € R we denote by V (1) the set of prime ideals containing /.

Theorem 6.2 inj.dim M = sup {i : BExt,, (A, M) # 0}.

Just as in [7, Proposition 3.1.14], this theorem is an immediate consequence of the
following lemma.

Lemma 6.3 Let p # m be a prime ideal of R, M be a noetherian R-module. Suppose
that Extf4 (N, M) = 0 for any noetherian A-module N such that V(anngN) C V (p)
and i > m. Then also Extf4 (N, M) = 0 for any noetherian A-module N such that
V(anngN) = V(p) andi > m.

Proof Suppose that the condition is satisfied and let V (anng N) = V (p). If qe€AssN
and q # p, thereis asubmodule N’ € N suchthatqN’ = 0. Therefore, Ext), (N, M) =

0 for i > m and we only have to prove that Extf4 (N/N', M) =0 fori > m. Thus we

6 We do not know whether the last condition implies the Cohen—Macaulay property, as it is in the commu-
tative case.
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can suppose that Ass N = {p}. Leta € m\ p. Then a is non-zero-divisor on N, i.e. we
have the exact sequence 0 — N L5 No>N /aN — 0. It gives and exact sequence

Exty (N, M) % Extiy (N, M) — Ext;""(N/aN, M).
Obviously,anng N/aN D p,sothelasttermis Qifi > m. Therefore, aExth‘ (N, M) =
Extz’;(N, M) and Exti‘(N, M) = 0 by Nakayama’s Lemma. O
Corollary 6.4 Let M be a coherent A-module. Then

inj.dim 4 M = sup {i : Exth(ﬂ(x), M) # 0 for some x € Xcl}
= sup {inj.dimAxMx cx € X}

Here A(x) denotes A®¢ , k(x).

Corollary 6.5

gl.dim A = sup {pr.dim 4 A(x) : x € X1}
= sup {i : Bxty (A(x), A(x)) # 0 for some x € X }
=sup{gl.dimA, : x € X}

Lemma 6.6 Let M be anoetherian A-module. If an element a € R is non-zero-divisor
both on A and on M, then inj.dimyM = inj.dimy ,, 4 M/aM.

The proof just repeats that of [7, Corollary 3.1.15].

Corollary 6.7 Leta = (aj, an, ..., ay) be an A-sequence in m. Then A is strongly
Gorenstein if and only if so is A/aA.

Corollary 6.8 A is strongly Gorenstein if and only if so is A°P.

Proof The claimis local, so we can replace A by A. Corollary 6.7 reduces the proof to
the case when Kr.dim R = 0, i.e. A isjustan artinian algebra. Then itis well-known [4,
Proposition IV.3.1]. O

For a noetherian non-commutative scheme (X, A) we denote by CM A the full subcat-
egory of A-mod consisting of such modules M that M, is a maximal Cohen—Macaulay
module over Oy x for every point x € X. The following results can be proved just as
in the commutative case (see [7, Section 3.3]).

Theorem 6.9 Let (X, A) be a strongly Gorenstein non-commutative scheme and M €
CM A.

o Zxty M, A) =0
o The natural map M — Homy (Homa (M, A), A) is an isomorphism.

Thus the functor *: M +— M* = Homuy (M, A) gives an exact duality between the
categories CM A and CM A °P.
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Let now (X, A) be a strongly Gorenstein non-commutative scheme, ¥ € CM A.
Consider the endomorphism construction described in Example 4.7. Theorem 6.9
implies that the natural map ¢ (M) : FM — HgM is an isomorphism for M = A,
hence an isomorphism for any M < Ip A.

Theorem 6.10 Lez (X, A) be strongly Gorenstein and contain enough locally projec-
tive modules, ¥ € CM A. Then the restrictions of the functors LFg and RHg onto the
subcategory DA are isomorphic. Thus the restriction of LFg onto DA is both left
and right adjoint to the bilocalization functor DGg.

Proof As A has enough locally projective modules, any complex from DA is quasi-
isomorphic to a finite complex €* such that all €' are from Ip A. Then LF5C* = F5C".
On the other hand, by Theorem 6.9, R‘H5C' = Zxh (Py, €) = 0 for k # 0.
Therefore, RH#C* = H5C* >~ F4C". O

7 Non-commutative curves
7.1 Generalities

Definition 7.1 A non-commutative curve is a reduced non-commutative scheme
(X, A) such that X is an excellent curve (equidimensional reduced noetherian scheme
of dimension 1) and A is coherent and torsion free as O x-module.

As X is excellent, then ﬁx, the m,-adic completion of A,, is also reduced (has no
nilpotent ideals). Therefore, for the local study of non-commutative curves we can
use the usual results from the books [12,33]. We denote by KX = K(X) the sheaf of
full rings of fractions of Ox and write XM instead of X®¢, M for any Ox-module
M. In particular, XA is a K-algebra. The sheaves KM are locally constant; the stalks
of K and KA are semi-simple rings. The torsion part tors M of M is defined as the
kernel of the natural map M — KXM. We say that a coherent A-module M is torsion
free if tors M = 0, and we say that M is torsion if XM = 0. Note that tors M is
torsion and M /tors M is torsion free. We denote by tors A and tf.A respectively the
full subcategories of A-mod consisting of torsion and of torsion free modules. We
always consider a torsion free module M as a submodule of KXM. In particular, we
identify M, with its natural image in M. Note that for every submodule N € KM
there is a natural embedding KN — KM and we identify N with the image of this
embedding. A non-commutative curve (X, A’) is said to be an over-ring of a non-com-
mutative curve (X, A) if A € A’ C KA. Then A’ is naturally considered as a coherent
A-module. The non-commutative curve (X, A) is said to be normal if it has no proper
over-rings. Since X is excellent and A is reduced, the set {x € X : A is not normal} is
finite. Then it follows from [15] that the set of over-rings of A satisfies the maximality
condition: there are no infinite strictly ascending chains of over-rings of A.

Cobherent torsion free A-modules, in particular, over-rings of A can be constructed
locally.
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Lemma 7.2 Let M be a torsion free coherent A-module.

e IfN is a coherent A-submodule of XM such that XN = XM, then N, = M, for
almost all x € X.

o Let S C X be a finite set and for every x € S a finitely generated A, -submodule
Ny C KMy is given such that KN, = KXM,. Then there is a unique A-submodule
N C KM such that Ny = Ny for every x € S and Ny = M, forall x ¢ S.

e If M = A and all Ny in the preceding item are rings, then N is a subalgebra of
KA, so (X, N) is also a non-commutative curve and if Ny 2 Ay for all x € S,
(X, N) is an over-ring of (X, A).

Proof We can suppose that X is affine. Then the proof just repeats that of [5, Chap-
ter VII, Section 3, Theorem 3] with slight and obvious changes. O

Lemma 7.3 Any non-commutative curve (X, A) has enough invertible modules.
Namely, the set

L4 = {A®o, L : Lisaninvertible Ox -module}

generates Qcoh A (hence, generates DA).

Proof We must show that if M’ C M is a proper submodule, there is a homomorphism
f: L — M such that Imf & M. As Hom 4 (A®@, L, M) >~ Homg, (L, M), we
can suppose that A = Ox. Moreover, as every A-module is a direct limit of its
coherent submodules, we can suppose that M is coherent. Let first M 2 tors M.
Choose x € X such that tors M, € M/, and let u, € tors M, \ M. There is a global
section u € I'(X, tors M) € I'(X, M) such that u, is its image in M. Then there is
a homomorphism f: Oy — M such that f1 = u, soImf & M.

Let now M’ D tors M. Since Ext}DX(L, torsM) = O for any locally projective
module £, the map Homg, (£, M) — Homg, (L, M/tors M) is surjective. Hence,
we can suppose that M is torsion free. Let M, # J\/[/y for some y € X and u, €
My\M’y. There is a homomorphism ¢: X — XM such that 1 = u,. Let N =
©(Ox).Theset S = {x € X : Ny € M, }is finite; moreover, y ¢ S.Foreveryx € S
there is an ideal L, € Oy x such that Ly >~ Ox x and ¢(L,) € M,. By Lemma 7.2,
there is an ideal L € Ox such that L, = L, forx € S and £, = Oy , otherwise. It
is an invertible ideal, (L) € M and (L) £ M. O

We will use the duality for left and right coherent torsion free .A-modules established
in the following theorem.

Theorem 7.4 e There is a canonical A-module, i.e. such a module w4 € tf A that
injdim waqa = 1 and Endgwy =~ AP (so wa can be considered as an A-
bimodule). Moreover, w 4 is isomorphic as a bimodule to an ideal of A.

We denote by M*, where M € A-Mod (or M € A°P-Mod) the A°P-module (respec-
tively, A-module) Homa (M, w 4) (respectively, Hom o0 (M, w.a)).

o The natural map M — M** is an isomorphism for every M € tt A (or M € tf A°P)
and the functors M +— M* establish an exact duality of the categories tf A and
tf A°P. Moreover, if M € A-mod, then M** >~ M /tors M.
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Proof Each local ring O, = Oy  is excellent, so its integral closure in X is finitely
generated and its completion Oy is reduced. Therefore O, has a canonical module
wy, which can be considered as an ideal in O, [23, Corollary 2.12]. Moreover, O,
is normal for almost all x € X and in this case we can take wy = Ox .. By
Lemma 7.2, there is an ideal wx C Ox such that wy , = w, for each x € X. Then
inj.dimoxa)x = sup{inj.dimo“wx} = 1. As the natural map Ox , — Endp,  wx
is an isomorphism for each x € X, the natural map Ox — Zndy, wx is an iso-
morphism too. Therefore, wy is a canonical Ox-module. Then it is known that the
functor M = M* = Homp, (M, wx) is an exact self-duality of tf Ox and the nat-

ural map M — M™* is an isomorphism. Set now wy = Homo, (A, wx). Then
Homa (M, wq) = Homg, (M, wx) for any A-module M, whence all statements of
the theorem follow. O

As usually, we say that two non-commutative schemes (X, A) and (Y, B) are Morita
equivalent if their categories of quasi-coherent modules are equivalent. A coherent
locally projective A-module P is said to be a local progenerator if Py is a progenerator
for A, forallx € X,thatis P, is projective over A, and thereis asurjectionrPyx — A,
for some r. It follows from Theorem 4.3 that then (X, A) is Morita equivalentto (X, &),
where & = (Endy P)°P.

Theorem 7.5 (i) Let (X, A) and (X, B) are two non-commutative curves such that
Ay is Morita equivalent to B, for every x € X. Then (X, A) and (X, B) are
Morita equivalent.

(ii) Let now (X, A) and (Y, B) be two central non-commutative curves finite over
a field. If they are Morita equivalent, there is an isomorpism ©: X —> Y such
that, for every points x € X and y = t(x), the rings (t*B), and A, are Morita
equivalent.

Proof (i) If A, and B, are Morita equivalent, there is a progenerator P, for A,
such that B, ~ (End 4 Py)°P. There is a KXA-module V such that V ~ K P, for all
x € X.1. Choose a normal over-ring A’ of A and a coherent A’-submodule M C V
such that XM = V. Then M is a local progenerator for A’. Set B’ = (EndsM)°P and
S={x € Xa: Ay # A, or By # B’.}. Theset S is finite, so there is an A-submodule
P C Vsuch that P, = P, forx € S and P, = M, for x ¢ S. Then P is a local
progenerator for A and B =~ (Endy P)°P.

(ii) follows from [3, Section 6]. O

7.2 Hereditary non-commutative curves

We call anoetherian non-commutative scheme (X, A) hereditary if all localizations A
are hereditary rings, i.e. gl.dim A, = 1. Then gl.dim A = 1 too, so for all A-modules
M, N, Extil (M, N) = 0. Suppose that (X, A) is a hereditary non-commutative curve.
Then any torsion free coherent A-module M is locally projective, so E;Ctjl1 M, N)=0
for any A-module N. If N is coherent and torsion, it implies that Ext iq M, N) =0.
Therefore, every coherent A-modules M splits as M = tors M@®M’, where M’ is
torsion free, hence locally projective. If a central non-commutative curve (X, ) is
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hereditary, then X is smooth. There is an effective description of hereditary non-com-
mutative curves up to Morita equivalence.

First consider the case when X = Spec O, where O is a complete discrete valuation
ring with the field of fractions K, the maximal ideal m and the residue field k = O /m.
Let H be a hereditary reduced O-algebra which is torsion free as O-module. Then
K H >~ Mat(n, D), where D is a finite dimensional division algebra over K. There is
a unique maximal Q-order A C D [33, Theorem 12.8]. It contains a unique maximal
ideal 21, which is both left and right principal ideal. Let n = Zle n; for some
positive integers n;, n = (ny, na, ..., n;) and H(n, D) be the subring of Mat(n, A)
consisting of k x k block matrices (A;;) such that A;; is of size n; x nj andif j > i all
coefficients of A;; are from 9. Let also L = A" considered as H (n, D)-module and
L; be the submodule in L consisting of such vectors (a1, a2, ..., a,) thata; € I

for j < Z;: | ng. In particular, Lo = L and Ly = 9" ~ L. If necessary, we denote

L, =L;(H).
Theorem 7.6 ([33, Theorem 39.14]) Let O be a complete discrete valuation ring.

e Every connected hereditary O-order is isomorphic to H(n, D) for some tuple
n = (ny,na, ..., ng), which is uniquely determined up to a cyclic permutation.

e Hereditary orders H(m, D) and H (0, D) are Morita equivalent if and only if
D >~ D’ and n and 0 are of the same length.

e L;, 0 < i <k, are all indecomposable projective H (n, D)-modules and U; =
L;/Liy1 are all simple H(m, D)-modules (up to isomorphism).

Letnow (X, () be a connected central hereditary non-commutative curve. Then KX is
a central simple K-algebra: XH = Mat(n, D), where D is a central division algebra.
For every closed point x € X the completion D, is isomorphic to Mat(m,, D,)
for some central division algebra Dy over K, and some integer m, = my (D).
Therefore, for every closed point x € X, H, is isomorphic to H(n, D,) for some
n = (ny,n,...,n;), where ZLI n; = myn. Thus Theorems 7.5 and 7.6 give the
following result.

Theorem 7.7 A central hereditary non-commutative curve (X, H) is determined up
to Morita equivalence by a central division K-algebra D and a function k : X — N
such that k (x) = 1 for almost all x € X.

Actually, «(x) is the number of non-isomorphic simple J{-modules U such that
supp U = {x}.

Remark 7.8 Representatives of a class given by D and « can be obtained as follows.
Choose an integer n such t’k\lat/c(x) < nmy (D) forallx € X. Thereisan O,-order H
in Mat(n, D) such that Hy = H(ny, D,) for some ny = (n1x,n2.x, ..., Ne(x),x)-
Fix a normal non-commutative curve (X, A) such that XA = D. Then we can define
H = H(n, D) as the non-commutative curve such that XH = Mat(n, D), H, =
Mat(n, Ay) if k(x) = land H, = H, ifk(x) > 1.

Let S = {x € X : k(x) > 1}, L = A" considered as H-module. Consider the
submodules L ;, 0 < i < «(x), such that (Z;-)x = Li(ﬁx) and (Ly )y = L,
if y # x. Letalso Uy; = L4;/Lxi+1,0 < i < «k(x). Then U, ; are all simple
JH-modules (up to isomorphism). Note that £, o = L for every point x.
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Theorem 7.9 Let H = H(n, D).

(1) The set
Loy ={L}U{Ly;i:xeS, 1 <k<kx)}

classically generates D°H, hence generates DH (see [28, Theorem 2.2]).
(i) DH =~ DA, where A denotes the DG-category with the set of objects L g and
AL, L) = RHom 4 (L', L).

Proof (i) Obviously, (Lg¢ ) contains all simple H-modules. Therefore, it contains
all torsion coherent H-modules, as well as all coherent H-submodules of KL. If
M is a coherent torsion free H{-module, it contains a submodule N isomorphic to a
submodule of ICL such that M /N is also torsion free. It implies that { Ly )5 contains
all coherent H-modules, hence coincides with D¢H.

(ii) follows now from [28, Proposition 2.6]. m|

Corollary 7.10 Let k be an algebraically closed field.

o A connected hereditary algebraic non-commutative curve over Kk is defined up to
Morita equivalence by a pair (X, k), where X is a smooth connected algebraic
curve over k and k : X¢1 — N is a function such that k (x) = 1 for almost all x.
Representatives of the Morita class given by such a pair are H(n, X) as described
in Remark 7.8.

e Two connected hereditary non-commutative curves given by the pairs (X, k) and
(X', k") are Morita equivalent if and only if there is an isomorphism 7: X — X’
such that ' (t (x)) = k(x) for all x € X

In this case we write H(n, X) instead of H(n, X).

Proof The Brauer group of X is trivial [27, Theorem 17]. Therefore, the algebra D in
Theorem 7.7 coincides with XK. O

We say that a central non-commutative curve (X, A) is rational (over a field k) if all
simple components of the algebra KA are of the form Mat(n, X). Then the curve X
is also rational over k.

Theorem 7.11 Let (X, H) be a connected rational hereditary non-commutative curve
over a field k and k: X — N be the corresponding function. Let S = {x € X :
k(x) > 1}, 0 € X1 be an arbitrary point.

(1) The set
Ly ={L,L(=0)}U{Ly;i:xeS, 1 <i<k(x))
classically generates D°H, hence generates DIH.
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(i) If L' L" € Ly, then Ext (L', L") = 0 for all k > 0, while

1 if L= L7,

orL' =L(—o0), L' =L,

or L' =L,;, L'=L,

or L' = Lx,j, L = Lx,,‘, ] > i,
2 ifL/=L(-0), L'=L,
0  in all other cases.

dim Homg¢ (L, L") =

In particular, L is a tilting set for the category DH.

(iii) If 0y are generators of the spaces Homg¢(Lyx i, Ly i—1), 1 < i < k(x), then
the products 0y = 6y 16x2 ... Ox «(x) are non-zero and any two of them generate
Homg¢(L(—0), L).

Proof (1) If X ~ P! then all sheaves ©(—x), hence all sheaves L (— x) are isomorphic.
Moreover, in this case Ly (x) = L(—x) forany x € X1, so we canapply Theorem7.9.
(i1) From the definition of £ and L ; it immediately follows that

O if L= L7

orL'=Ly;, L'=L,

or L' = Lx’j, L= Lx,,‘, ] > i,
O(o — x) ifL'=L(—o0), L' =Ly,
0(0) L = L(—0), L' =L,

O(—o) in all other cases.

Homge (L, L) ~

Since ExtéC(L’, L") = H' (Homgc (L', L)), it implies the statement.

(iii) One easily sees that, if x = (1:&) as the point of P!, then 6y, up to a scalar, is the
multiplication by r — &, where ¢ is the affine coordinate on the affine chart A(I). Now
the statement is obvious. O

Recall that a canonical algebra [34, 3.7] is given by a sequence of integers
(k1,ka, ..., k), wherer > 2andall k; > 2if r > 2, and a sequence (A3, A4, ..., Ar)
of different non-zero elements from k (if » = 2, this sequence is empty). Namely, this
algebra, which we denote by R(ky, k2, ..., kr; A3, ..., Ar), 1S given by the quiver

(%31 Ok —1,1
all . e ... e . Uy 1

T~

c e ® L] (]
ap a py—12 " k2

e ... L]
[6%]3 Ay —1,r
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with relations oj = oy + 4 jop for3 < j <r,where o; = a;j ... apjay ;. Certainly,
if r = 2, it is the path algebra of a quiver of type Ay, 4«,. In particular, if r =2, k1 =
ko = 1, it is the Kronecker algebra.

Corollary 7.12 Let (X, H) be a rational projective hereditary non-commutative
curve, k: X¢qg — N be the corresponding function. Let T = @?eiﬂrf and
A = (EndgNPIfS = {x1,x2, ..., x:} withr > 2, we set ki = k(x;). If S = {x},
wesetr =2, kp =1landky =«x(x). If S =3, wesetr =2, k; =k, = 1.

e Jisatilting H-module, i.e. Extéf(‘T, T) = 0fori # 0and T isalocal progenerator
Jor H.

e A~ R(ki,ky,...,kr; A3, ..., A) for some A3, ..., A

e The functor Homg¢ (T, _) induces an equivalence DH ~ DA.

Actually, the preceding considerations also show that a rational projective hereditary
non-commutative curve is Morita equivalent to a weighted projective line [18]. It can
also be deduced from the description of hereditary non-commutative curves and the
remark on page 271 of [18].

8 Konig resolution and tilting
8.1 Konig resolution

For a non-commutative curve (X, A) we denote by J = J(A) its ideal defined by the
localizations as follows:

g — A if A is hereditary,
T ) rad A otherwise.

We also denote by A* the non-commutative curve EndyopJ (the endomorphism algebra
of J as of right A-module). It can and will be identified with an over-ring of A. The
following result is proved in [33, Theorem 39.14].

Proposition 8.1 A = A" ifand only if A is hereditary.

Thus we can construct a chain of over-rings
A=A1CcACA3C--- C At =X,

where A1 = Af, 1 < i < n, and I is hereditary. We call n the level of A. The

non-commutative curve A = (Endy.Ag)°P, where Ag = @ llAi is called the Konig

resolution of the non-commutative curve A. It is identified with the algebra of matrices

Ann o A Az oo Al
~ A Axn Az ..o Azt
A=\ A1 Axn  Azz ... Az

A1 Ans12 Ang13 - Ang g
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where A;; = ﬂ{omA(A,,A ). Note that A;; = A; if i < j, whlle AlH, ) H(A)
Lete;, | <i < n+ 1, be the diagonal idempotents of A, P = Ae1 and P = Aen+1
Then (End ; fP)OP ~ A and (End; iP)OP ~ H, so both A and H are minors of A

and the categories A-Mod and 3{-Mod (DA and DH) are bilocalizations of A-Mod
(respectlvely, of 'D.A) with respect to bilocalization functors G = Homz (P, _) and
G = Homy ¥i (iP ).

We also denote g = Z;‘i,iﬂ e, I = Agi A, Qi =:4/Jk and P, = Qger. The
next result justifies the term “resolution” in the name of A.

Theorem 8.2 C = (ﬁ, iT’, Qn, Pus Q1 Pu—t, ..., Qo, P2, Q1) is a heredity relating
chain between A and Qi = A/Az1. Moreover, (Endo, P;)°P = A;/Ait1,; is semi-
simple, so A is a quasi-hereditary non-commutative curve of level n and gl.dim A <
2n.

Proof One easily verifies that J; is the ideal of the matrices

Air Az oo Aicr o An Aivri - A
A A oo Aot A Aipri oo Ain
Ji=1 An A ... Aiicr Ain Aigi .o Aips

Aivrn Aivr2 oo Ao Aigri At - Airinr

Apstn Angr2 o Angryiot Angti Angti oo Al

Therefore, Q; is identified with the algebra of i xi matrices (ay;), where ay €
Ari/Ait11. Thus a;; € A;/Aiy1,; and the latter algebra is semi-simple. Hence
Endg, P; = e;Q;e; = A;/A; 41 is semi-simple. On the other hand, Jp, = Q;¢;Q; =
Jit1/9i, whence Q;—1 = Q;/Jp,, so C is a relating chain. Moreover, J; is projective
as a right A-module, hence J; /J; 1, is projective as a right Q;-module, so this relating
chain is heredity. As H = (Endz P)°P is hereditary, A is quasi-hereditary, and as all
Endg, P; are semi-simple, gl.dimﬁ < 2n by Corollary 5.3. O

It means that the functor DG: DA — DA defines a categorical resolution of DA in
the sense of [28]. If A is strongly Gorenstein, Theorem 6.10 shows that this resolution
is weakly crepant, i.e. its left and right adjoints coincide on perfect complexes (small
objects in DA).

We denote by A; the semi-simple algebra A; /A; 1, >~ Endg, P;.

Corollary 8.3 The derived category DA has two semi-orthogonal decompositions:
DA =(T1,72,.... T, T)and DR = (T, T,, ..., 75, T} ), where T =~ T ~ DH
and T; ~ TJ! ~ DA, .

Note that usually T # T as well as T; # T/ fori > 1, though T = T = D(ﬁ/ﬂz)
naturally embedded into DA.
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Let F and F be, respecrively, the left adjoints of G and G; Hand H be, respectively, the
right adjoints of G and G. Then we have the diagram of bilocalizations

F F
—_— T~ <
H-Mod <——3 A-Mod G—— A-Mod. (D
—_—
fi H

As H is an over-ring of A, there is a morphism v: (X, H) — (X, .A). In the case
of commutative curves, it is just the normalization of X. This morphism induces the
direct image functor v, : H{-Mod — A-Mod and its left and right adjoints, respectively,
v* (the inverse image functor) and v'. We show that they coincide (in some cases up
to twist) with the compositions of the functors from diagram (1).

Theorem 84 (i) vy GF and v' ~ GH.
(ii) GF ~ C®gcv* and GH =~ v,(€' ®q¢ ), where € = Homy (H, A) is the conduc-
tor of H in A and C' = Homg(C, H) is its dual H-module.

Proof We prove equalities (i), equalities (ii) are proved analogously. As e P =Has
an A-H-bimodule,

GF(M) = Hom 7(P, PR3M) ~ €1 PQg¢M = M
considered as an A-module, and it is just v, M. On the other hand,

GH(N) = ﬂ{om;l(i Hompa (P, N)) =~ e,11 Homa (PY, N)
>~ Hompa (P ent1, N) > Homy (H, N) = VN,

8.2 Rational case: Tilting

Now we suppose that the non-commutative curve (X, A) is rational over an alge-

braically closed field k. We keep the notations of the preceding subsection. According

to Corollary 7.12, the hereditary algebra J{ has a tilting module T such that

(End4¢T)°P = A is a Ringel canonical algebra. Set 7/ = F(7),Q = Q,.

Theorem 8.5 (i) T = Q[-11@7’ is a tilting complex for A,_ie. T € DA,
Hom., 7 (T, T[m]) = 0 form # 0 and T generates DA. ~Therefore,~ the
functor RHom., 7 (T, ) establishes an equivalence DA >~ DA, where A =
(Endg, 7).

(1) The algebra A is quasi-hereditary.

(i) gl.dimA <2n+ 1.

Proof (1) As Pisa projective right JH-module, LF is an exact full embedding. It
also maps perfect complexes to perfect complexes by Theorem 4.5 (iii). Therefore,
T’ e DA, Hom, 7 (7%, T'[m]) = 0 form 3 0 and T generates Im LF. On the other

hand, Q generates Ker G ~ Q-Mod. Since (Ker DG ,Im LF ) is a semi-orthogonal
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decomposition of DZ, T generates DA and Hom, 7 (7%, Q[m]) = 0 for all m. As
dim suppQ = 0, Extk (Q,M) = H(X, E;(tk (Q, M)) for every quasi-coherent A-

module M. A locally prQ]eCthC resolution of Q isO0—Jp — A — Q — 0, hence
Q € DA and Extk (Q,M) = 0 for k > 1. Moreover, if M is a Q-module, that

is J3 M = 0, then }["mA(ijvM) = 0, since J5 533. Hence ExtA(Q, M) = 0.

Evidently, Hom 7 (Q, T’y = 0, whence Hom., ﬁ(i %[m]) = 0 for m # 0, which
accomplishes the proof.

(ii) The algebra A can be considered as the algebra of triangular matrices

~ QE

=(63)
where Q0 = H%(X,Q), A = EndyT and E = Extiq(Q, T"). We have already seen
that there is a heredity relating chain of length n — 1 between Q and Q. On the
other hand, the algebra A is triangular, i.e. contains a set of orthogonal idempotents
fi, f2, ..., fy suchthat f; Af; is semi-simple (in our case equals k), while f; Af; =0
if j > i. One easily sees that if an algebra A can be presented as a matrix algebra of

the form
_ (A1 B
A= (0 2)

where A, is semi-simple and A; is quasi-hereditary, then A is also quasi-hereditary.
Therefore, A is quasi-hereditary.

(iii)) One easily sees that gl.dimA < 2. On the other hand, gl.dimQ < 2n — 2
by Corollary 5.3. Then the inequality gl.dim A < 2n + 1 follows from [32, p.407,
Corollary 4]. a

Thus, every rational non-commutative curve over an algebraically closed field has a
categorical resolution by a finite dimensional quasi-hereditary algebra.

Recall that, for a triangulated category 7, its Rouquier dimension dim 7 is defined
as the smallest d such that (7' )44 = T for some object T’ [35]. Here ( T' )| consists of
direct summands of direct sums of shifts of 7" and ( 7" )+ consists of direct summands
of the objects A such that there is an exact triangle B —- A — C — B[1], where
Be(T)and C € (T);.

Corollary 8.6 dim DA < 2n + 1, where dim means the dimension of Rouquier of
a triangulated category [35]. Namely, (G )on+2 = DA, where § = T®&P!_|Ai/
Apt1il—11.

Proof Indeed ( A)onyo = DEA by [35, Proposition 7.4]. As the equivalence DA ~
DA maps A tQT (T)onsr = DCA. Then (DGT )2p4+2 = DEA. Note that GM =
e1M for any A-module M. Therefore, GT’ = T and GQ = @}, Ai/Ant1,i. It

accomplishes the proof. O

If the curve A is commutative, the hereditary curve J is regular and the algebra
A is hereditary (just a product of Kronecker algebras). In this case the estimate in
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Corollary 8.6 is 2n instead of 2n + 1. It generalizes the result of [8], where the curves
of level 1 were considered.

Acknowledgements The results of this paper were mainly obtained during the stay of the second author
at the Max-Plank-Institut fiir Mathematik. Its final version was prepared during the visit of the second and
the third author to the Institute of Mathematics of the Koln University.

References

1. Alonso Tarrio, L., Jeremi Lopez, A., Lipman, J.: Local homology and cohomology on schemes. Ann.
Sci. Ec. Norm. Supér. 30(1), 1-39 (1997)

2. Alonso Tarrio, L., Jeremias Lopez, A., Souto Salorio, M.J.: Localization in categories of complexes
and unbounded resolutions. Canad. J. Math. 52(2), 225-247 (2000)

3. Artin, M., Zhang, J.J.: Noncommutative projective schemes. Adv. Math. 109(2), 228-287 (1994)

4. Auslander, M., Reiten, I., Smalg, S.O.: Representation Theory of Artin Algebras. Cambridge Studies
in Advanced Mathematics, vol. 36. Cambridge University Press, Cambridge (1997)

5. Bourbaki, N.: Eléments de Mathématique. Algébre Commutative, Chapitres 5 2 7. Masson, Paris (1964,
1965)

6. Bourbaki, N.: Eléments de Mathématique. Algebre. Chapitre 10. Algebre Homologique. Hermann,
Paris (1980)

7. Bruns, W., Herzog, J.: Cohen—-Macaulay Rings. Cambridge Studies in Advanced Mathematics, vol.
39. Cambridge University Press, Cambridge (1993)

8. Burban, I., Drozd, Yu.: Tilting on non-commutative rational projective curves. Math. Ann. 351(3),
665-709 (2011)

9. Burban, I., Drozd, Yu., Gavran, V.. Singular curves and quasi-hereditary algebras (2015).
arXiv:1503.04565

10. Cartan, H., Eilenberg, S.: Homological Algebra. Princeton University Press, Princeton (1956)

11. Cline, E., Parshall, B., Scott, L.: Finite-dimensional algebras and highest weight categories. J. Reine
Angew. Math. 391, 85-99 (1988)

12. Curtis, C.W., Reiner, I.: Methods of Representation Theory, vol. I. Pure and Applied Mathematics.
Wiley, New York (1981)

13. Dlab, V., Ringel, C.M.: Quasi-hereditary algebras. Illinois J. Math. 33(2), 280-291 (1989)

14. Drozd, Yu. A.: Minors and theorems of reduction. In: Kertész, A. (ed.) Rings, Modules and Radi-
cals. Colloquia Mathematica Societatis Janos Bolyai, vol. 6, pp. 173-176. North-Holland, Amsterdam
(1973)

15. Drozd, Yu. A.: Existence of maximal orders. Math. Notes 37(3), 177-178 (1985)

16. Drozd, Yu. A., Greuel, G.-M.: Tame and wild projective curves and classification of vector bundles. J.
Algebra 246(1), 1-54 (2001)

17. Gabriel, P.: Des catégories abéliennes. Bull. Soc. Math. France 90, 323—448 (1962)

18. Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of
finite-dimensional algebras. In: Greuel, G.-M., Trautmann, G. (eds.) Singularities, Representation of
Algebras, and Vector Bundles. Lecture Notes in Mathematics, vol. 1273, pp. 265-297. Springer, Berlin
(1987)

19. Geigle, W., Lenzing, H.: Perpendicular categories with applications to representations and sheaves. J.
Algebra 144(2), 273-343 (1991)

20. Grothendieck, A.: Eléments de Géométrie Algébrique: I. Publications Mathématiques de I'THES, vol.
4. Institut des Hautes Etudes Scientifiques, Paris (1960)

21. Grothendieck, A.: Eléments de Géométrie Algébrique: I1. Publications Mathématiques de I'THES, vol.
8. Institut des Hautes Etudes Scientifiques, Paris (1961)

22. Hartshorne, R.: Residues and Duality. Lecture Notes in Mathematics, vol. 20. Springer, Berlin (1966)

23. Herzog, J., Kunz, E. (eds.): Der Kanonische Modul eines Cohen—Macaulay-Rings. Lecture Notes in
Mathematics, vol. 238. Springer, Berlin (1971)

24. Konig, S.: Quasi-hereditary orders. Manuscripta Math. 68(4), 417-433 (1990)

25. Konig, S.: Every order is the endomorphism ring of a projective module over a quasi-hereditary order.
Comm. Algebra 19(8), 2395-2401 (1991)

@ Springer


http://arxiv.org/abs/1503.04565

Minors and resolutions of non-commutative schemes 341

26.
27.
28.
29.
30.
31.
32.
33.
34.
35.

36.
37.

Kuznetsov, A., Lunts, V.A.: Categorical resolutions of irrational singularities (2012). arXiv:1212.6170
Lang, S.: On quasi-algebraic closure. Ann. Math. 55, 373-390 (1952)

Lunts, V.A.: Categorical resolution of singularities. J. Algebra 323(10), 2977-3003 (2010)

Miyachi, J.: Localization of triangulated categories and derived categories. J. Algebra 141(2), 463—483
(1991)

Neeman, A.: The Grothendieck duality theorem via Bousfield’s techniques and Brown representability.
J. Amer. Math. Soc. 9(1), 205-236 (1996)

Neeman, A.: Triangulated Categories Annals of Mathematics Studies, vol. 148. Princeton University
Press, Princeton (2001)

Palmér, 1., Roos, J.-E.: Explicit formulae for the global homological dimensions of trivial extensions
of rings. J. Algebra 27(2), 380413 (1973)

Reiner, I.: Maximal Orders. London Mathematical Society Monographs. New Series, vol. 28. Clarendon
Press, Oxford (2003)

Ringel, C.M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, vol. 1099.
Springer, Berlin (1984)

Rouquier, R.: Dimensions of triangulated categories. J. K-Theory 1(2), 193-256 (2008)

Spaltenstein, N.: Resolutions of unbounded complexes. Compositio Math. 65(2), 121-154 (1988)
van den Bergh, M.: Non-commutative crepant resolutions. In: Laudal, O.A., Ragni, P. (eds.) The Legacy
of Niels Henrik Abel, pp. 749-770. Springer, Berlin (2004)

@ Springer


http://arxiv.org/abs/1212.6170

	Minors and resolutions of non-commutative schemes
	Abstract
	1 Introduction
	2 Bilocalizations
	3 Non-commutative schemes
	4 Minors
	5 Heredity chains
	6 Strongly Gorenstein schemes
	7 Non-commutative curves
	7.1 Generalities
	7.2 Hereditary non-commutative curves

	8 König resolution and tilting
	8.1 König resolution
	8.2 Rational case: Tilting

	Acknowledgements
	References




