Symmetry in Nonlinear Mathematical Physics 1997, V.2, 450-454.

Conditional Symmetry and Exact Solutions of
the Kramers Equation

Stanislav SPICHAK t and Valerii STOGNII §

T Institute of Mathematics of the National Academy of Sciences of Ukraine,
8 Tereshchenkivs’ka Str., Kyiv 4, Ukraine
E-mail: spichak@apmat.freenet.kiev.ua

I Kyiv Polytechnical Institute, 87 Pobedy Avenue, Kyiv, Ukraine

Abstract

We research some Q- and ), @2-conditional symmetry properties of the Kramers
equation. Using that symmetry, we have constructed the well-known Boltzmann so-
lution.

1 (-conditional symmetry

Let us consider the Kramers equation which describes the motion of a particle in a
fluctuating medium [1]
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= v = o), 1
5 = )+ (V@) g (vt 5 (1)
where v = u(t,z,y) is the probability density, v is a constant and V(z) is an external
potential.
The group properties of equation (1) for various potentials were investigated in detail
by means of the Lie method [2].

Theorem 1. The mazimal invariance local group of the Kramers equation (1) is 1) a
2

siz-dimensional Lie group, when V'(z) = kx + ¢ (k, ¢ are constants), k # —Z’yQ, 677

3
2) an eight-dimensional Lie group, when V'(zx) = kx + ¢, k = —172, — 2

3) a two-dimensional Lie group generated by the operators Py = 0y and I, when V'(z) #
kx 4+ c.

Investigation of the conditional invariance allows us to obtain new classes of the poten-
tial V' (z) for which we can find exact solutions of equation (1) [3, 4, 5]. Let us consider
an infinitesimal operator of the form

Q= a0y + g+ Etn ) balte gl @
We say that equation (1) is @—conditionally invariant if the system of equations (1) and
Qu(t,z,y) =0 (3)

is invariant under the action of operator (2) [5].
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Remark. If Q is a Q-conditional operator for a PDE, then the equation is Q-conditionally
invariant under Q = f(¢,z,y,u)Q, where f(t,z,y,u) is an arbitrary function of indepen-
dent and dependent variables. We say that Q and Q are equivalent operators. Then we
may consider £° = 1 in (2) if €0 # 0.

Let us consider equation (2) with the potential
/ ~1/3 , 3 2
Vi=kx —i—ﬁfym, kE#0 (4)
The operator

3 3 1
Q= O — Z’}@az + <§’72 - 17y> 8@/ + ’Yuau (5)

is not a Lie symmetry operator of equations (1), (3) as follows from Theorem 1. However
the operator (5) gives the invariant solution (ansatz)

3 _ 3
ult, ,y) = exp(yt)p(wr,wa), w1 = exp (nyt> v, wy=a" Py (6)
which reduces the equation. Indeed, substituting (6) into (1), (3), we obtain the reduced
equation

2 2
w _ _ 0 0
w21 — <?2 + k) w1 Loy — YW Yo =0, ¢i= &f’ P22 = d
(2

This equation may be integrated, in particular, when ¢ = p(w2).

3
Theorem 2. All Q-conditional operators of equation (1) with V' # ka3 4 E'yzx are
eqivalent to Oy, 1.

Theorem 3. Equations (1) and (3) have the following Q-conditional symmetry operators
1 / 2 2
Q=0+ F(t)z0o, + gF(t)y + F'(t)x + §F x| Oy + fuly,
where F(t) is an arbitrary solution of the equation

4 1
F" 4+ 9FF" + §F3 — Z'yQF =0,

2 4 1 2 1
29f =~y (gF,+§F2+§7F> —yz <7F/+§7F2+§’72F>—

8 4 16
Cexp{—%det} — %'yF—i-'yQ,

1 4
22 (§72F’ + —72F% 4 37317) — 2?3k <2F’ + §F2 + 7F> +

where C' = const.

Theorem 4. All Q-conditional symmetry operators (€° = 1) of equation (1) with V' = kzx,
1 3
k # —172, E'yQ are equivalent to the Lie symmetry operators.
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Theorem 5. All Q—conditional symmetry operators (£° = 1) of equation (1) with V' =

1 3
kx, k = —172, E72 (including those equivalent to Lie symmetry operators) have the

following form

Q=0+ (F(t)xr+ G(t))0+

1 / 2 2 ! 2

gF(t)y + | F'(t) + gF(t) x+G'(t) + gF(t)G(t) Oy + f(t,z,y)ud,.
Here, the functions F(t), G(t) satisfy the following equations

4 4 2
F'"+2FF + -F>+ (k-4 | F =
+ +gF <5 = 0,
" 4 / 2 / / 2 4 2

where h(t) satisfies the equation

h”+(%F—7>h’+<k+§F’+gF2—§7F>h=0-

The function f(t,z,y) is
2 4 1 2
k=-= Nf=—y?(SF' +-F*+ -AF) — F'+ Z4F?) +h
a) A y<3 +3 +37) y[$<’7 +37E ) +h+
2
%73x2F +x <h’ —vh + §Fh> + 5(t),

2 4 1 2 1
b) k= 372, ovf = —y? (—F’ + -F% 4 —’yF) —y [m <7F’ + SyF? 4 —) + h] —

16 3 9 3 3 2
z? 37317 + §72F’ + 172F2 +az (W —~h+ 2pn + 5(t)
16 8 4 3 ’

where in both a) and b) the function s(t) satisfies the equation

2 2 4 1 4
"4+ ZFs= -9y ZF + —F?>+ Z~F —~?F.
s+3 s 7<3 +9 —1-37)4-37

2  ()1,Q)o-conditional symmetry

Let we consider two operators 1 and Q2 which have the form (2).

Definition [6]. We say that equation (1) is Q1,Q2-conditionally invariant if the system

Qlu = 07
Q2u =0, (7)
ou 0

- a ) ou
=g+ o @) g (vt )

18 invariant under the operators Q1 and QQs.
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Here, we restrict the form of the operators:

Ql = 2 - 1(@%%“)%7

[ ) ®
> oy T du
System (7) for operators (8) can be written as
ou 1
6_13 =1 (t7x7y7u)7
ou
6_y =1 (t,l’,y,U), (9)
ou 0 o, ., 0 ou
i s 6—y(V (@)u) + Va—y(yu + 8_y)'
Following the Lie’s algorithm [7], we find that
a77 on ! " 2 / a771 771 1
S T %—V (@) = Oy + V@) 5 -+ g~ -
82 1 82 1
-2 =0
’Yay@y m’ Oyou ’ (10)
o o oot oon®
o +7u8——7n —(w+ Vi ))8—+y8x =

82 2 82 2
Vay(?y -2’ dyou

It is easy to show that n' = —V'(x)u, n? = —yu is a solution of system (10). According
to the algorithm [5] using the operators

RN} 00

we find the ansatz invariant under operators (8)

u=p(t)exp {-V(x) —y*/2} . (12)

Substitution of (12) into (1) gives ¢'(t) = 0. So, we find the solution which is the Boltz-
mann distribution

u(z,y) = Nexp {-V(z) — y*/2}

(N is a normalization constant). It is a stationary solution.
From the above example we see that the further work on finding @- and Q1, Q2-
conditional symmetry operators is of great interest.

One of the author (SS) is grateful to the DFFD of Ukraine (project 1.4/356) for the
financial support.



454 S. Spichak and V. Stognii

References

[1] Gardiner C. W., Handbook of Stochastic Methods, Springer, Berlin 1985.
[2] Spichak S. and Stognii V., Reports of Math. Phys., 1997, V.40, 125.

[3] Bluman G.W. and Cole I.D.: J. Math. Mech., 1969, V.18, 1025.

[4] Fushchych W. and Tsyfra 1., J. Phys. A: Math. Gen., 1987, V.20, L45.

[6] Fushchych W., Shtelen W. and Serov N., Symmetry Analysis and Exact Solutions of Equations of
Nonlinear Mathematical Physics, Kluwer, Dordrecht, 1993.

[6] Fushchych W. and Zhdanov R., Symmetries and Exact Solutions of Nonlinear Dirac Equations, Ma-
thematical Ukraina Publisher, Kyiv, 1997.

[7] Ovsyannikov L.V., Group Analysis of Differential Equations, Academic Press, New York 1982.



