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ONE BRANCH CURVE SINGULARITIES WITH AT

MOST 2-PARAMETER FAMILIES OF IDEALS

YURIY A. DROZD AND RUSLAN V. SKURATOVSKII

Abstract. A criterion is given in order that the ideals of a one
branch curve singularity form at most 2-parameter families. Namely,
we present a list of plane curve singularities from the Arnold’s clas-
sification which are the smallest among all one branch singularities
having at most 2-parameter families of ideals.

Introduction

Ideals of commutative rings have been studied at least since the
works of Dedekind on the ideals of algebraic numbers. The Dedekind
domains, i.e. integrally closed noetherian domains of Krull dimension 1,
are just domains such that all their ideals are invertible. If a domain A
is not integrally closed, the theory of ideals becomes rather complicated.
As it was noticed by Bass [2] and, independently, by Borevich and
Faddeev [4], if A is of Krull dimension 1 and its integral closure R has 2
generators as A-module, every ideal is invertible over its multiplication
ring (and vice versa). Moreover, in this case all finitely generated
torsion free A-modules are direct sums of ideals. Jacobinski [13] and,
independently, Drozd and Roiter [9] gave criteria for a commutative
ring of Krull dimension 1 to have finitely many nonisomorphic torsion
free modules. It so happens that it is also the case when it has finitely
many ideal classes. As Greuel and Knörrer showed, in the local case
these are just the rings dominating the simple plane curve singularities

A-D-E of Arnold [1]. Schappert [14], Drozd and Greuel [8] proved that
a local ring of plane curve singularity only has 1-parameter families
of ideals if and only if this singularity dominates a strictly unimodal

plane curve singularity (in [1] they are called unimodal and bimodal).
This time it is no more the case that torsion free modules behave in
the same manner. Among strictly unimodal plane curve singularities
only those of type Tpq are tame, i.e. only have 1-parameter families
of indecomposable torsion free modules [7]. All others are wild, so
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have n-parameter families of nonisomorphic indecomposable torsion
free modules for arbitrary n.
In this paper we find a criterion for a one branch curve singularity

to have at most 2-parameter families of ideals. It so happens that such
singularities can also be characterized using the Arnold lists from [1,
Section 15.1]. Namely, they are just those dominating one of the singu-

larities of type E30, E32, W24, W
♯
2,∗, W30, N20, N24 or N28 (see Theorem

1). To prove this result we use the “sandwich” technique, just as in
the papers cited above. Certainly, the “one branch” condition is rather
restrictive and one would like to get rid of it, but even in this case the
calculations are cumbersome, so we had to restrict our ambition.

1. Main Theorem

We fix an algebraically closed field k.

Definition 1. A one branch curve singularity is a complete local noe-
therian k-algebra S of Krull dimension 1 without zero divisors and such
that S/m = k, where m is the maximal ideal of S. It is called plane if
m is generated by 2 elements.

Such an algebra is indeed isomorphic to the completion of a local
ring of a (singular) point p of an algebraic curve X over k; this curve
can be chosen plane if so is the singularity. Moreover, the curve X is
irreducible in the formal neighbourhood of the point p, or, the same,
p belongs to a unique branch (place, formal component) of X in the
sense of [12] or [16].
It is known that the normalization of a one branch curve singularity

S is isomorphic to the algebra R = k[[t]] of formal power series and R
is finitely generated as S-module. So we always suppose that trR ⊂
S ⊂ R for some r. For every element x ∈ R let v(x) be its valuation,
i.e. x = tv(x)u, where u is invertible in R. If S is plane and m = (x, y),
one can always suppose that v(x) < v(y) and v(x) ∤ v(y). Then we call
the pair v = (v1, v2) the valuation vector of S. Obviously, it does not
depend on the choice of such generators. Note that every plane curve
singularity is Gorenstein [3].
We recall the definition of the parameter number of ideals par(S) =

par(1, S) from [6, 8]. Remark first that every ideal of S is isomorphic to
an S-submoduleM ⊆ R containing S [5]. Let B(d) be the closed subset
of the Grassmannian Gr(d, R/S) consisting of those spaces which are
S-submodules. Every point b ∈ B(d) gives rise to an S-submodule
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M(b) of R which contains S. We set

O(b) = { b′ ∈ B(d) | M(b′) ≃ M(b) } ,

B(d, k) = { b ∈ B(d) | dimO(b) = k }

and

par(S) = max
d,k

{ dimB(d, k)− k } .

Note that both O(b) and B(d, k) are locally closed subsets in B(d).
Intuitively, par(S) is the biggest possible number of independent pa-
rameters that define isomorphism classes of S-ideals.

Definition 2. Let S be a one branch plane curve singularity, v be its
valuation vector. We say that S is

• of type E6k if v = (3, 3k + 1),
• of type E6k+2 if v = (3, 3k + 2),
• of type W6k if v = (4, 2k + 1),

• of type W ♯
k,∗ if v = (4, 4k + 2),

• of type N4k if v = (5, k + 1).

Remark. In [8] it is shown that, if chark = 0, our definitions of singu-
larities of types E and W are equivalent to those given in [1, § 15] in
terms of the normal forms of equations. We do not precise the equa-
tions for singularities of type N , since they are complicated and we do
not use them.

They say that a singularity S ′ dominates the singularity S, or is an
over-ring of S, if S ⊆ S ′ ⊆ R.

Theorem 1. Let S be a one branch curve singularity. The following

conditions are equivalent:

(1) par(S) ≤ 2.
(2) Either char k 6= 2 and S dominates one of the following singu-

larities:

E30, E32, W24, W
♯
2,∗, W30, N20, N24, N28,

or char k = 2 and S dominates one of the following singulari-

ties:

E30, E32, W18, W
♯
1,∗, N20, N24.

Proof. We suppose that chark 6= 2. If chark = 2, the calculations
are quite similar (even easier, since less cases must be considered).
As usually, we denote by 〈 a1, a2, . . . , am 〉 the vector space (over k)
generated by a1, a2, . . . , am.
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Let m = dimR/mR. It is known that also dim I/mI ≤ m for all
ideals I of S [5]. If m > 5, then the same observations as in [8, § 2.2]
show that par(S) ≥ 3. If m = 2, S is a Bass ring [5], so has finitely
many ideals up to isomorphism. For m = 3 the result follows from [10,
Theorem 4.1]. For m = 4 it was proven in [15]. Hence, we only have to
consider the case m = 5. Then S contains an element x with v(x) = 5,
so we deal with singularities of type N . In section 2 we will calculate
the ideals of the rings of types N4k (k ≤ 7) and show that there are
at most 2-parameter families in these cases. Therefore, we must show
now that par(1, S) ≥ 3 if m = 5 and S does not contain any element y
with 6 ≤ v(y) ≤ 8. If it is the case, S ⊆ S0, where S0 = k+ kx+ t9R.
The maximal ideal of S0 is m0 = kx+ t9R. One easily checks that the
S-ideals

I(α, β, γ) = 〈 1, t+ αt3 + βt4 + γt8 〉+m0, where α, β, γ ∈ k,

are pairwise non-isomorphic. It implies that par(1, S0) ≥ 3, hence,
par(1, S) ≥ 3 for every S ⊆ S0. �

We recall the sandwich procedure used for calculation of ideals [5, 8].
Let S be a curve singularity, m = radS and S ′ = Endm. We consider
S ′ as an over-ring of S and set S̄ = S ′/m. If I is an S-ideal, then
I ′ = S ′I is an S ′-ideal and I ′ ⊇ I ⊃ mI = mI ′. So I is defined by
the subspace V = I/mI of the S̄-module W = I ′/mI ′. This subspace
is not arbitrary, but generating in the sense that S̄V = W . Let E =
End I ′, E0 = { a ∈ E | aI ′ ⊆ mI ′ } and Ē = E/E0. Then W is a Ē-
module As it was mentioned above, we can and always will suppose
that R ⊇ I ⊇ S, thus R ⊇ I ′ ⊇ S ′. Then E ⊆ I ′, so Ē ⊆ W , and two
generating subspaces V, V ′ ⊆ W define isomorphic ideals if and only
if V ′ = aV for an element a ∈ Ē. Moreover, since we only consider
subspaces containing the class of 1 (which we also denote by 1), such
element a belongs to V ′. Let W̄ = I ′/m′I ′, where m

′ = radS ′. Then
the subspace V ⊆ W is generating if and only if its image in W̄ is the
whole W̄ . Therefore, if dim W̄ = m = dimR/mR, then m

′I ′ = mI ′,
hence the unique generating subspace of W is W itself, so the unique
S-ideal I with S ′I = I ′ is I ′. In the further calculations we will not
consider such S ′-ideals at all. The case V = W will also be omitted,
since then I = I ′.

2. Description of ideals of singularities of type N

Since the calculations are quite analogous in all cases, we consider the
“deepest” singularity of type N28, when the valuation vector is (5, 8).
So, let S ⊂ R = k[[t]] be generated (as a complete local k-algebra) by
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the elements x, y, where v(x) = 5, v(y) = 8. We may suppose that
t = y2/x3. We also set z = y/x. Then S ⊃ t28R. Moreover, since S is
Gorenstein, every S-ideal is either principal or an S0-ideal, where

S0 = Endm = S + 〈 t27 〉 = 〈 1, x, y, x2, xy, x3, y2, x2y, x4, xy2 〉+ t23R

(see [3] or [5]). Consider the chain of rings S0 ⊂ S1 ⊂ S2 ⊂ S3 ⊂ S4,
where

S1 = Endm0 = 〈 1, x, y, x2, xy, x3, y2 〉+ t18R,

S2 = Endm1 = 〈 1, x, y, x2, tx2 〉+ t13R,

S3 = Endm2 = 〈 1, z, x 〉+ t8R,

S4 = Endm3 = 〈 1, z 〉+ t5R,

and mi = radSi. The S3-ideals are known [13, 9, 10]; they are (except
R, S4 and S3 itself):

R2 = 〈 1 〉+ t2R,

R3 = 〈 1 〉+ t3R,

R∗

3 = 〈 1, t 〉+ t3R,

S∗

4 = 〈 1, t2, t3 〉+ t5R.

The ideals R∗

3 and S∗

4 are indeed dual to R3 and S4 respectively, though
we will not use this property. Note that it follows from [5] that every
S3-ideal is isomorphic either to an over-ring of S3 or to the ideal dual
to such an over-ring.

Proposition 1. Here is a complete list of representatives of the ideal

classes of the ring S2, which are not S3-ideals, sorted by the induced

S3-ideals I
′ = S3I. We set Ĩ = m2I

′.

• I ′ = S3; Ĩ = m2:

(1) S2,

(2) F1(α, β) = 〈 1, z + αz3 + βz4 〉+m2,

(3) F2(α) = 〈 1, z2 + αz3 〉+m2,

(4) F3(α) = 〈 1, z3 + αz4 〉+m2,

(5) I1 = 〈 1, z4 〉+m2,

(6) F4(α, β) = 〈 1, z + αz4, z2 + βz4 〉+m2,

(7) F5(α) = 〈 1, z, z3 + αz4 〉+m2,

(8) F6(α) = 〈 1, z + αz3, z4 〉+m2,

(9) F7(α) = 〈 1, z2, z3 + αz4 〉+m2,

(10) F8(α) = 〈 1, z2 + αz3, z4 〉+m2,

(11) I2 = 〈 1, z3, z4 〉+m2,

(12) I3 = 〈 1, z.z2, z3 〉+m2,
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(13) I4 = 〈 1, z, z2, z4 〉+m2,

(14) I5 = 〈 1, z, z3, z4 〉+m2,

(15) I6 = 〈 1, z2, z3, z4 〉+m2.

• I ′ = S4; Ĩ = 〈 x, y 〉+ t10R:

(1) F9(α, β) = 〈 1, z + αtz2 + βz3 〉+ Ĩ, where α 6= 0,
(2) F10(α, β) = 〈 1, z2 + αtz2 + βz3 〉+ Ĩ, where α 6= 0,

(3) F11(α) = 〈 1, tz2 + αz3 〉+ Ĩ,
(4) F12(α, β) = 〈 1, z + αtz2, z2 + βtz2 〉+ Ĩ,

where α 6= 0 or β 6= 0,
(5) F13(α, β) = 〈 1, z + αz3, tz2 + βz3 〉+ Ĩ,

(6) F14(α) = 〈 1, z + αtz2, z3 〉+ Ĩ, where α 6= 0,
(7) F15(α, β) = 〈 1, z2 + αz3, tz2 + βz3 〉+ Ĩ,

(8) F16(α) = 〈 1, z2 + αtz2, z3 〉+ Ĩ, where α 6= 0,
(9) I7 = 〈 1, tz2, z3 〉+ Ĩ,

(10) F17(α) = 〈 1, z, z2, tz2 + αz3 〉+ Ĩ,
(11) F18(α, β) = 〈 1, z + αtz2, z2 + βtz2, z3 〉+ Ĩ,

where α 6= 0 or β 6= 0,
(12) I8 = 〈 1, z, tz2, z3 〉+ Ĩ,
(13) I9 = 〈 1, z2, tz2, z3 〉+ Ĩ.

• I ′ = S∗

4 ; Ĩ = 〈 x, tz2, y 〉+ t10R:

(1) F19(α, β) = 〈 1, t2 + αz + βz2 〉+ Ĩ,

(2) F20(α, β) = 〈 1, t2 + αz2, z + βz3 〉+ Ĩ,
(3) F21(α, β) = 〈 1, t2 + αz, z2 + βz3 〉+ Ĩ,

(4) F22(α, β) = 〈 1, t2 + αz + βz2, z3 〉+ Ĩ,
(5) F23(α) = 〈 1, t2, z + αz3, z2 〉+ Ĩ,

(6) F24(α) = 〈 1, t2 + αz, z2, z3 〉+ Ĩ,
(7) F25(α) = 〈 1, t2 + αz2, z, z3 〉+ Ĩ.

• I ′ = R3; Ĩ = 〈 x 〉+ t8R:

(1) F26(α, β) = 〈 1, z + αtz + βtz2 〉+ Ĩ, where α 6= 0,

(2) F27(α, β) = 〈 1, tz + αz2 + βtz2 〉+ Ĩ,
(3) F28(α, β) = 〈 1, z, tz + αz2 + βtz2 〉+ Ĩ,

(4) F29(α, β) = 〈 1, z + αtz, z2 + βtz2 〉+ Ĩ, where α 6= 0,
(5) F30(α) = 〈 1, z + αtz, tz2 〉+ Ĩ, where α 6= 0,

(6) F31(α, β) = 〈 1, tz + αtz2, z2 + βtz2 〉+ Ĩ,
(7) F32(α) = 〈 1, tz + αz2, tz2 〉+ Ĩ,

(8) F33(α) = 〈 1, z, tz, z2 + αtz2 〉+ Ĩ, where α 6= 0,
(9) I10 = 〈 1, z, tz, tz2 〉+ Ĩ,

(10) F34(α) = 〈 1, z + αtz, z2, tz2 〉+ Ĩ, where α 6= 0,
(11) I11 = 〈 1, z, z2, tz2 + αz3 〉+ Ĩ.
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• I ′ = R∗

3; Ĩ = 〈 x, z2 〉+ t8R:

(1) F35(α, β) = 〈 1, t+ αz + βtz 〉+ Ĩ, where α 6= 0,
(2) F36(α, β) = 〈 1, t, z + αtz + βtz2 〉+ Ĩ,

(3) F37(α, β) = 〈 1, t+ αz, tz + βtz2 〉+ Ĩ,
(4) F38(α, β) = 〈 1, t+ αz + βtz, tz2 〉+ Ĩ,

(5) F39(α) = 〈 1, t, z + αtz2, tz 〉+ Ĩ,
(6) F40(α) = 〈 1, t, z + αtz, tz2 〉+ Ĩ,

(7) F41(α) = 〈 1, t+ αz, tz, tz2 〉+ Ĩ.
• I ′ = R2; Ĩ = 〈 x 〉+ t7R:

(1) F42(α, β) = 〈 1, t2 + αz2, z + βtz 〉+ Ĩ, where β 6= 0,

(2) F43(α, β) = 〈 1, t2 + αz, tz 〉+ Ĩ,
(3) I12(α, β) = 〈 1, t2, z, tz 〉+ Ĩ,

(4) F44(α, β) = 〈 1, t2, z + αtz, z2 〉+ Ĩ, where α 6= 0,
(5) F45(α) = 〈 1, t2 + αz, tz, z2 〉+ Ĩ.

• I ′ = R; Ĩ = t5R:

(1) F46(α, β) = 〈 1, t+ αt4, t2 + βt4 〉+ Ĩ,
(2) I13 = 〈 1, t, t2, t3 〉+ Ĩ,

(3) I14 = 〈 1, t, t2, t4 〉+ Ĩ.

In all these formulae α and β denote some elements from the field k.

Moreover, all quotient spaces W = I ′/m2I
′ are of dimension 5, so all

S-ideals I such that S2I = I ′ are actually S2-ideals. Therefore, we need

not consider them in the further calculations.

Proof. We only consider the case when I ′ = S4, since all other cases are
quite similar (mostly easier). Then W = 〈 1, z, z2, tz2, z3 〉, where we
denote the class of an element by the same symbol as the element itself,
and W̄ = 〈 1, tz2 〉. Therefore, the dimension of a generating subspace
V is at least 2. We also suppose that 1 is an element of a basis of V .
If dimV = 2, there are the following possibilities:

(1) V = 〈 1, v 〉, where v = z + γz2 + αtz2 + ηz3 and α 6= 0, since
V must project onto W̄ . Set β = η − γ2 and a = 1 − tu,
where u = z+αtz2+βz3. Then aV = 〈 1, u 〉 and the preimage
of aV in S4 is F9(α, β) from the list. On the other hand, the
image of F9(α, β) in W is V (α, β) = 〈 1, z + αtz2 + βz3 〉. If
V (α′, β ′) = aV (α, β), then a ∈ V (α′, β ′), so we may suppose
that a = 1−λ(z+α′tz2+β ′z3). Then the condition a(z+αtz2+
βz3) ∈ V (α′, β ′) implies that α′ = α and β ′ = β. Therefore,
the ideals F9(α, β) are pairwise nonisomorphic. Further on we
omit such verifications of nonisomorphy, since they are easy and
straightforward.
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(2) V = 〈 1, z2 + αtz2 + βz3 〉 gives rise to F10(α, β). Again one
easily checks that all these ideals are nonisomorphic.

(3) V = 〈 1, tz2 + αz3 〉 gives rise to F11(α).

If dimV = 3, there are the following possibilities:

(4) V = 〈 1, u, v 〉, where u = z+αtz2+γz3, v = z2+βtz2+ηz3 with
α 6= 0 or β 6= 0. Let a = 1−ηu′−γv′, where u′ = z+αtz2, v′ =
z2 + βtz2; then aV = 〈 1, u′, v′ 〉, so gives rise to F12(α, β).

(5) V = 〈 1, u, v 〉, where u = z + γz2 + ηz3, v = tz2 + βz3. Set
α = η − γ2 and u′ = z + αz3. Then (1 − γu′)V = 〈 1, u′, v 〉, so
it gives rise to F13(α, β).

(6) In the same way V = 〈 1, z + βz2 + αtz2, z3 〉 is reduced to
〈 1, z + αtz2, z3 〉 and gives rise to F14(α).

(7) V = 〈 1, z2 + αz3, tz2 + βz3 〉 gives rise to F15(α, β).
(8) V = 〈 z2 + αtz2, z3 〉 gives rise to F16(α).
(9) V = 〈 z2, tz2, z3 〉 gives rise to I7.

Finally, if dimV = 4, there are the following possibilities:

(10) V = 〈 1, u, v, w 〉, where u = z+βz3, v = z2+γz3, w = tz2+αz3.
Then (1 − γz − βz2)V = 〈 1, z, z2, tz2 + αz3 〉 and gives rise to
F17(α).

(11) V = 〈 1, z + αtz2, z2 + βtz2, z3 〉 gives rise to F18(α, β).
(12) V = 〈 1, z + αz2, tz2, z3 〉. Then (1− αz)V = 〈 1, z, tz2, z3 〉 and

gives rise to I8.
(13) V = 〈 1, z2, tz2, z3 〉 gives rise to I9.

�

Now we have to find, for every S2-ideal I from this list, all S1-ideals
I1 such that S2I

1 = I, then to find, for every I1, all S0-ideals I
0 such

that S1I
0 = I1 or S1I

0 = I. Since the calculations are quite similar
for all ideals I and very much alike the calculations from the preceding
proof (even easier), we only present several “typical” cases.

Case 1. (This case is the most complicated.)
I = S2, m1S2 = m0S2 = m1.
It gives new S1-ideals:

(1) S1,
(2) I11 (α, β) = 〈 1, u(α, β) 〉+m1, where u(α, β) = z2x(1+αz+βz2),
(3) I12 (α) = 〈 1, z3x+ αz4x 〉+m1,
(4) I13 = 〈 1, z4x 〉+m1,
(5) I14 (α, β) = 〈 1, z2x+ αz4x, z3x+ βz4x 〉+m1,
(6) I15 (α) = 〈 1, z2x+ αz3x, z4x 〉+m1,
(7) I16 = 〈 1, z3x, z4x 〉+m1.
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S1/m0 = 〈 1, t19, t22 〉. It gives new S0-ideals:
S0, 〈 1, t19 + αt22 〉, 〈 1, t22 〉.
m0I

1
1 (α, β) = m1I

1
1 (α, β) if β 6= α2. If β = α2, then

I11 (α, α
2)/m0I

1
1 (α, α

2) = 〈 1, u, t19 〉, which gives new S0-ideals
〈 1, u(α, α2) + γt19, z2xy + αz3xy 〉+m0.

Case 2. I = F1(α, β); m1I = m0I = 〈αyz2 + βyz3, yz + αyz3 〉+m1.

a. α 6= 0. Then the only new possibilities are
I1 = 〈 1, z + αz3 + βz4 〉+m1I,
I0 = 〈 1, z + αz3 + βz4 〉+m0I

1, where
m0I

1 = 〈αyz2 + βyz3, yz + αyz3 + βyz4 〉+m0.

b. α = 0, β 6= 0. Then the only new possibilities are
I1 = 〈 1, z + βz4 〉+m1I.
Since m0I

1 = m1I
1, no new I0 occur.

c. α = β = 0. Then the only new possibilities are
I1 = V +m1I, where V is one of the following subspaces:
〈 1, z + γyz3 〉, or 〈 1, z + γyz3, yz2 + γ′yz3 〉, or 〈 1, z, yz3 〉.
In all cases m0I

1 = m1I
1, so no new I0 occur.

Case 3. I = I1; m1I = m0I = 〈 x, y, x2, xy 〉+ t15R.
The only new possibility is I1 = 〈 1, αtx2 + z4 〉+m1I .
Since m0I

1 = m1I
1, so no new I0 occur.

Case 4. I = F11(α); m1I = m0I = 〈 x, y, x2 〉+ t13R.
The only new possibility is I1 = 〈 1, tz2 + αz3 + βtx2 〉+m1I.
Since m0I

1 = m1I
1, so no new I0 occur.

Case 5. I = F20(α, β). If β 6= 0, then m0I = m1I = m2I, so no new
S1- and S0-ideals occur. If β = 0, then m0I = m1I = 〈 t2x, zy, z4 〉+m1

and we get new S1-ideals
I1(α) = 〈 1, t2 + αz2, z 〉+m0I.
Again, m0I

1(α) = m1I1(α), so no new S0-ideals occur.
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