On Universality of Bulk Local Regime of the Deformed Laguerre Ensemble Tatyana Shcherbina Institute for Low Temperature Physics, Kharkov, Ukraine. June 24, 2009

Examples:

Gaussian unitary ensemble (GUE):

$$M = n^{-1/2} W, \tag{1}$$

where W is a Hermitian $n \times n$ matrix whose entries $\Re W_{jk}$ and $\Im W_{jk}$ are independent identically distributed Gaussian random variables with expectation 0 and dispersion 1/2.

Hermitian matrix model:

$$P(dM) = \frac{1}{Z_n} \exp\{-n \operatorname{Tr} V(M)\} dM, \qquad (2)$$

where V is some function and Z_n is a normalizing constant. If we take $V(x) = x^2/2$ we obtain GUE.

Deformed Laguerre ensemble:

$$H_n = \frac{1}{n} A_{m,n}^* A_{m,n} + H_n^{(0)}, \qquad (3)$$

where $H_n^{(0)}$ is a Hermitian $n \times n$ matrix (random or not random) with eigenvalues $\{h_j^{(n)}\}_{j=1}^n$ and $A_{m,n}$ is a $m \times n$ matrix, whose entries $\Re a_{\alpha j}$ and $\Im a_{\alpha j}$ are independent Gaussian random variables such that

$$\mathbf{E}\{a_{\alpha j}\} = \mathbf{E}\{a_{\alpha j}^2\} = 0, \ \mathbf{E}\{|a_{\alpha j}|^2\} = 1, \ \alpha = \overline{1, m}, \ j = \overline{1, n}, \quad (4)$$

moreover $m/n \to c > 1$ (as $m, n \to \infty$).

Denote by $\lambda_1^{(n)}, \ldots, \lambda_n^{(n)}$ the eigenvalues of the random matrix. Define the normalized eigenvalue counting measure of the matrix as

$$N_n(\triangle) = \sharp\{\lambda_j^{(n)} \in \triangle, j = \overline{1, n}\}/n, \quad N_n(\mathbb{R}) = 1, \tag{5}$$

where \triangle is an arbitrary interval of the real axis.

For many known random matrices the expectation $\overline{N}_n = \mathbb{E}\{N_n\}$ is absolutely continuous and its density ρ_n is called the density of states. Let

$$N_n^{(0)}(\triangle) = \frac{1}{n} \sharp \{ h_j^{(n)} \in \triangle, j = \overline{1, n} \},\$$

be the Normalized Counting Measure of eigenvalues of $H_n^{(0)}$.

The global regime for the ensemble (3) - (4): It was shown in the paper of Marchenko, Pastur [3] that if $N_n^{(0)}$ converges weakly with probability 1 to a non-random measure $N^{(0)}$ as $n \to \infty$, then N_n also converges weakly with probability 1 to a measure N. The measure N is normalized to unity and is absolutely continuous and its density ρ is called the limiting density of states of the ensemble. It follows from the definition of N_n and the above result that any n-independent interval Δ such that $N(\Delta) > 0$ contains O(n) eigenvalues. Thus, to deal with a finite number of eigenvalues one has to consider spectral intervals, whose length tends to zero as $n \to \infty$. This is the local regime of the random matrix theory. In particular, in the local bulk regime we are about intervals of the length $O(n^{-1})$. Define also **the k-point correlation function** $\mathbf{R}_{\mathbf{k}}^{(\mathbf{n})}$ by the equality:

$$\mathbf{E}\left\{\sum_{\substack{j_1\neq\ldots\neq j_k}}\varphi_k(\lambda_{j_1},\ldots,\lambda_{j_k})\right\}$$
$$=\int_{\mathbb{R}}\varphi_k(\lambda_1,\ldots,\lambda_m)R_k^{(n)}(\lambda_1,\ldots,\lambda_k)d\lambda_1,\ldots,d\lambda_k,\quad(6)$$

where $\varphi_k : \mathbb{R}^k \to \mathbb{C}$ is bounded, continuous and symmetric in its arguments and the summation is over all k-tuples of distinct integers $j_1, \ldots, j_k = \overline{1, n}$. We will call the spectrum the support of N and define the bulk of the spectrum as

 $\operatorname{bulk} N = \{\lambda | \exists (a, b) \subset \operatorname{supp} N : \lambda \in (a, b), \ \inf_{\mu \in (a, b)} \rho(\mu) > 0\}.$ (7)

The bulk local regime for the ensemble (3) - (4):

The universality hypothesis on the bulk of the spectrum says that for $\lambda_0 \in \text{bulk } N$ we have:

(i) for any fixed k uniformly in x_1, x_2, \ldots, x_k varying in any compact set in \mathbb{R}

$$\lim_{n \to \infty} \frac{1}{(n\rho_n(\lambda_0))^k} R_k^{(n)} \left(\lambda_0 + \frac{x_1}{\rho_n(\lambda_0) n}, \dots, \lambda_0 + \frac{x_k}{\rho_n(\lambda_0) n} \right)$$
$$= \det\{S(x_i - x_j)\}_{i,j=1}^k, \quad (8)$$

where

$$S(x_i - x_j) = \frac{\sin \pi (x_i - x_j)}{\pi (x_i - x_j)};$$
(9)

(ii) if

$$E_n(\Delta) = \mathbf{P}\{\lambda_i^{(n)} \notin \Delta, \ i = \overline{1, n}\},\tag{10}$$

is the gap probability, then

$$\lim_{n \to \infty} E_n\left(\left[\lambda_0 + \frac{a}{\rho_n(\lambda_0) n}, \lambda_0 + \frac{b}{\rho_n(\lambda_0) n}\right]\right) = \det\{1 - S_{a,b}\}, \quad (11)$$

where the operator $S_{a,b}$ is defined on $L_2[a,b]$ by the formula

$$S_{a,b}f(x) = \int_{a}^{b} S(x-y)f(y)dy,$$

and S is defined in (9).

The main result of the paper is following theorem

Theorem 1 Let c > 1 and the eigenvalues $\{h_j^{(n)}\}_{j=1}^n$ of $H_n^{(0)}$ in (3) be a collection of random variables independent of A_n . Assume that there exists a non-random measure $N^{(0)}$ of a bounded support such that such that $N_n^{(0)}$ converges weakly with probability 1 to $N^{(0)}$. Then for any $\lambda_0 \in \text{bulk } N$ the universality properties (8) and (11) hold.

Harish-Chandra/Itzykson-Zuber formula:

$$\int \exp\{\operatorname{Tr} AU^* BU\} d\,\mu(U) = \frac{\det[\exp\{a_i b_j\}]_{i,j=1}^n}{\triangle(A)\triangle(B)},\tag{12}$$

where a_i , b_i are eigenvalues of matrices A and B correspondingly and $\triangle(A)$ is a Van der Monde determinant of eigenvalues of matrix A.

Proposition 1 Let H_n be the random matrix defined in (3) and $R_k^{(n)}$ be the correlation function (6). Then we have

 $R_k^{(n)}(\lambda_1,\ldots,\lambda_k) = \mathbf{E}^{(h)} \{ \det\{K_n(\lambda_i,\lambda_j)\}_{i,j=1}^k \},$ (13)

with

$$K_{n}(\lambda,\mu) = \frac{m}{4\pi^{2}} \oint_{L} \oint_{\omega} \frac{\exp\{n(u-t)\}(t+\lambda)^{m-1}}{(u-t)(u+\mu)^{m+1}} \prod_{j=1}^{n} \left(\frac{u+h_{j}^{(n)}}{t+h_{j}^{(n)}}\right) dt du, \quad (14)$$

where the contour L is a closed contour, encircling $\{-h_j^{(n)}: h_j^{(n)} < \lambda\}$ and ω is any closed contour encircling $-\mu$ and not intersect L.

This proposition reduces (8) to the limiting transition in (14). The limiting transition is done using the steepest descent method.

- P. Deift, T. Kriecherbauer, K. McLaughlin, S. Venakides, X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions. - Com. Pure Ap. Math.(1999), 52
- [2] L. Pastur, M. Shcherbina, Bulk Universality and related properties of Hermitian matrix model.- J.Stut.Phys.(2007), 130, p.205-250
- [3] V.A. Marchenko, L.A. Pastur, Distribution of eigenvalues for some sets of random matrices. - Math.USSR-Sb.(1967), 1, p.457-483.
- [4] E.Brezin, S. Hikami, Extension of level-spacing universality. Phys.Rev. E(1997),56, p.264-269