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Abstract

We research some Q- and Q1, Q2-conditional symmetry properties of the Kramers
equation. Using that symmetry, we have constructed the well-known Boltzmann so-
lution.

1 Q-conditional symmetry

Let us consider the Kramers equation which describes the motion of a particle in a
fluctuating medium [1]

∂u

∂t
= − ∂

∂x
(yu) +

∂

∂y
(V ′(x)u) + γ

∂

∂y

(
yu +

∂u

∂y

)
, (1)

where u = u(t, x, y) is the probability density, γ is a constant and V (x) is an external
potential.

The group properties of equation (1) for various potentials were investigated in detail
by means of the Lie method [2].

Theorem 1. The maximal invariance local group of the Kramers equation (1) is 1) a

six-dimensional Lie group, when V ′(x) = kx+ c (k, c are constants), k �= −3
4
γ2,

3
16

γ2;

2) an eight-dimensional Lie group, when V ′(x) = kx+ c, k = −3
4
γ2,

3
16

γ2;

3) a two-dimensional Lie group generated by the operators P0 = ∂t and I, when V ′(x) �=
kx+ c.

Investigation of the conditional invariance allows us to obtain new classes of the poten-
tial V (x) for which we can find exact solutions of equation (1) [3, 4, 5]. Let us consider
an infinitesimal operator of the form

Q = ξ0(t, x, y, u)
∂

∂t
+ ξ1(t, x, y, u)

∂

∂x
+ ξ2(t, x, y, u)

∂

∂y
+ η(t, x, y, u)

∂

∂u
. (2)

We say that equation (1) is Q–conditionally invariant if the system of equations (1) and

Qu(t, x, y) = 0 (3)

is invariant under the action of operator (2) [5].
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Remark. If Q is a Q-conditional operator for a PDE, then the equation is Q̄-conditionally
invariant under Q̄ = f(t, x, y, u)Q, where f(t, x, y, u) is an arbitrary function of indepen-
dent and dependent variables. We say that Q and Q̄ are equivalent operators. Then we
may consider ξ0 = 1 in (2) if ξ0 �≡ 0.

Let us consider equation (2) with the potential

V ′ = kx−1/3 +
3
16

γ2x, k �= 0 (4)

The operator

Q = ∂t − 3
4
γx∂x +

(
3
8
γ2 − 1

4
γy

)
∂y + γu∂u (5)

is not a Lie symmetry operator of equations (1), (3) as follows from Theorem 1. However
the operator (5) gives the invariant solution (ansatz)

u(t, x, y) = exp(γt)ϕ(ω1, ω2), ω1 = exp
(
3
4
γt

)
x, ω2 = x−1/3y +

3
4
γx2/3, (6)

which reduces the equation. Indeed, substituting (6) into (1), (3), we obtain the reduced
equation

ω2ϕ1 −
(

ω2
2

2
+ k

)
ω−1

1 ϕ2 − γω−1
1 ϕ22 = 0, ϕi =

∂ϕ

∂ωi
, ϕ22 =

∂2ϕ

∂ω2∂ω2
.

This equation may be integrated, in particular, when ϕ = ϕ(ω2).

Theorem 2. All Q-conditional operators of equation (1) with V ′ �= kx−1/3 +
3
16

γ2x are
eqivalent to ∂t, I.

Theorem 3. Equations (1) and (3) have the following Q-conditional symmetry operators

Q = ∂t + F (t)x∂x +
(
1
3
F (t)y + F ′(t)x+

2
3
F 2x

)
∂y + fu∂u,

where F (t) is an arbitrary solution of the equation
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4
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)
+

C exp
{−2

3

∫
Fdt

} − 4
3γF + γ2,

where C = const.

Theorem 4. All Q-conditional symmetry operators (ξ0 = 1) of equation (1) with V ′ = kx,

k �= −1
4
γ2,

3
16

γ2 are equivalent to the Lie symmetry operators.
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Theorem 5. All Q−conditional symmetry operators (ξ0 = 1) of equation (1) with V ′ =

kx, k = −1
4
γ2,

3
16

γ2 (including those equivalent to Lie symmetry operators) have the
following form

Q = ∂t + (F (t)x +G(t))∂x+[
1
3
F (t)y +

(
F ′(t) +

2
3
F (t)2

)
x+G′(t) +

2
3
F (t)G(t)

]
∂y + f(t, x, y)u∂u.

Here, the functions F (t), G(t) satisfy the following equations
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4
9
F 3 +

(
4
5
k − 2

5
γ2

)
F = 0,

G′′ +
4
3
FG′ +

2
3
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2
3
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4
9
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where h(t) satisfies the equation
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4
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2
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The function f(t, x, y) is
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2
3
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where in both a) and b) the function s(t) satisfies the equation

s′ +
2
3
Fs = −2γ

(
2
3
F ′ +

4
9
F 2 +

1
3
γF

)
+
4
3
γ2F.

2 Q1,Q2-conditional symmetry

Let we consider two operators Q1 and Q2 which have the form (2).

Definition [6]. We say that equation (1) is Q1,Q2-conditionally invariant if the system

Q1u = 0,

Q2u = 0,

∂u

∂t
= − ∂

∂x
(yu) +

∂

∂y
(V ′(x)u) + γ

∂

∂y

(
yu +

∂u

∂y

) (7)

is invariant under the operators Q1 and Q2.



Conditional Symmetry and Exact Solutions of the Kramers Equation 453

Here, we restrict the form of the operators:

Q1 =
∂

∂x
− η1(t, x, y, u)

∂

∂u
,

Q2 =
∂

∂y
− η2(t, x, y, u)

∂

∂u
.

(8)

System (7) for operators (8) can be written as

∂u

∂x
= η1(t, x, y, u),

∂u

∂y
= η2(t, x, y, u),

∂u

∂t
= − ∂

∂x
(yu) +

∂

∂y
(V ′(x)u) + γ

∂

∂y
(yu +

∂u

∂y
).

(9)

Following the Lie’s algorithm [7], we find that

∂η1

∂t
+ γu

∂η1

∂u
− V ′′(x)η2 − (γy + V ′(x))

∂η1

∂y
+ y

∂η1

∂x
− γη1−

γ
∂2η1

∂y∂y
− 2γη2 ∂2η1

∂y∂u
= 0,

∂η2

∂t
+ γu

∂η2

∂u
− γη2 − (γy + V ′(x))

∂η2

∂y
+ y

∂η2

∂x
− γη2−

γ
∂2η2

∂y∂y
− 2γη2 ∂2η2

∂y∂u
= 0.

(10)

It is easy to show that η1 = −V ′(x)u, η2 = −yu is a solution of system (10). According
to the algorithm [5] using the operators

Q1 =
∂

∂x
− V ′(x)u

∂

∂u
, Q2 =

∂

∂y
− yu

∂

∂u
, (11)

we find the ansatz invariant under operators (8)

u = ϕ(t) exp
{−V (x)− y2/2

}
. (12)

Substitution of (12) into (1) gives ϕ′(t) = 0. So, we find the solution which is the Boltz-
mann distribution

u(x, y) = N exp
{−V (x)− y2/2

}

(N is a normalization constant). It is a stationary solution.
From the above example we see that the further work on finding Q- and Q1, Q2-

conditional symmetry operators is of great interest.
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