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Abstract Wedevelop the theory ofminors of non-commutative schemes. This study is
motivated by applications in the theory of non-commutative resolutions of singularities
of commutative schemes. In particular, we construct a categorical resolution for non-
commutative curves and in the rational case show that it can be realized as the derived
category of a quasi-hereditary algebra.
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1 Introduction

Let B be a ring and P be a finitely generated projective left B-module. We call the
ring A = BP = (EndB P)op a minor of B. It turns out that the module categories of
B and A are closely related.
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• The functors F = P⊗A and H = HomA(P∨, ) from A-Mod to B-Mod are fully
faithful, where P∨ = HomB(P, B). In other words, A-Mod can be realized in two
different ways as a full subcategory of B-Mod, see Theorem 4.3.

• The functor G = HomB(P, ) : B-Mod → A-Mod is exact and essentially sur-
jective. Moreover, we have adjoint pairs (F,G) and (G,H). In other words, G is a
bilocalization functor. If

I = IP = Im(P⊗A P∨ → B)

and B = B/I then the category B-Mod is the kernel ofG and A-Mod is equivalent
to the Serre quotient of B-Mod modulo B-Mod, see Theorem 4.3 (ii).

• Under certain additional assumptions one can show that the global dimension of
B is finite provided the global dimensions of A and B are finite, see Lemma 5.1.

The described picture becomes even better when we pass to the (unbounded) derived
categoriesD(A-Mod),D(B-Mod) andD(B-Mod) of the rings A, B and B introduced
above. Let DG be the derived functor of G, LF be the left derived functor of F and RH
be the right derived functor of H.

• Then we have adjoint pairs (LF,DG) and (DG,RH), the functors LF and RH are
fully faithful and the category D(A-Mod) is equivalent to the Verdier localiza-
tion ofD(B-Mod) modulo its triangulated subcategoryDB(B-Mod) consisting of
complexes with cohomologies from B-Mod, see Theorem 4.5.

• Moreover, we have a semi-orthogonal decomposition

D(B-Mod) = 〈DB(B-Mod),D(A-Mod)〉,

see Corollary 2.6.

Onemotivation to dealwithminors comes from the theory of non-commutative crepant
resolutions. Let A be a commutative normal Gorenstein domain and F be a reflexive
A-module such that the ring

B = BF = EndA(A⊕ F)op =
(

A F
F∨ E

)
,

where E = (EndA F)op, is maximal Cohen–Macaulay over A and of finite global
dimension. Van den Bergh [37] suggested to view B as a non-commutative crepant
resolution of A showing that, under some additional assumptions, the existence of a
non-commutative crepant resolution implies the existence of a commutative one. If
we take the idempotent e = (

1 0
0 0

) ∈ B and pose P = Be then it is easy to see that
A = BP . Thus, dealing with non-commutative (crepant) resolutions of singularities,
we naturally come into the framework of the theory of minors.

In [16] it was observed that there is a close relation between coherent sheaves over
the nodal cubic C = V (zy2 − x3 − x2z) ⊂ P

2 and representations of the finite
dimensional algebra � given by the quiver with relations
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•
α1

α2

•
β1

β2

• β1α1 = β2α2 = 0.

An explanation of this fact was given in [8]. Let I be the ideal sheaf of the singular
point of C and A = EndC (O⊕I). Consider the ringed space (C,A) and the category
A-mod of coherent left A-modules on C . The derived category Db(A-mod) has a
tilting complex, whose (opposite) endomorphism algebra is isomorphic to � what
implies that the categories Db(A-mod) and Db(�-mod) are equivalent. On the other
hand, the triangulated category Perf(C) of perfect complexes on C is equivalent to a
full subcategory of Db(A-mod). In fact, we deal here with a sheaf-theoretic version
of the construction of minors: the commutative scheme (C,O) is a minor of the non-
commutative scheme (C,A). The goal of this article is to establish a general framework
for the theory of minors of non-commutative schemes.

In Sect. 2, we review some key results on localizations of abelian and triangulated
categories used in this article. In Sect. 3, we discuss the theory of non-commutative
schemes, elaborating in particular a proof of the result characterizing the triangulated
category Perf(A) of perfect complexes over a non-commutative scheme (X,A) as
the category of compact objects of the unbounded derived category of quasi-coherent
sheavesD(A) (Theorem 3.14). Section 4 is devoted to the definition of a minor (X,A)

of a non-commutative scheme (X,B) and the study of relations between (X,A) and
(X,B). In Sect. 5, we introduce the notion of quasi-hereditary non-commutative
schemes, which generalizes the notions of quasi-hereditary semiprimary rings [11,13]
and quasi-hereditary orders [24] and study their properties. In Sect. 6, we elaborate
the theory of strongly Gorenstein non-commutative schemes. Section 7 deals with
non-commutative curves. In particular, we study here hereditary non-commutative
curves. In the final Sect. 8, as an application of the elaborated technique, we construct
a categorical resolution for any (reduced) non-commutative curve (Theorem 8.2). We
call it the König resolution, since it is an analogue of the construction proposed by
König [25]. If this curve is rational, we construct a tilting complex, which shows that
this categorical resolution can be realized as the derived category of modules over a
finite dimensional quasi-hereditary algebra (Theorem 8.5). In particular, it gives an
estimate of the Rouquier dimension of the perfect derived category of coherent sheaves
over a non-commutative curve (Corollary 8.6). For “usual” (commutative) curves this
result is contained in [9].

2 Bilocalizations

Recall that a full subcategory C of an abelian category A is said to be thick (or Serre
subcategory) if, for any exact sequence 0 → C ′ → C → C ′′ → 0, the object C
belongs to C if and only if both C ′ and C ′′ belong to C. Then the quotient category
A/C is defined and we denote by �C the natural functor A → A/C. It is exact,
essentially surjective and Ker�C = C. For instance, if G : A → B is an exact functor
among abelian categories, its kernel KerG is a thick subcategory of A and G factors
as G ◦�KerG, where G : A/KerG → B.
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314 I. Burban et al.

Analogously, if C is a full subcategory of a triangulated category A, it is said to be
thick if it is triangulated (i.e. closed under shifts and cones) and closed under taking
direct summands. Then the quotient triangulated category A/C is defined and we
denote by �C the natural functor A → A/C. It is exact (triangulated), essentially
surjective and Ker�C = C. For instance, if G : A → B is an exact (triangulated)
functor among triangulated categories, its kernel KerG is a thick subcategory of A
and G factors as G ◦�KerG, where G : A/KerG → B.

If F : A → B is a functor, we denote by Im F its essential image, i.e. the full
subcategory of B consisting of objects B such that there is an isomorphism B � FA
for some A ∈ A. We usually use this term when F is a full embedding (i.e. is fully
faithful), so Im F � A.

We use the following well-known facts related to these notions.

Theorem 2.1 (I) Let A,B be abelian categories, G : A → B be an exact functor
which has a left adjoint (right adjoint) F : B → A such that the natural morphism
1B → G◦F (respectively, G◦F → 1B) is an isomorphism. Let C = KerG.
(a) G = G◦�C, where G is an equivalence A/C ∼−−→ B and its quasi-inverse

functor is F = �C ◦F.
(b) F is a full embedding and its essential image Im F coincides with the left

(respectively, right) orthogonal subcategory of C, i.e. the full subcategory

⊥C = {
A ∈ ObA : Hom(A, C) = Ext1(A, C) = 0 for all C ∈ ObC

}
(
respectively,

C⊥ = {
A ∈ ObA : Hom(C, A) = Ext1(C, A) = 0 for all C ∈ ObC

}
.
)

(c) C = (⊥C)⊥ (respectively, C = ⊥(C⊥) ).
(d) The embedding functor C → A has a left (respectively, right) adjoint.

(II) Let A,B be triangulated categories, G : A → B be an exact (triangulated)
functor which has a left adjoint (right adjoint) F : B → A such that the natural
morphism 1B → G◦F (respectively, G◦F → 1B) is an isomorphism. Let C =
KerG.
(a) G = G◦�C, where G is an equivalence A/C ∼−−→ B and its quasi-inverse

functor is F = �C ◦F.
(b) F is a full embedding and its essential image Im F coincides with the left

(respectively, right) orthogonal subcategory of C, i.e. the full subcategory1

⊥C = {
A ∈ ObA : Hom(A, C) = 0 for all C ∈ ObC

}
(
respectively,

C⊥ = {
A ∈ ObA : Hom(C, A) = 0 for all C ∈ ObC

}
.
)

1 Note that in the book [31] the notations for the orthogonal subcategories are opposite to ours. The latter
seems more usual, especially in the representation theory, see, for instance, [2,19]. In [17] the objects of
the right orthogonal subcategory C⊥ are called C-closed.
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Minors and resolutions of non-commutative schemes 315

(c) C = (⊥C)⊥ (respectively, C = ⊥(C⊥) ).
(d) The embedding functor C → A has a left (respectively, right) adjoint, which

induces an equivalence A/⊥C ∼−−→C (respectively, A/C⊥ ∼−−→C).

Proof Statement (Ia) is proved in [17, Chapter III, Proposition 5] if F is right adjoint
of G. The case of left adjoint is just a dualization. The proof of statement (IIa) is quite
analogous. Therefore, from now on we can suppose that B = A/C. Then statements
(Ib) and (IIb) are just [17, p. 371, Chapter III, Lemma 2 and Corollary] and [31,
Theorem 9.1.16]. Statements (Ic) and (IIc) are [19, Corollary 2.3] and [31, Corol-
lary 9.1.14]. Thus statement (IId) also follows from [31, Theorem 9.1.16]. In the
abelian case the left (respectively, right) adjoint J to the embedding C → A is given
by the rule A �→ Cok�(A) (respectively, A �→ Ker�(A)), where � is the natural
morphism F ◦G → 1A (respectively, 1A → F ◦G). ��
Remark 2.2 Note that in the abelian case the composition �⊥C ◦J (respectively,
�C⊥ ◦J) need not be an equivalence. The reason is that the subcategory ⊥C (C⊥)
need not be thick (see [19]).

A thick subcategory C of an abelian or triangulated category A is said to be local-
izing (colocalizing) if the canonical functor G : A → A/C has a right (respectively,
left) adjoint F. Neeman [31] calls F a Bousfield localization (respectively, a Bous-
field colocalization).2 In this case the natural morphism G ◦F → 1A/C (respectively,
1A/C → G ◦F) is an isomorphism [17, Chapter III, Proposition 3], [31, Lemma 9.1.7].
If C is both localizing and colocalizing, we call it bilocalizing and call the category
A/C (or any equivalent one) a bilocalization of A. We also say in this case that G is a
bilocalization functor. In other words, an exact functor G : A → B is a bilocalization
functor if it has both left adjoint F and right adjoint H and the natural morphisms
1B → GF and GH → 1B are isomorphisms.

Corollary 2.3 Let G : A → B be an exact functor between abelian or triangulated
categories which has both left adjoint F and right adjoint H. In order that G will be a
bilocalization functor it is necessary and sufficient that one of the natural morphisms
1B → G◦F or G◦H → 1B be an isomorphism.

Proof Let, for instance, the first of these morphisms be an isomorphism. Then there
is an equivalence of categories G : A/KerG ∼−−→ B such that G = G�C, where
C = KerG. So we can suppose that B = A/C and G = �C. Thus the morphism
GH → 1B is an isomorphism, since H is right adjoint to G. ��
Corollary 2.4 Let C be a localizing (colocalizing) thick subcategory of an abelian
category A, DC(A) be the full subcategory of D(A) consisting of all complexes C•

such that all cohomologies Hi (C•) are in C. Suppose that the Bousfield localization
(respectively, colocalization) functor F has right (respectively, left) derived functor.
Then DC(A) is also a localizing (colocalizing) subcategory of A and D(A/C) �
D(A)/DC(A).

2 Actually, Neeman uses this term for triangulated categories, but we will use it for abelian categories too.
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Proof We consider the case of a localizing subcategory C, denote by G the canonical
functorA → A/C and by F its right adjoint. As G is exact, it induces an exact functor
D(A) → D(A/C) acting on complexes componentwise. We denote it by DG; it is
both right and left derived of G. Obviously, Ker DG = DC(A). Since G ◦F → 1A/C

is an isomorphism, the morphism DG ◦RF → 1D(A/C) is also an isomorphism, so we
can apply Theorem 2.1 (II). ��
Remark 2.5 If C is localizing and A is a Grothendieck category, the right derived
functor RF exists [2], so D(A/C) � DC(A). We do not know general conditions
which ensure the existence of the left derived functor LF in the case of colocalizing
categories, though it exists when A is a category of quasi-coherent modules over a
quasi-compact separated non-commutative scheme and F is tensor product or inverse
image, see Proposition 3.12.

Miyatchi [29] proved that always Dσ (A/C) � Dσ
C(A), where σ ∈ {+,−, b}.

We recall that a sequence (A1,A2, . . . ,Am) of triangulated subcategories of a trian-
gulated categoryA is said to be a semi-orthogonal decomposition ofA if Hom(A, A′)
= 0 for A ∈ Ai , A′ ∈ A j and i > j , and for every object A ∈ A there is a chain of
morphisms

0 = Am
fm−→ Am−1

fm−1−−−→ · · · f3−→ A2
f2−→ A1

f1−→ A0 = A

such that Cone fi ∈ Ai [26].

Corollary 2.6 Let G : A → B be an exact functor among triangulated categories,
F : B → A be its right (left) adjoint such that the natural morphism φ : 1B → GF
(respectively, ψ : GF → 1B) is an isomorphism. Then (Im F,KerG) (respectively,
(KerG, Im F)) is a semi-orthogonal decomposition of A.

Proof We consider the case of left adjoint. If A = FB and A′ ∈ KerG, then
HomA(A, A′) � HomB(GA, B) = 0. On the other hand, consider the natural mor-
phism f : FGA → A. Then G f is an isomorhism, whence Cone f ∈ KerG. So we
can set A1 = FGA, f1 = f . ��

3 Non-commutative schemes

Definition 3.1 • A non-commutative scheme is a pair (X,A), where X is a scheme
(called the commutative background of the non-commutative scheme) and A

is a sheaf of OX -algebras, which is quasi-coherent as a sheaf of OX -modules.
Sometimes we say “non-commutative schemeA” not mentioning its commutative
background X . We denote by Xcl the set of closed points of X .

• A non-commutative scheme (X,A) is said to be affine (separated, quasi-compact)
if so is its commutative background X . It is said to be reduced ifA has no nilpotent
ideals.

• Amorphism of non-commutative schemes f : (Y,B) → (X,A) is a pair ( fX , f #),
where fX : Y → X is a morphism of schemes and f # is a morphism of f −1

X OX -
algebras f −1

X A → B. In what follows we usually write f instead of fX .
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Minors and resolutions of non-commutative schemes 317

• Given a non-commutative scheme (X,A), we denote by A-Mod (respectively,
by A-mod) the category of quasi-coherent (respectively, coherent) sheaves of A-
modules. We call objects of this category just A-modules (respectively, coherent
A-modules).

• If f : (Y,B) → (X,A) is a morphism of non-commutative schemes, we denote by
f ∗ : A-Mod → B-Mod the functor of inverse image which maps an A-moduleM
to the B-module B⊗ f −1A f −1M. If the map fX is separated and quasi-compact,
we denote by f∗ : B-Mod → A-Mod the functor of direct image. It follows from
[20, Sections 0.1, 1.9.2] that these functors are well-defined. Moreover, f ∗ maps
coherent modules to coherent ones.
In this paper we always suppose non-commutative schemes separated and quasi-

compact.

Remark 3.2 If (X,A) is affine, i.e. X = Spec R for some commutative ring R, then
A = A∼ is a sheafification of an R-algebra A. A quasi-coherent A-module is just
a sheafification M∼ of an A-module M , so A-Mod � A-Mod and we identify these
categories. If, moreover, A is noetherian, then A-mod coincides with the category
A-mod of finitely generated A-modules.

If X is separated and quasi-compact, A-Mod is a Grothendieck category. In partic-
ular, every quasi-coherent A-module has an injective envelope. We denote by A-Inj
the full subcategory of A-Mod consisting of injective modules.

The inverse image functor f ∗ for a morphism of non-commutative schemes usually
does not coincide with the inverse image functor f ∗

X with respect to the morphism of
their commutative backgrounds. We can guarantee it if B = f ∗

XA, for instance, if Y
is an open subset of X and B = A|Y .
Definition 3.3 • The center of A is the subsheaf cenA ⊆ A such that

(cenA)(U ) = {
α ∈ A(U ) : α|V ∈ cenA(V ) for all V ⊆ U

}
,

where cen A denotes the center of a ring A.
• We say that a non-commutative scheme (X,A) is central, if the natural homomor-
phism OX → A maps OX bijectively onto the center cenA of A.

Note that if (X,A) is affine, X = Spec R and A = A∼, then cenA = (cen A)∼.

Proposition 3.4 End 1A-Mod � End 1A-Inj � 
(X, cenA).

Proof Let α ∈ 
(X, cenA). Given any M ∈ A-Mod, define α(M) : M → M by the
rule: α(M)(U ) : M(U ) → M(U ) is the multiplication by α|U for every open U ⊆ X .
Obviously, it is a morphism of A-modules. Moreover, if f ∈ HomA(M,N), one
easily sees that f α(M) = α(N ) f , so α defines an element from End1A-Mod.

Conversely, let λ ∈ End 1A-Mod. Let U ⊆ X be an open subset, j : U → X be
the embedding. Then λ(U ) = λ( j∗ j∗A) is an element from EndA( j∗ j∗A) = A(U ).
Since λ is an endomorphism of the identity functor, λ(U ) is in cenA(U ). Moreover,
if V ⊆ U is another open subset, j ′ : V → X is the embedding, the restriction
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318 I. Burban et al.

homomorphism r : j∗ j∗A → j ′∗ j ′∗A gives the commutative diagram

j∗ j∗A λ(U )

r

j∗ j∗A

r

j ′∗ j ′∗A λ(V )
j ′∗ j ′∗A.

It implies that λ(V ) = λ(U )|V . In particular, λ(X) = α is an element from 
(X,

cenA) and λ(U ) coincides with the multiplication by α|U . Thus we obtain an isomor-
phism End 1A-Mod � 
(X, cenA).

There is the restrictionmap End 1A-Mod → End 1A-Inj. On the other hand, consider

an injective copresentation of an A-module M, i.e. an exact sequence 0 → M
αM−−→

IM → I′M with injective modules IM and I′M. Let λ ∈ End 1A-Inj. Then there
is a unique homomorphism λ(M) : M → M such that λ(IM)αM = αMλ(M). Let

0 → N
αN−→ IN → I′N be an injective copresentation of anotherA-moduleN and f ∈

HomA(M,N). Extending f to injective copresentations, we obtain a commutative
diagram

0 M
αM

f

IM

f0

I′M
f1

0 N
αN

IN I′N.

It implies that

αNλ(N) f = λ(IN)αN f = λ(IN) f0αM

= f0λ(IM)αM = f0αMλ(M) = αN f λ(M),

whence it follows that λ(N) f = f λ(M), so we have extended λ to a unique endo-
morphism of 1A-Mod. ��
Proposition 3.5 Let C = cenA, X ′ = SpecC be the spectrum of the (commutative)
OX -algebra C, φ : X ′ → X be the structural morphism, and A′ = φ−1A.

• A′ is an OX ′ -algebra, so (X ′,A′) is a central non-commutative scheme.
• For any F ∈ A-Mod the natural map F → φ∗φ∗F is an isomorphism.3

• For any F ′ ∈ A′-Mod the natural map φ∗φ∗F ′ → F ′ is an isomorphism.
• The functors φ∗ and φ∗ establish an equivalence of the categories A-Mod and
A′-Mod as well as of A-mod and A′-mod.

Thus, when necessary, we can suppose, without loss of generality, that our non-com-
mutative schemes are central.

3 Note that in this situation φ∗ = φ−1.
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Proof All claims are obviously local, so we can suppose that X = Spec R and X ′ =
Spec R′, where R′ is the center of the R-algebra A = 
(X,A). Then all claims are
trivial. ��
We call a non-commutative scheme (X,A) noetherian if the scheme X is noethe-
rian and A is coherent as a sheaf of OX -modules. Note that if (X,A) is noetherian,
the central non-commutative scheme (X ′,A′) constructed in Proposition 3.5 is also
noetherian. Indeed, if an affine non-commutative scheme (Spec R, A∼) is noetherian,
then A is a noetherian algebra, i.e. C = cen A is noetherian and A is a finitely
generated C-module.

Definition 3.6 Let (X,A) be noetherian.

• We denote by lpA the full subcategory of A-mod consisting of locally projective
modules P, i.e. such that Px is a projective Ax -module for every x ∈ X .

• We say that A has enough locally projective modules if for every coherent A-
module M there is an epimorphism P → M, where P ∈ lpA. Since every quasi-
coherent module is a sum of its coherent submodules, for every quasi-coherent
A-moduleM there is an epimorphismP → M, whereP is a coproduct of modules
from lpA.

An important example arises as follows. We say that a noetherian non-commutative
scheme (X,A) is quasi-projective if there is an ample OX -module L [21, Sec-
tion 4.5]. Note that in this case X is indeed a quasi-projective scheme over the ring
R = ⊕∞

n=0
(X,L⊗n).

Proposition 3.7 Every quasi-projective non-commutative scheme (X,A) has enough
locally projective modules.

Proof Let L be an ample OX -module, M be any coherent A-module. There is an
epimorphism of OX -modules nOX → M⊗OX L

⊗m for some m, hence also an epi-
morphism F = nL⊗(−m) → M. Since HomA(A⊗OX F,M) � HomOX (F,M), it
gives an epimorphism of A-modules A⊗OX F → M, where A⊗OX F ∈ lpA. ��
We define an invertible A-module as an A-module I such that EndAI � Aop and the
natural map HomA(I,A)⊗AI → (EndAI)op � A is an isomorphism. For instance,
the modules constructed in the preceding proof are direct sums of invertible modules.
On the contrary, one easily proves that, if A is noetherian and cenA = OX , any
invertible A-module I is isomorphic to A⊗OX L, where L = HomA-A(I, I) and L is
an invertible OX -module. (We will not use this fact.)

We denote by CA the category of complexes of A-modules, by HoA the category
of complexes modulo homotopy and by DA the derived category D(A-Mod). We
also use the conventional notations CσA,HoσA and DσA, where σ ∈ {+,−, b}. We
denote byDcA the full subcategory of compact objects C• fromDA, i.e. such that the
natural morphism

⊔
iHomDA(C•,F•

i ) → HomDA(C•,
⊔

iF
•
i )

is bijective for any coproduct
⊔

iF
•
i .
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320 I. Burban et al.

Recall that a complex I• is said to beK-injective [36] if for every acyclic complexC•

the complex Hom•(C•, I•) is acyclic too. We denote by K-injA the full subcategory of
HoA consistingofK-injective complexes andbyK-inj0A its full subcategory consisting
of acyclic K-injective complexes.

Proposition 3.8 Let (X,A) be a non-commutative scheme (separated and quasi-
compact).

(i) For every complex C• in CA there is a K-injective resolution, i.e. a K-injective
complex I• ∈ CA together with a quasi-isomorphism C• → I•.

(ii) DA � K-injA/K-inj0A.

Proof As the category A-Mod is a Grothendieck category, (i) follows immediately
from [2, Theorem 5.4] (see also [36, Lemma 3.7, Proposition 3.13]). Then (ii) follows
from [36, Proposition 1.5]. ��
A complex F• is said to be K-flat [36] if for every acyclic complex S• of right A-
modules the complex F•⊗AS• is acyclic. The next result is quite analogous to [1,
Proposition 1.1] and the proof just repeats that of the cited paper with no changes.

Proposition 3.9 Let (X,A) be a non-commutative scheme. Then for every complex
C• in CA there is a K-flat replica, i.e. a K-flat complex F• quasi-isomorphic to C•.

Remark 3.10 If (X,A) is noetherian and has enough locally projectivemodules, every
complex from C−A has a locally projective (hence flat) resolution. Then [36, Theo-
rem 3.4] implies that for every complex C from CA there is an Lp-resolution, i.e. a
K-flat complex F• consisting of locally projective modules together with a quasi-
isomorphism F• → C•. For instance, it is the case if (X,A) is quasi-projective
(Proposition 3.7).

A complex I• is said to be weakly K-injective if for every acyclic K-flat complex F•

the complex Hom•(F•, I•) is exact.

Proposition 3.11 ([36, Propositions 5.4, 5.15]) Let f : (X,A) → (Y,B) be a mor-
phism of non-commutative scheme.

• If F• ∈ CB is K-flat, then so is also f ∗F•. If, moreover, F• is K-flat and acyclic,
then f ∗F• is acyclic too.

• If I ∈ CA is weakly K-injective, then f∗I is weakly K-injective. If, moreover, I is
weakly K-injective and acyclic, then f∗I is acyclic too.

Proposition 3.12 ([36, Section 6]) Let (X,A) be a non-commutative scheme.

(i) The derived functors RHom•
A(F•,G•) and RHom•

A(F•,G•) exist and can be cal-
culated using a K-injective resolution of G• or a weakly K-injective resolution of
G• and a K-flat replica of F•.

(ii) The derived functor F• L⊗AG•, where G• ∈ DAop, exists and can be calculated
using a K-flat replica either of F• or of G•. Moreover, if G• is a complex of A-B-
bimodules, where B is another sheaf of OX -algebras, there are isomorphisms of
functors
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RHomB(F• L⊗AG•,M•) � RHomA(F•,RHomB(G•,M•)),

RHomB(F• L⊗AG•,M•) � RHomA(F•,RHomB(G•,M•)).

(iii) For every morphism f : (X,A) → (Y,B) the derived functors L f ∗ : DB →
DA and R f∗ : DA → DB exist. They can be calculated using, respectively,
K-flat replicas in CB and weakly K-injective resolutions in CA. Moreover, there
are isomorphisms of functors

RHom•
B(F•,R f∗G•) � RHom•

A(L f ∗F•,G•),

RHom•
B(F•,R f∗G•) � R f∗RHom•

A(L f ∗F•,G•).

(iv) If g : (Y,B) → (Z ,C) is another morphism of non-commutative schemes, then
L(g f )∗ � L f ∗◦Lg∗ and R(g f )∗ � Rg∗◦R f∗.

If the considered non-commutative schemes have enough locally projective modules
(for instance, are quasi-projective), one can replace in these statements K-flat replicas
by Lp-resolutions.

In particular, let f : A → B be a homomorphism of rings.We consider B as an algebra
over a subring S (an arbitrary one) of its center and A as an algebra over a subring R ⊆
cenA∩ f −1(S). Then we can identify f with its sheafification f ∼ : (Spec S, B∼) →
(Spec R, A∼). In this context the functors ( f ∼)∗ and ( f ∼)∗ are just sheafifications,
respectively, of the “back-up” functor B M �→ A M and the “change-of-scalars” functor
A N �→ B B⊗A N .

Definition 3.13 AcomplexC• inCA is said to be perfect if for every point x ∈ X there
is an open neighbourhoodU of x such that C|U is quasi-isomorphic to a finite complex
of locally projective coherent modules. We denote by PerfA the full subcategory of
DA consisting of perfect complexes.

The following result is well-known in commutative and affine cases [30,35]. Though
the proof in non-commutative situation is almost the same, we include it for the sake
of completeness. Actually, we reproduce the proof of Rouquier with slight changes.

Theorem 3.14 Let (X,A) be a non-commutative scheme (quasi-compact and sepa-
rated). Then DA is compactly generated and DcA = PerfA.

Proof Let U ⊆ X be an open affine subset of X , AU be the restriction of A onto
U , �U = X \U , j = jU : U → X be the embedding. Then the inverse image
functor j∗ : A-Mod → AU -Mod is exact and the natural morphism j∗ j∗ → 1AU -Mod

is an isomorphism (actually, identity). Therefore Ker j∗ is a localizing subcategory
and AU -Mod � A-Mod/Ker j∗. Note that Ker j∗U consists of the A-modules M such
that suppM ⊆ �U . Then Ker L j∗ is a localizing subcategory of DA and DAU �
DA/Ker L j∗. This kernel coincides with the full subcategoryD�UA ofDA consisting
of complexes whose cohomologies are supported on �U .

If W ⊆ X is another open affine subset, then the subcategoriesD�UA andD�WA

intersect properly in the sense of [35, 5.2.3]. Recall that it means that j∗W jU∗ j∗UF = 0
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as soon as j∗WF = 0, what follows, for instance, from [21, Corollary 1.5.2] applied to
the cartesian diagram of affine morphisms (open embeddings)

U ∩ W
j ′W

j ′U

U

jU

W
jW

X.

Therefore, if X = ⋃m
i=1 Ui is an open affine covering of X , then {D�Ui

A} is a cocov-
ering of the triangulated category DA as defined in [35, 5.3.3]. If S ⊂ {1, 2, . . . , m}
does not contain i , US = ⋃

j∈S Uj , then
⋂

j∈S D�Uj
A = D�US

A and the image
of D�US

A in DAUi coincides with DUi \USAUi . There are sections f1, f2, . . . , fk ∈
A = 
(Ui ,OX ) such that Ui \US = V ( f1, f2, . . . , fk) as a closed subset of Ui . The
following lemma shows that the subcategory DUi \USAUi is compactly generated in
DAUi .

Lemma 3.15 Let Abe an algebra over a commutative ring O and I = ( f1, f2, . . . , fk)

be a finitely generated ideal in O. Let K •(I) be the corresponding Koszul complex.
Denote by A-ModI the full subcategory of A-Mod consisting of all modules M such
that for every element a ∈ M there is m such that Ima = 0. Denote by DI A the full
subcategory of DA consisting of all complexes such that their cohomologies belong
to A-ModI . Then DIA is generated by the complex K •

A(I) = A⊗O K •(I).

Proof Note that HomDA(K •
A(I), C•) � HomDO(K •(I), C•) for every C• ∈ DA.

If C• ∈ DI A is non-exact, then HomDO(K •(I), C•[n]) �= 0 for some n by [35,
Proposition 6.6]. It proves the claim. �
Evidently, K •

A(I) is compact inDA. Sowe can now use [35, Theorem 5.15]. It implies
that DA is compactly generated and a complex C• in DA is compact if and only if
j∗Ui

C• is compact in DAUi for every 1 � i � m. As Ui is affine, compact complexes
in DAUi are just perfect complexes. Therefore, it is true for DA too. ��

4 Minors

Definition 4.1 Let (X,B) be a non-commutative scheme,P be a locally projective and
locally finitely generated B-module, A = (EndBP)op. The non-commutative scheme
(X,A) is called a minor of the non-commutative scheme (X,B).4

In this situation we consider P as B-A-bimodule (left over B, right over A). Let
P∨ = HomB(P,B). It is an A-B-bimodule, locally projective and locally finitely
generated over B. The following statements are evidently local, then they are well-
known.

Proposition 4.2 The natural homomorphism P → HomB(P∨,B) is an isomorphism.
Moreover, A � EndBP∨ � P∨⊗BP.

4 In the affine case this notion was introduced in [14]. Actually, the main results of this section are just
global analogues of those from [14].
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We consider the following functors:

F = P⊗A : A-Mod → B-Mod,

G = HomB(P, ) : B-Mod → A-Mod,

H = HomA(P∨, ) : A-Mod → B-Mod.

Note that G is exact and G � P∨⊗B , so both (F,G) and (G,H) are adjoint pairs of
functors. If the non-commutative scheme (X,B) is noetherian, so is also (X,A) and
these functors map coherent sheaves to coherent ones.

We set IP = Im{μP : P⊗AP∨ → B}, where μ(p⊗γ ) = γ (p).

Theorem 4.3 (i)G is a bilocalization functor, thusC is a bilocalizing subcategory,
A-Mod � B-Mod/C, whereC = Ker F = P⊥ and bothFandHare full embeddings
A-Mod → B-Mod (usually with different images).
(ii) C = {M ∈ B-Mod : IPM = 0} � (B/IP)-Mod.
(iii) Im F = ⊥C coincides with the full subcategory of B-Mod consisting of all
modules M such that for every point x ∈ X there is an exact sequence P1 →
P0 → Mx → 0, where P0, P1 are multiples of Px (i.e. direct sums, maybe infinite,
of its copies). We denote this subcategory by P-Mod.
(iii′) ImH = C⊥ coinsides with the full subcategory of B-Mod consisting of all
modules M such that there is an exact sequence 0 → M → I0 → I1, where
Ii ∈ H(A-Inj).5 We denote this subcategory by PInj-Mod.

Proof Theorem 2.1 and Corollary 2.3 show that, to prove claims (i), (iii) and (iii′), it
is enough to prove the following statements.

Proposition 4.4 (i) The natural morphism φ : 1A-Mod → G◦F is an isomorphism.
(ii) Im F = P-Mod.
(iii) ImH = PInj-Mod.

Proof As the claims (i) and (ii) are local, we can suppose that the non-commuta-
tive scheme (X,B) is affine, so replace B-Mod by B-Mod, where B = 
(X,B).
Then P = P∼ for some finitely generated projective B-module and A = A∼, where
A = (EndBP)op. Hence we can also replaceA-Mod by A-Mod and P-Mod by P-Mod,
the full subcategory of B-Mod consisting of all modules N such that there is an exact
sequence P1 → P0 → N → 0, where Pi are multiples of P .

Obviously, φ(A) is an isomorphism. Since F and G preserve arbitrary coproducts,
φ(F) is an isomorphism for any free A-module F . Let M ∈ A-Mod. There is an exact
sequence F1 → F0 → M → 0, where F0, F1 are free modules, which gives rise to a
commutative diagram with exact rows

F1

φ(F1)

F0

φ(F0)

M

φ(M)

0

G ◦F(F1) G ◦F(F0) G ◦F(M) 0.

5 Note that all B-modules from H(A-Inj) are injective.
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As the first two vertical arrows are isomorphisms, so is φ(M), which proves claim (i).
Moreover, we get an exact sequence F(F1) → F(F0) → F(M) → 0, where F(Fi ) are
multiples of F(A) = P . Therefore, F(M) ∈ P-Mod.

Consider now the natural morphism ψ : F ◦G → 1B-Mod. This time ψ(P) is an
isomorphism. Let now N be a B-module such that there is an exact sequence P1 →
P0 → N → 0, where Pi are multiples of P . Then there is a commutative diagram
with exact rows

F ◦G(P1)

ψ(P1)

F ◦G(P0)

ψ(P0)

F ◦G(N )

ψ(N )

0

P1 P0 N 0.

The first two vertical arrows are isomorphisms, so ψ(N ) is also an isomorphism. It
proves claim (iii).

The proof of (iii′) is quite analogous to that of (iii), so we omit it. Note that the
conditionM ∈ PInj-Mod also turns out to be local, since it means that the natural map
M → H ◦G(M) is an isomorphism. �

Statement (ii) is also local, so we only have to prove it for a ring B, a finitely
generated projective B-module P and the ideal IP = ImμP . It follows from [10,
Proposition VII.3.1] that IP P = P . Therefore, if f : P → M is non-zero, then
IP Im f = Im f �= 0, hence IP M �= 0. On the contrary, if IP M �= 0, there is
an element u ∈ M , elements pi ∈ P and homomorphisms γi : P → B such that∑

i γi (pi )u �= 0. Let β : B → M maps 1 to u and γ u
i = βγi . Then at least one of the

homomorpisms γ u
i is non-zero. ��

The functor G is exact, so it induces a functor DG : DB → DA mapping a complex
F• to GF•. It is both left and right derived functor of G. We can also consider the left
derived functor LF of F and the right derived functor RH of H, both being functors
DA → DB. Obviously, DG maps DσB to DσA, where σ ∈ {+,−, b}, LF maps
D−A to D−B and RH maps D+A to D+B.

Theorem 4.5 (i) The functors (LF,DG) and (DG,RH) form adjoint pairs.
(ii) DG is a bilocalization functor, Ker DG = DCB, where C = KerG is a bilocal-

izing subcategory, DA � DB/DCB and both LF and RH are full embeddings
DA → DB (usually with different images).

(iii) The functor LF maps DcA to DcB.
(iv) (Ker DG, Im LF) as well as (ImRH,Ker DG) are semi-orthogonal decomposi-

tions of DB.
(v) Im LF = ⊥(DCB) coincides with the full subcategory DP−→ of DB consisting of

complexes quasi-isomorphic to K-flat complexes F• such that for every x ∈ X
and every component F i the localization F i

x is a direct limit of modules from
addPx . The same is true if we replace D by D−.

(vp) If A and B have enough locally projective modules (for instance, if X is quasi-
projective), Im LF coincides with the full subcategory DP of DB consisting of
complexes quasi-isomorphic to K-flat complexes F• such that F i

x ∈ AddPx for
every i ∈ Z and every point x ∈ X. The same is true if we replace D by D−.
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(v′) ImRH = (DCB)⊥ coincides with the full subcategory DPInj of DB consisting
of complexes quasi-isomorphic to K-injective complexes consisting of modules
from H(A-Inj). The same is true if we replace D by D+.

Note that the condition in (v′) can also be verified locally at every point x ∈ X.

Proof (i) Let F• be a K-flat replica of M• ∈ DA and I• be an injective resolution of
N• ∈ DB. Then LFM• = FF• and DGN• = GI•. As P ∈ lpB, the complex FF• is
K-flat and the complex GI• is K-injective. By Proposition 3.12 (ii),

RHomB(FF•, I•) = Hom•
B(FF•, I•) � Hom•

A(F•,GI•) = RHomA(F•,GI•).

Taking zero cohomologies, we obtain that

HomB(FF•, I•) � HomA(F•,GI•).

Choose now a K-flat replica G• of N• and a K-injective resolution J• of M•. Then
DGN• = GG• and RHM• = HJ•. By [36, Proposition 5.14], HJ• is weakly K-injective.
By Proposition 3.12 (ii) and [36, Proposition 6.1],

RHomA(GG•, J•) = Hom•
A(GG•, J•) � Hom•

B(G•,HJ•) = RHomB(G•,HJ•).

Taking zero cohomologies, we obtain that

HomA(GG•, J•) � HomB(G•,HJ•)

(ii) follows now from Theorems 4.3 and 2.1.

(iii) As the right adjoint DG of LF preserves arbitrary coproducts, LF maps compact
objects to compact ones.

(iv) follows from Corollary 2.6.

(v) The construction of [1, Proposition 1.1] gives for any complexM• ∈ DA a quasi-
isomorphic K-flat complex F• such that all its components F i are flat. Moreover, F•

is left bounded if so is M•. By [6, Chapter X, Section 1, Theorem 1], F i
x � lim−→Li

n ,

whereLi
n are projective finitely generatedAx -modules, hence belong to addAx . Then

LFM• � FF•. As F preserves direct limits and FA � P, FF i
x � lim−→ FLi

n and FLi
n ∈

addPx . Hence M• ∈ DP−→.
On the contrary, let N• ∈ DP−→. We can suppose that it is K-flat and for every i ∈ Z

and every x ∈ X we can presentNi
x as lim−→Ni

n , whereN
i
n ∈ addPx . Then the complex

GN• is also K-flat [36, Proposition 5.4], so LF ◦DG(N•) � FG(N•). As the natural
map FG(P) → P is an isomorphism, the same is true for all modules Ni

n , hence also
for Ni

x . Therefore, the natural map LF ◦DG(N) → N is an isomorphism.

(vp) is proved quite analogously to the proof of (v), taking into account that in this
situation every complex is quasi-isomorphic to a K-flat complex of locally projective
modules.

(v′) is also proved analogously to (v). ��
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Recall that C = KerG � (B/IP)-Mod. There is one special case when the category
Ker DG can be described analogously.

Theorem 4.6 Suppose that the ideal IP is flat as a right B-module. Then Ker DG �
D(B/IP).

Proof Let I = IP,Q = B/I. One easily sees that I2 = I. We identifyDQwith the full
triangulated subcategory of DB, obviously contained in Ker DG. Let F• ∈ Ker DG,
i.e. its cohomologies are indeed Q-modules. We can suppose that F• is K-flat. Ten-
soring it with the exact sequence 0 → I → B → Q → 0, we obtain an exact
sequence of complexes 0 → I⊗BF• → F• → Q⊗BF• → 0. Since I is flat,
H •(I⊗BF•) � I⊗B H •(F•). Note that I⊗BQ � I/I2 = 0, whence I⊗BM = 0 for
anyQ-module. Therefore, H •(I⊗BF•) = 0, henceF• is quasi-isomorphic toQ⊗BF•,
which is in DQ. ��
Example 4.7 An important special case of minors appears as the endomorphism con-
struction. Let A be a non-commutative scheme, F be a coherent A-module and
AF = EndA(A⊕F)op. Then AF is identified with the algebra of matrices

AF =
(
A F

F ′ E

)
,

where F ′ = HomA(F,A) and E = (EndAF)op. If PF = (
A
F ′

)
considered as AF-

module, then A � (EndAF
PF)op, so A is a minor of AF and the categories A-Mod

and DA are bilocalizations, respectively, of AF-Mod and DAF. The corresponding
functors are

FF = PF⊗A ,

GF = HomAF
(PF, ),

HF = HomAF
(PF, ).

Note that P∨
F � (A F) as right AF-module and, by the construction, we have PF �

HomA(P∨
F,A). Theorem 4.3 (ii) then implies that the kernel C of GF : AF-Mod →

A-Mod is equivalent to E/IF-Mod, where IF is the image of the natural map
F ′⊗AF → E. This construction will be crucial in Sect. 8.

5 Heredity chains

We consider an application of minors to global dimensions and semi-orthogonal
decompositions. Let (X,B) be a non-commutative scheme, M be a B-module. We
call sup {i : ExtiB(M, ) �= 0} the local projective dimension of the B-module
M and denote it by lp.dimBM. If (X,B) is noetherian and M is coherent, then
lp.dimBM = sup {pr.dimBx

Mx : x ∈ X }.
Lemma 5.1 Let (X,B) be a non-commutative scheme, P be a locally projective and
locally finitely generated B-module, A = (EndBP)op and B = B/IP. Suppose that
P is flat as right A-module,
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lp.dimBIP = d,

gl.dimA = n,

gl.dimB = m.

Then gl.dimB � max {m +d +2, n}.
Proof Let B = B/IP. Then lp.dimBB = d + 1, and from the spectral sequence
Ext p

B
(M,ExtqB(B, ))⇒Ext p+q

B (M, ) it follows that pr.dimBM � m + d + 1

for every B-module M. Consider the functors G = HomB(P, ) and F = P⊗A .
Since the morphism GFG → G, arising from the adjunction, is an isomorphism, the
kernel and the cokernel of the natural map α : FGM → M are annihilated byG, so are
actuallyB-modules. It implies that Ext i

B(M,N) � Ext i
B(FGM,N) if i > m +d +2,

so pr.dimBM � max {m +d +2, pr.dimBFGM}. As both functors F andG are exact,
Ext i

B(F , ) � Ext i
A( ,G ), so pr.dimBFGM � n. ��

Definition 5.2 • Let (X,B) and (X,A) be two non-commutative schemes. A relat-
ing chain between B andA is a sequence (B1,P1,B2,P2, . . . ,Pr ,Br+1), where
B1 = B, Br+1 = A, every Pi , 1 � i � r , is a locally projective and
locally finitely generated Bi -module which is also flat as right Ai -module, where
Ai = (EndBiPi )

op, and Bi+1 = Bi/IPi for 1 � i � r .
• The relating chain is said to be flat if, for every 1 � i � r , IPi is flat as right
Bi -module. Note that it is the case if the natural map Pi ⊗Ai P

∨
i → Bi is a

monomorphism.
• The relating chain is said to be pre-heredity if, for every 1 � i � r , IPi is locally
projective as left Bi -module. If it is both pre-heredity and flat, it is said to be
heredity.

• If the relating chain is heredity and all non-commutative schemesAi are hereditary,
i.e. gl.dimAi � 1, we say that the non-commutative schemeB is quasi-hereditary
of level r . (Thus quasi-hereditary of level 0 means hereditary.)

We fix a relating chain (B1,P1,B2,P2, . . . ,Pr ,Br+1) between B and A and keep
the notations of Definition 5.2.

Corollary 5.3 Let gl.dimAi � n and lp.dimBi
IPi � d for all 1 � i � r . Then

gl.dimB � r(d +2)+max {gl.dimA, n −d −2}. If this relating chain is pre-heredity,
then gl.dimB � gl.dimA + 2r .

Using Theorems 4.5 (iv), 4.6 and induction, we also get the following result.

Corollary 5.4 If this relating chain is flat, there are semi-orthogonal decompositions
(T,Tr , . . . ,T1) and (T ′

1,T
′
2, . . . ,T

′
r ,T) of DB such that Ti � T ′

i � DAi , 1 � i � r ,
and T � DA.

Note that, as a rule, Ti �= T ′
i .

Corollary 5.5 If a non-commutative scheme B is quasi-hereditary of level r , then
gl.dimB � 2r + 1 and there are semi-orthogonal decompositions (T,Tr , . . . ,T1)

and (T ′
1,T

′
2, . . . ,T

′
r ,T) of DB such that Ti � T ′

i , 1 � i � r , as well as T, is
equivalent to the derived category of a hereditary non-commutative scheme.
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Remark 5.6 Suppose that (X,B) is affine: X = Spec R and B = B∼.
If B is semiprimary, thenB is quasi-hereditary with respect to our definition if and

only if B is quasi-hereditary in the classical sense of [11,13].
If R is a discrete valuation ring and B is an R-order in a separable algebra, then B

is quasi-hereditary with respect to our definition if and only if B is quasi-hereditary
in the sense of [24].

Example 5.7 Consider the endomorphism construction of Example 4.7. Suppose that
F is flat as right E-module, F ′ is locally projective as left E-module and the natural
map μF : F⊗EF

′ → A is a monomorphism. Let P̃ = (
F
E

)
andA = A/ImμF. Then

one can easily verify that (AF, P̃,A) is a heredity relating chain. Therefore, if both
E and A are quasi-hereditary, so is AF. These conditions hold, for instance, if A is
noetherian and reduced, F is coherent torsion free and E is hereditary (the situation
which will be explored in Sect. 8).

6 Strongly Gorenstein schemes

In this section we only consider noetherian non-commutative schemes.

Definition 6.1 Let (X,A) be a noetherian non-commutative scheme.We call it strong-
ly Gorenstein if X is equidimensional, A is Cohen–Macaulay as OX -module and
inj.dimAA = dim X .6

Recall that an A-module M is injective if and only if Ax -modules Mx are injective
for all x ∈ Xcl (the proof from [22, Proposition 7.17] remains valid in non-
commutative situation too). We need some basic facts about injective dimension for
non-commutative rings. Now R denotes a noetherian commutative local ring with
the maximal ideal and the residue field k = R/m, A denotes an R-algebra finitely
generated as R-module. Let also r = rad A and A = A/r. As usually, for every ideal
I ⊆ R we denote by V (I ) the set of prime ideals containing I .

Theorem 6.2 inj.dim M = sup {i : ExtiA(A, M) �= 0}.
Just as in [7, Proposition 3.1.14], this theorem is an immediate consequence of the
following lemma.

Lemma 6.3 Let p �= m be a prime ideal of R, M be a noetherian R-module. Suppose
that Ext i

A(N , M) = 0 for any noetherian A-module N such that V (annRN ) ⊂ V (p)

and i > m. Then also Ext i
A(N , M) = 0 for any noetherian A-module N such that

V (annRN ) = V (p) and i > m.

Proof Suppose that the condition is satisfied and let V (annRN ) = V (p). If q ∈ Ass N
and q �= p, there is a submodule N ′ ⊆ N such that qN ′ = 0. Therefore, Ext i

A(N ′, M) =
0 for i > m and we only have to prove that Ext i

A(N/N ′, M) = 0 for i > m. Thus we

6 We do not know whether the last condition implies the Cohen–Macaulay property, as it is in the commu-
tative case.
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can suppose that Ass N = {p}. Let a ∈ m\p. Then a is non-zero-divisor on N , i.e. we
have the exact sequence 0 → N

a−→ N → N/aN → 0. It gives and exact sequence

Ext i
A(N , M)

a−→ Ext i
A(N , M) → Ext i+1

A (N/aN , M).

Obviously, annRN/aN ⊃ p, so the last term is 0 if i > m. Therefore, aExt i
A(N , M) =

Ext i
A(N , M) and Ext i

A(N , M) = 0 by Nakayama’s Lemma. ��
Corollary 6.4 Let M be a coherent A-module. Then

inj.dimAM = sup
{

i : Ext i
A(A(x),M) �= 0 for some x ∈ Xcl

}
= sup {inj.dimAx

Mx : x ∈ Xcl}.

Here A(x) denotes A⊗OX k(x).

Corollary 6.5

gl.dimA = sup {pr.dimAA(x) : x ∈ Xcl}
= sup

{
i : Ext i

A(A(x),A(x)) �= 0 for some x ∈ Xcl
}

= sup {gl.dimAx : x ∈ Xcl}.

Lemma 6.6 Let M be a noetherian A-module. If an element a ∈ R is non-zero-divisor
both on A and on M, then inj.dimAM = inj.dimA/aAM/aM.

The proof just repeats that of [7, Corollary 3.1.15].

Corollary 6.7 Let a = (a1, a2, . . . , am) be an A-sequence in m. Then A is strongly
Gorenstein if and only if so is A/aA.

Corollary 6.8 A is strongly Gorenstein if and only if so is Aop.

Proof The claim is local, so we can replaceA by A. Corollary 6.7 reduces the proof to
the casewhenKr.dim R = 0, i.e. A is just an artinian algebra. Then it iswell-known [4,
Proposition IV.3.1]. ��
For a noetherian non-commutative scheme (X,A)we denote by CMA the full subcat-
egory ofA-mod consisting of suchmodulesM thatMx is amaximal Cohen–Macaulay
module over OX,x for every point x ∈ X . The following results can be proved just as
in the commutative case (see [7, Section 3.3]).

Theorem 6.9 Let (X,A) be a strongly Gorenstein non-commutative scheme andM ∈
CMA.

• Ext i
A(M,A) = 0

• The natural map M → HomA(HomA(M,A),A) is an isomorphism.

Thus the functor ∗ : M �→ M∗ = HomA(M,A) gives an exact duality between the
categories CMA and CMA op.
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Let now (X,A) be a strongly Gorenstein non-commutative scheme, F ∈ CMA.
Consider the endomorphism construction described in Example 4.7. Theorem 6.9
implies that the natural map φ(M) : FFM → HFM is an isomorphism for M = A,
hence an isomorphism for anyM ∈ lpA.

Theorem 6.10 Let (X,A) be strongly Gorenstein and contain enough locally projec-
tive modules, F ∈ CMA. Then the restrictions of the functors LFF and RHF onto the
subcategory DcA are isomorphic. Thus the restriction of LFF onto DcA is both left
and right adjoint to the bilocalization functor DGF.

Proof As A has enough locally projective modules, any complex fromDcA is quasi-
isomorphic to a finite complex C• such that all Ci are from lpA. Then LFFC

• = FFC
•.

On the other hand, by Theorem 6.9, RkHFC
i = Extk

A(PF,Ci ) = 0 for k �= 0.
Therefore, RHFC

• = HFC
• � FFC

•. ��

7 Non-commutative curves

7.1 Generalities

Definition 7.1 A non-commutative curve is a reduced non-commutative scheme
(X,A) such that X is an excellent curve (equidimensional reduced noetherian scheme
of dimension 1) and A is coherent and torsion free as OX -module.

As X is excellent, then Âx , the mx -adic completion of Ax , is also reduced (has no
nilpotent ideals). Therefore, for the local study of non-commutative curves we can
use the usual results from the books [12,33]. We denote by K = K(X) the sheaf of
full rings of fractions of OX and write KM instead of K⊗OX M for any OX -module
M. In particular,KA is aK-algebra. The sheavesKM are locally constant; the stalks
of K and KA are semi-simple rings. The torsion part torsM of M is defined as the
kernel of the natural map M → KM. We say that a coherent A-module M is torsion
free if torsM = 0, and we say that M is torsion if KM = 0. Note that torsM is
torsion and M/torsM is torsion free. We denote by tors A and tfA respectively the
full subcategories of A-mod consisting of torsion and of torsion free modules. We
always consider a torsion free module M as a submodule of KM. In particular, we
identifyMx with its natural image inKMx . Note that for every submoduleN ⊆ KM

there is a natural embeddingKN → KM and we identifyKN with the image of this
embedding. A non-commutative curve (X,A′) is said to be an over-ring of a non-com-
mutative curve (X,A) ifA ⊆ A′ ⊂ KA. ThenA′ is naturally considered as a coherent
A-module. The non-commutative curve (X,A) is said to be normal if it has no proper
over-rings. Since X is excellent andA is reduced, the set {x ∈ X : Ax is not normal} is
finite. Then it follows from [15] that the set of over-rings ofA satisfies the maximality
condition: there are no infinite strictly ascending chains of over-rings of A.

Coherent torsion free A-modules, in particular, over-rings of A can be constructed
locally.
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Lemma 7.2 Let M be a torsion free coherent A-module.

• If N is a coherent A-submodule of KM such that KN = KM, then Nx = Mx for
almost all x ∈ X.

• Let S ⊂ Xcl be a finite set and for every x ∈ S a finitely generated Ax -submodule
Nx ⊂ KMx is given such that KNx = KMx . Then there is a unique A-submodule
N ⊂ KM such that Nx = Nx for every x ∈ S and Nx = Mx for all x /∈ S.

• If M = A and all Nx in the preceding item are rings, then N is a subalgebra of
KA, so (X,N) is also a non-commutative curve and if Nx ⊇ Ax for all x ∈ S,
(X,N) is an over-ring of (X,A).

Proof We can suppose that X is affine. Then the proof just repeats that of [5, Chap-
ter VII, Section 3, Theorem 3] with slight and obvious changes. ��
Lemma 7.3 Any non-commutative curve (X,A) has enough invertible modules.
Namely, the set

LA = {
A⊗OX L : L is an invertible OX -module

}

generates QcohA (hence, generates DA).

Proof Wemust show that ifM′ ⊂ M is a proper submodule, there is a homomorphism
f : L → M such that Im f �⊆ M′. As HomA(A⊗OX L,M) � HomOX (L,M), we
can suppose that A = OX . Moreover, as every A-module is a direct limit of its
coherent submodules, we can suppose that M is coherent. Let first M′ �⊇ torsM.
Choose x ∈ Xcl such that torsMx �⊆ M′

x and let ux ∈ torsMx \M′
x . There is a global

section u ∈ 
(X, torsM) ⊆ 
(X,M) such that ux is its image in Mx . Then there is
a homomorphism f : OX → M such that f 1 = u, so Im f �⊆ M′.

Let now M′ ⊇ torsM. Since Ext1OX
(L, torsM) = 0 for any locally projective

module L, the map HomOX (L,M) → HomOX (L,M/torsM) is surjective. Hence,
we can suppose that M is torsion free. Let My �= M′

y for some y ∈ Xcl and uy ∈
My \M′

y . There is a homomorphism ϕ : K → KM such that ϕ1 = uy . Let N =
ϕ(OX ). The set S = {x ∈ Xcl : Nx �⊆ Mx } is finite; moreover, y /∈ S. For every x ∈ S
there is an ideal Lx ⊆ OX,x such that Lx � OX,x and ϕ(Lx ) ⊆ Mx . By Lemma 7.2,
there is an ideal L ⊆ OX such that Lx = Lx for x ∈ S and Lx = OX,x otherwise. It
is an invertible ideal, ϕ(L) ⊆ M and ϕ(L) �⊆ M′. ��
We will use the duality for left and right coherent torsion free A-modules established
in the following theorem.

Theorem 7.4 • There is a canonical A-module, i.e. such a module ωA ∈ tfA that
inj.dimAωA = 1 and EndAωA � Aop (so ωA can be considered as an A-
bimodule). Moreover, ωA is isomorphic as a bimodule to an ideal of A.
We denote by M∗, where M ∈ A-Mod (or M ∈Aop-Mod) the Aop-module (respec-
tively, A-module) HomA(M, ωA) (respectively, HomAop(M, ωA)).

• The natural mapM → M∗∗ is an isomorphism for everyM ∈ tfA (orM ∈ tfAop)
and the functors M �→ M∗ establish an exact duality of the categories tfA and
tfAop. Moreover, if M ∈ A-mod, then M∗∗ � M/torsM.
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Proof Each local ring Ox = OX,x is excellent, so its integral closure inKx is finitely
generated and its completion Ôx is reduced. Therefore Ox has a canonical module
ωx which can be considered as an ideal in Ox [23, Corollary 2.12]. Moreover, Ox

is normal for almost all x ∈ Xcl and in this case we can take ωx = OX,x . By
Lemma 7.2, there is an ideal ωX ⊆ OX such that ωX,x = ωx for each x ∈ X . Then
inj.dimOX

ωX = sup {inj.dimOX,x
ωx } = 1. As the natural map OX,x → EndOX,x ωx

is an isomorphism for each x ∈ X , the natural map OX → EndOX ωX is an iso-
morphism too. Therefore, ωX is a canonical OX -module. Then it is known that the
functor M �→ M∗ = HomOX (M, ωX ) is an exact self-duality of tfOX and the nat-
ural map M → M∗∗ is an isomorphism. Set now ωA = HomOX (A, ωX ). Then
HomA(M, ωA) � HomOX (M, ωX ) for any A-module M, whence all statements of
the theorem follow. ��
As usually, we say that two non-commutative schemes (X,A) and (Y,B) are Morita
equivalent if their categories of quasi-coherent modules are equivalent. A coherent
locally projectiveA-moduleP is said to be a local progenerator ifPx is a progenerator
forAx for all x ∈ X , that isPx is projective overAx and there is a surjection rPX → Ax

for some r . It follows fromTheorem4.3 that then (X,A) isMorita equivalent to (X,E),
where E = (EndAP)op.

Theorem 7.5 (i) Let (X,A) and (X,B) are two non-commutative curves such that
Ax is Morita equivalent to Bx for every x ∈ Xcl. Then (X,A) and (X,B) are
Morita equivalent.

(ii) Let now (X,A) and (Y,B) be two central non-commutative curves finite over
a field. If they are Morita equivalent, there is an isomorpism τ : X ∼−−→ Y such
that, for every points x ∈ X and y = τ(x), the rings (τ ∗B)x and Ax are Morita
equivalent.

Proof (i) If Ax and Bx are Morita equivalent, there is a progenerator Px for Ax

such that Bx � (EndAx Px )
op. There is a KA-module V such that V � KPx for all

x ∈ Xcl. Choose a normal over-ring A′ of A and a coherent A′-submodule M ⊂ V

such thatKM = V. ThenM is a local progenerator for A′. Set B′ = (EndA′M)op and
S = {x ∈ Xcl : Ax �= A′

x or Bx �= B′
x }. The set S is finite, so there is anA-submodule

P ⊂ V such that Px = Px for x ∈ S and Px = Mx for x /∈ S. Then P is a local
progenerator for A and B � (EndAP)op.
(ii) follows from [3, Section 6]. ��

7.2 Hereditary non-commutative curves

Wecall a noetherian non-commutative scheme (X,A) hereditary if all localizationsAx

are hereditary rings, i.e. gl.dimAx = 1. Then gl.dimA = 1 too, so for allA-modules
M,N, Ext2A(M,N) = 0. Suppose that (X,A) is a hereditary non-commutative curve.
Then any torsion free coherentA-moduleM is locally projective, so Ext1A(M,N) = 0
for any A-module N. If N is coherent and torsion, it implies that Ext1A(M,N) = 0.
Therefore, every coherent A-modules M splits as M = torsM⊕M′, where M′ is
torsion free, hence locally projective. If a central non-commutative curve (X,H) is
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hereditary, then X is smooth. There is an effective description of hereditary non-com-
mutative curves up to Morita equivalence.

First consider the case when X = Spec O, where O is a complete discrete valuation
ring with the field of fractions K , the maximal idealm and the residue field k = O/m.
Let H be a hereditary reduced O-algebra which is torsion free as O-module. Then
KH � Mat(n, D), where D is a finite dimensional division algebra over K . There is
a unique maximal O-order � ⊂ D [33, Theorem 12.8]. It contains a unique maximal
ideal M, which is both left and right principal ideal. Let n = ∑k

i=1 ni for some
positive integers ni , n = (n1, n2, . . . , nk) and H(n, D) be the subring of Mat(n,�)

consisting of k ×k block matrices (Ai j ) such that Ai j is of size ni ×n j and if j > i all
coefficients of Ai j are fromM. Let also L = �n considered as H(n, D)-module and
Li be the submodule in L consisting of such vectors (α1, α2, . . . , αn) that α j ∈ M

for j �
∑i

q=1 nq . In particular, L0 = L and Lk = Mn � L . If necessary, we denote
Li = Li (H).

Theorem 7.6 ([33, Theorem 39.14]) Let O be a complete discrete valuation ring.

• Every connected hereditary O-order is isomorphic to H(n, D) for some tuple
n = (n1, n2, . . . , nk), which is uniquely determined up to a cyclic permutation.

• Hereditary orders H(n, D) and H(n′, D′) are Morita equivalent if and only if
D � D′ and n and n′ are of the same length.

• Li , 0 � i < k, are all indecomposable projective H(n, D)-modules and Ui =
Li/Li+1 are all simple H(n, D)-modules (up to isomorphism).

Let now (X,H) be a connected central hereditary non-commutative curve. ThenKH is
a central simpleK-algebra:KH = Mat(n,D), whereD is a central division algebra.
For every closed point x ∈ X the completion D̂x is isomorphic to Mat(mx , Dx )

for some central division algebra Dx over K̂x and some integer mx = mx (D).
Therefore, for every closed point x ∈ X , Ĥx is isomorphic to H(n, Dx ) for some
n = (n1, n2, . . . , nk), where

∑k
i=1 ni = mx n. Thus Theorems 7.5 and 7.6 give the

following result.

Theorem 7.7 A central hereditary non-commutative curve (X,H) is determined up
to Morita equivalence by a central division K-algebra D and a function κ : Xcl → N

such that κ(x) = 1 for almost all x ∈ Xcl.

Actually, κ(x) is the number of non-isomorphic simple H-modules U such that
suppU = {x}.
Remark 7.8 Representatives of a class given by D and κ can be obtained as follows.
Choose an integer n such that κ(x) � nmx (D) for all x ∈ Xcl. There is anOx -order H x

in Mat(n,D) such that ̂H x = H(nx , Dx ) for some nx = (n1,x , n2,x , . . . , nκ(x),x ).
Fix a normal non-commutative curve (X,�) such thatK� = D. Then we can define
H = H(n,D) as the non-commutative curve such that KH = Mat(n,D), Hx =
Mat(n,�x ) if κ(x) = 1 and Hx = H x if κ(x) > 1.

Let S = {x ∈ X : κ(x) > 1}, L = �n considered as H-module. Consider the
submodules Lx,i , 0 � i � κ(x), such that (̂Lx,i )x = Li ( ̂H x ) and (Lx,i )y = Ly

if y �= x . Let also Ux,i = Lx,i/Lx,i+1, 0 � i < κ(x). Then Ux,i are all simple
H-modules (up to isomorphism). Note that Lx,0 = L for every point x .
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Theorem 7.9 Let H = H(n,D).

(i) The set

LH = {L} ∪ {Lx,i : x ∈ S, 1 � k � κ(x)}

classically generates DcH, hence generates DH (see [28, Theorem 2.2]).
(ii) DH � DA, where A denotes the DG-category with the set of objects LA and

A(L′,L′′) = RHomA(L′,L′′).

Proof (i) Obviously, 〈 LH 〉∞ contains all simpleH-modules. Therefore, it contains
all torsion coherent H-modules, as well as all coherent H-submodules of KL. If
M is a coherent torsion free H-module, it contains a submodule N isomorphic to a
submodule ofKL such thatM/N is also torsion free. It implies that 〈 LH 〉∞ contains
all coherent H-modules, hence coincides with DcH.
(ii) follows now from [28, Proposition 2.6]. ��

Corollary 7.10 Let k be an algebraically closed field.

• A connected hereditary algebraic non-commutative curve over k is defined up to
Morita equivalence by a pair (X, κ), where X is a smooth connected algebraic
curve over k and κ : Xcl → N is a function such that κ(x) = 1 for almost all x.
Representatives of the Morita class given by such a pair are H(n,K) as described
in Remark 7.8.

• Two connected hereditary non-commutative curves given by the pairs (X, κ) and
(X ′, κ ′) are Morita equivalent if and only if there is an isomorphism τ : X → X ′
such that κ ′(τ (x)) = κ(x) for all x ∈ Xcl.

In this case we writeH(n, X) instead of H(n,K).

Proof The Brauer group ofK is trivial [27, Theorem 17]. Therefore, the algebraD in
Theorem 7.7 coincides with K. ��
We say that a central non-commutative curve (X,A) is rational (over a field k) if all
simple components of the algebra KA are of the form Mat(n,K). Then the curve X
is also rational over k.

Theorem 7.11 Let (X,H) be a connected rational hereditary non-commutative curve
over a field k and κ : Xcl → N be the corresponding function. Let S = {x ∈ Xcl :
κ(x) > 1}, o ∈ Xcl be an arbitrary point.

(i) The set

LH = {L,L(−o)} ∪ {Lx,i : x ∈ S, 1 � i < κ(x)}

classically generates DcH, hence generates DH.

123



Minors and resolutions of non-commutative schemes 335

(ii) If L′,L′′ ∈ LH, then Ext k
H(L′,L′′) = 0 for all k > 0, while

dimHomH(L′,L′′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if L′ = L′′,
or L′ = L(−o), L′′ = Lx,i ,

or L′ = Lx,i , L
′′ = L,

or L′ = Lx, j , L
′′ = Lx,i , j > i,

2 if L′ = L(−o), L′′ = L,

0 in all other cases.

In particular, LH is a tilting set for the category DH.
(iii) If θx,i are generators of the spaces HomH(Lx,i ,Lx,i−1), 1 � i � κ(x), then

the products θx = θx,1θx,2 . . . θx,κ(x) are non-zero and any two of them generate
HomH(L(−o),L).

Proof (i) If X � P
1, then all sheavesO(−x), hence all sheavesL(−x) are isomorphic.

Moreover, in this caseLx,κ(x) � L(−x) for any x ∈ Xcl, sowe can applyTheorem7.9.
(ii) From the definition of L and Lx,i it immediately follows that

HomH(L′,L′′) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

O if L′ = L′′,
or L′ = Lx,i , L

′′ = L,

or L′ = Lx, j , L
′′ = Lx,i , j > i,

O(o − x) if L′ = L(−o), L′′ = Lx,i ,

O(o) if L′ = L(−o), L′′ = L,

O(−o) in all other cases.

Since Ext i
H(L′,L′′) = Hi (HomH(L′,L′′)), it implies the statement.

(iii) One easily sees that, if x = (1:ξ) as the point of P
1, then θx , up to a scalar, is the

multiplication by t − ξ , where t is the affine coordinate on the affine chart A
1
0. Now

the statement is obvious. ��

Recall that a canonical algebra [34, 3.7] is given by a sequence of integers
(k1, k2, . . . , kr ), where r � 2 and all ki � 2 if r > 2, and a sequence (λ3, λ4, . . . , λr )

of different non-zero elements from k (if r = 2, this sequence is empty). Namely, this
algebra, which we denote by R(k1, k2, . . . , kr ; λ3, . . . , λr ), is given by the quiver

•
α21 • . . . •

αk1−1,1
• αk11

•
α11

α12

α1r

•
α22

• . . . •
αk2−1,2

•
αk22

•
...

•
α2r

• . . . •
αkr −1,r

•

αkr r
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with relations α j = α1 +λ jα2 for 3 � j � r , where α j = αk j j . . . α2 jα1 j . Certainly,
if r = 2, it is the path algebra of a quiver of type Ãk1+k2 . In particular, if r = 2, k1 =
k2 = 1, it is the Kronecker algebra.

Corollary 7.12 Let (X,H) be a rational projective hereditary non-commutative
curve, κ : Xcl → N be the corresponding function. Let T = ⊕

F∈LH
F and

� = (EndHT)op. If S = {x1, x2, . . . , xr } with r � 2, we set ki = κ(xi ). If S = {x},
we set r = 2, k2 = 1 and k1 = κ(x). If S = ∅, we set r = 2, k1 = k2 = 1.

• T is a tiltingH-module, i.e.Ext i
H(T,T) = 0 for i �= 0andT is a local progenerator

for H.
• � � R(k1, k2, . . . , kr ; λ3, . . . , λr ) for some λ3, . . . , λr .
• The functor HomH(T, ) induces an equivalence DH � D�.

Actually, the preceding considerations also show that a rational projective hereditary
non-commutative curve is Morita equivalent to a weighted projective line [18]. It can
also be deduced from the description of hereditary non-commutative curves and the
remark on page 271 of [18].

8 König resolution and tilting

8.1 König resolution

For a non-commutative curve (X,A) we denote by J = J(A) its ideal defined by the
localizations as follows:

Jx =
{
A if A is hereditary,

radA otherwise.

Wealso denote byA# the non-commutative curveEndAopJ (the endomorphism algebra
of J as of right A-module). It can and will be identified with an over-ring of A. The
following result is proved in [33, Theorem 39.14].

Proposition 8.1 A = A# if and only if A is hereditary.

Thus we can construct a chain of over-rings

A = A1 ⊂ A2 ⊂ A3 ⊂ · · · ⊂ An+1 = H,

where Ai+1 = A#
i , 1 � i � n, and H is hereditary. We call n the level of A. The

non-commutative curve Ã = (EndAA⊕)op, whereA⊕ = ⊕n+1
i=1Ai is called the König

resolution of the non-commutative curveA. It is identifiedwith the algebra ofmatrices

Ã =

⎛
⎜⎜⎜⎜⎝

A11 A12 A13 . . . A1,n+1
A21 A22 A23 . . . A2,n+1
A31 A32 A33 . . . A3,n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An+1,1 An+1,2 An+1,3 . . . An+1,n+1

⎞
⎟⎟⎟⎟⎠
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where Ai j = HomA(Ai ,Aj ). Note that Ai j = Aj if i � j , while Ai+1,i ⊇ J(Ai ).
Let ei , 1 � i � n + 1, be the diagonal idempotents of Ã, P = Ãe1 and P̃ = Ãen+1.
Then (EndÃP)op � A and (EndÃP̃)op � H, so both A and H are minors of Ã
and the categories A-Mod and H-Mod (DA and DH) are bilocalizations of Ã-Mod
(respectively, of DÃ) with respect to bilocalization functors G = HomÃ(P, ) and
G̃ = HomÃ(P̃, ).

We also denote εk = ∑n+1
j=k+1 ek , Ik = ÃεkÃ, Qk = Ã/Ik and Pk = Qkek . The

next result justifies the term “resolution” in the name of Ã.

Theorem 8.2 C = (Ã, P̃,Qn,Pn,Qn−1,Pn−1, . . . ,Q2,P2,Q1) is a heredity relating
chain between Ã and Q1 = A/A21. Moreover, (EndQiPi )

op = Ai/Ai+1,i is semi-
simple, so Ã is a quasi-hereditary non-commutative curve of level n and gl.dim Ã �
2n.

Proof One easily verifies that Ii is the ideal of the matrices

Ii =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ai1 Ai2 . . . Ai,i−1 Ai i Ai+1,i . . . Ai,n+1
Ai1 Ai2 . . . Ai,i−1 Ai i Ai+1,i . . . Ai,n+1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Ai1 Ai2 . . . Ai,i−1 Ai i Ai+1,i . . . Ai,n+1
Ai+1,1 Ai+1,2 . . . Ai+1,i−1 Ai+1,i Ai+1,i+1 . . . Ai+1,n+1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

An+1,1 An+1,2 . . . An+1,i−1 An+1,i An+1,i . . . An+1,n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore, Qi is identified with the algebra of i × i matrices (akl), where akl ∈
Akl/Ai+1,l . Thus aii ∈ Ai/Ai+1,i and the latter algebra is semi-simple. Hence
EndQiPi = eiQi ei = Ai/Ai,i+1 is semi-simple. On the other hand, IPi = Qi eiQi =
Ii+1/Ii , whence Qi−1 = Qi/IPi , so C is a relating chain. Moreover, Ii is projective
as a right Ã-module, hence Ii/Ii+1 is projective as a right Qi -module, so this relating
chain is heredity. As H = (EndÃP̃)op is hereditary, Ã is quasi-hereditary, and as all
EndQiPi are semi-simple, gl.dim Ã � 2n by Corollary 5.3. ��

It means that the functor DG : DÃ → DA defines a categorical resolution of DA in
the sense of [28]. IfA is strongly Gorenstein, Theorem 6.10 shows that this resolution
is weakly crepant, i.e. its left and right adjoints coincide on perfect complexes (small
objects in DA).

We denote by Ai the semi-simple algebra Ai/Ai+1,i � EndQiPi .

Corollary 8.3 The derived category DÃ has two semi-orthogonal decompositions:
DÃ = 〈T1,T2, . . . ,Tn,T 〉 and DR = 〈T ′,T ′

n, . . . ,T ′
2,T

′
1 〉, where T � T ′ � DH

and Ti � T ′
i � DAi .

Note that usually T �= T ′ as well as Ti �= T ′
i for i > 1, though T1 = T ′

1 = D(Ã/I2)

naturally embedded into DÃ.
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Let F and F̃ be, respecrively, the left adjoints of G and G̃; H and H̃ be, respectively, the
right adjoints of G and G̃. Then we have the diagram of bilocalizations

H-Mod

F̃

H̃

Ã-ModG̃ G A-Mod.

F

H

(1)

As H is an over-ring of A, there is a morphism ν : (X,H) → (X,A). In the case
of commutative curves, it is just the normalization of X . This morphism induces the
direct image functor ν∗ : H-Mod → A-Mod and its left and right adjoints, respectively,
ν∗ (the inverse image functor) and ν!. We show that they coincide (in some cases up
to twist) with the compositions of the functors from diagram (1).

Theorem 8.4 (i) ν∗ � GF̃ and ν! � G̃H.
(ii) G̃F � C⊗Hν∗ and GH̃ � ν∗(C′⊗H ), where C = HomA(H,A) is the conduc-

tor of H in A and C′ = HomH(C,H) is its dual H-module.

Proof We prove equalities (i), equalities (ii) are proved analogously. As e1P̃ = H as
an A-H-bimodule,

GF̃(M) = HomÃ(P, P̃⊗HM) � e1P̃⊗HM = M

considered as an A-module, and it is just ν∗M. On the other hand,

G̃H(N) = HomÃ(P̃,HomA(P∨,N)) � en+1HomA(P∨,N)

� HomA(P∨en+1,N) � HomA(H,N) = ν!N. ��

8.2 Rational case: Tilting

Now we suppose that the non-commutative curve (X,A) is rational over an alge-
braically closed field k. We keep the notations of the preceding subsection. According
to Corollary 7.12, the hereditary algebra H has a tilting module T such that
(EndHT)op = � is a Ringel canonical algebra. Set T ′ = F̃(T),Q = Qn .

Theorem 8.5 (i) T̃ = Q[−1]⊕T ′ is a tilting complex for Ã, i.e. T̃ ∈ DcÃ,
HomDÃ(̃T, T̃[m]) = 0 for m �= 0 and T̃ generates DÃ. Therefore, the
functor RHomDÃ(̃T, ) establishes an equivalence DÃ � D�̃, where �̃ =
(EndDÃT̃)op.

(ii) The algebra �̃ is quasi-hereditary.
(iii) gl.dim �̃ � 2n + 1.

Proof (i) As P̃ is a projective right H-module, L̃F is an exact full embedding. It
also maps perfect complexes to perfect complexes by Theorem 4.5 (iii). Therefore,
T ′ ∈ DcÃ, HomDÃ(T ′,T′[m]) = 0 for m �= 0 and T ′ generates Im L̃F. On the other

hand, Q generates Ker G̃ � Q-Mod. Since 〈Ker D̃G, Im L̃ F 〉 is a semi-orthogonal
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decomposition of DÃ, T̃ generates DÃ and HomDÃ(T ′,Q[m]) = 0 for all m. As
dim suppQ = 0, Ext k

Ã
(Q,M) = H0(X,Extk

Ã
(Q,M)) for every quasi-coherent Ã-

module M. A locally projective resolution of Q is 0 → IP̃ → Ã → Q → 0, hence
Q ∈ DcÃ and Ext k

Ã
(Q,M) = 0 for k > 1. Moreover, if M is a Q-module, that

is IP̃M = 0, then HomÃ(IP̃,M) = 0, since IP̃ = I2
P̃
. Hence Ext 1

Ã
(Q,M) = 0.

Evidently, HomÃ(Q,T ′) = 0, whence HomDÃ(̃T, T̃[m]) = 0 for m �= 0, which
accomplishes the proof.

(ii) The algebra �̃ can be considered as the algebra of triangular matrices

�̃ =
(

Q E
0 �

)
,

where Q = H0(X,Q), � = EndHT and E = Ext1
Ã

(Q,T ′). We have already seen
that there is a heredity relating chain of length n − 1 between Q and Q1. On the
other hand, the algebra � is triangular, i.e. contains a set of orthogonal idempotents
f1, f2, . . . , fs such that fi� fi is semi-simple (in our case equals k), while fi� f j = 0
if j > i . One easily sees that if an algebra A can be presented as a matrix algebra of
the form

A =
(

A1 B
0 A2

)
,

where A2 is semi-simple and A1 is quasi-hereditary, then A is also quasi-hereditary.
Therefore, �̃ is quasi-hereditary.
(iii) One easily sees that gl.dim� � 2. On the other hand, gl.dimQ � 2n − 2
by Corollary 5.3. Then the inequality gl.dim �̃ � 2n + 1 follows from [32, p. 407,
Corollary 4′]. ��
Thus, every rational non-commutative curve over an algebraically closed field has a
categorical resolution by a finite dimensional quasi-hereditary algebra.

Recall that, for a triangulated category T, its Rouquier dimension dim T is defined
as the smallest d such that 〈 T 〉d+1 = T for some object T [35]. Here 〈 T 〉1 consists of
direct summands of direct sums of shifts of T and 〈 T 〉k+1 consists of direct summands
of the objects A such that there is an exact triangle B → A → C → B[1], where
B ∈ 〈 T 〉k and C ∈ 〈 T 〉1.
Corollary 8.6 dimDcA � 2n + 1, where dim means the dimension of Rouquier of
a triangulated category [35]. Namely, 〈G 〉2n+2 = DcA, where G = T⊕⊕n

i=1Ai/

An+1.i [−1].
Proof Indeed, 〈 �̃ 〉2n+2 = Dc�̃ by [35, Proposition 7.4]. As the equivalence D�̃ �
DÃ maps �̃ to T̃, 〈 T̃ 〉2n+2 = DcÃ. Then 〈DGT̃ 〉2n+2 = DcA. Note that GM =
e1M for any Ã-module M. Therefore, GT ′ = T and GQ = ⊕n

i=1Ai/An+1,i . It
accomplishes the proof. ��
If the curve A is commutative, the hereditary curve H is regular and the algebra
� is hereditary (just a product of Kronecker algebras). In this case the estimate in
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Corollary 8.6 is 2n instead of 2n + 1. It generalizes the result of [8], where the curves
of level 1 were considered.
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