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The Random Matrix Theory (RMT) is an active field of mathematics
and theoretic physics. The big interest to this subject is conditioned by a
numerous applications of RMT related to quantum mechanics and quan-
tum chaos theory, probabilistic theory, combinatorics, integrable systems,
orthogonal polynomials theory, mathematic biology and other branches.

We study a class of random matrix ensembles, known as unitary matrix
models, that are defined by the probability law

pn (U) dµn (U) = Z−1
n,2 exp

{
−nTrV

(
U + U ∗

2

)}
dµn (U) , (1)

where U = {Ujk}nj,k=1 is a n×n unitary matrix, µn (U) is the Haar measure
on the group U(n), Zn,2 is the normalization constant and V : [−1, 1]→ R+

is a continuous function, called the potential of the model.
Let eiλj be an eigenvalues of the unitary matrix U . The joint probability

density of λj, corresponding to (1), is given by (see [1])

pn (λ1, . . . , λn) =
1

Zn

∏
1≤j<k≤n

∣∣eiλj − eiλk
∣∣2 exp

{
−n

n∑
j=1

V (cosλj)

}
. (2)

below we will write V (x) instead of V (cosx). Normalized Counting Mea-
sure of eigenvalues (NCM) is given by

Nn (∆) = n−1]
{
λ

(n)
l ∈ ∆, l = 1, . . . , n

}
, ∆ ⊂ [−π, π].

Eigenvalue distribution is one of the main question in RMT. The ran-
dom matrix theory deals with several asymptotic regimes of the eigenvalue
distribution. The global regime is centered around weak convergence of
Normalized Counting Measure of eigenvalues. Global regime for unitary
matrix models was studied in [2].

Theorem 1 Assume that the potential V of the model (1) is a C2 (−π, π)
function. Then:
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• there exists a measure N ∈ M1 ([−π, π]) with a compact support σ,
such that NCM Nn converges in probability to N ;

• N has a bounded density ρ (DOS), that satisfies the equation

V ′ (λ) = v.p.

∫ π

−π
cot

λ− µ
2

ρ (µ) dµ, forλ ∈ σ; (3)

• denote ρn := p
(n)
1 the first marginal density, then for any φ ∈ H1 (−π, π)∣∣∣∣∫ φ (λ) ρn (λ) dλ−

∫
φ (λ) ρ (λ) dλ

∣∣∣∣ ≤ C ‖φ‖1/22 ‖φ′‖
1/2
2 n−1/2 ln1/2 n,

(4)
where ‖·‖2 denotes L2 norm on [−π, π]

Local regime is responsible for eigenvalue statistics on a small enough in-
tervals. Length of these intervals is corresponding to the average distance
between adjacent eigenvalues. One of the main topics of local regime is
universality of local eigenvalue statistics. Let

p
(n)
l (λ1, . . . , λl) =

∫
pn (λ1, . . . , λl, λl+1, . . . , λn) dλl+1 . . . dλn (5)

be the l -th marginal density of pn. We suppose that ρ (λ) behaves asymp-

totically as const · |λ∓ θ|1/2 in a neighborhood of edges ±θ of the density
ρ (λ) defined in (3).

Theorem 2 (Universality conjecture) Let V be a real analytic func-
tion, then

lim
n→∞

[
γn2/3

]−l
p

(n)
l

(
θ +

x1

γn2/3 , . . . , θ +
xl

γn2/3

)
= det {S (xj, xk)}lj,k=1 ,

(6)
where γ some constant and

S (x, y) =
Ai (x)Ai′ (y)− Ai′ (x)Ai (y)

x− y
. (7)

This conjecture for all matrix ensembles first appeared in [3], but first
rigorous proofs of this universality property were given in [4] and [5] for
the hermitian matrix models. All these proofs lean on the orthogonal
polynomial techniques and determinant formulas [1].
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Consider the system of functions
{
eikλ
}∞
k=0 and use for them the Gram-

Shmidt procedure in L2
(
[−π, π] , e−nV (λ)

)
. For any n we get the sys-

tem of functions
{
P

(n)
k (λ)

}∞
k=0

which are orthogonal and normalized in

L2
(
[−π, π] , e−nV (λ)

)
. Denote

ψ
(n)
k (λ) = P

(n)
k (λ) e−nV (λ)/2. (8)

The reproducing kernel of the system (8) is given by

Kn (λ, µ) =
n−1∑
j=0

ψ
(n)
l (λ)ψ

(n)
l (µ). (9)

Now we can represent marginal densities using the reproducing kernel

p
(n)
l (λ1, . . . , λl) =

(n− l)!
n!

det ‖Kn (λj, λk)‖lj,k=1 . (10)

Thereby universality conjecture can be reduce to the limiting relation for
K (λ, µ). Set Kn (x, y) = γ−1n−2/3Kn

(
θ + xγ−1n−2/3, θ + yγ−1n−2/3

)
and

prove that
Kn (x, y)→ S (x, y) . (11)

It was shown in [7] and [5] that relation (11) for Hermitian ensembles can
be proved from the asymptotic relations for elements of the corresponding
Jacobi matrix. Polynomials P

(n)
k satisfy the analogously recurrence rela-

tions but corresponding matrix is Heisenberg and not Jacobi. In [8] authors
proposed to modify this polynomials to obtain a five-diagonal recurrence
relation.

Denote by c
(n)
k,l coefficients of eilλ in P

(n)
k (λ). Since V is even, it is easy

to see that all coefficients c
(n)
k,l are real. According to [8] we consider the

reverse polynomials Q
(n)
k , defined by

Q
(n)
k (λ) =

k∑
l=0

c
(n)
k,l e

i(k−l)λ. (12)

Consider
{
χ

(n)
k (λ)

}∞
k=0

the sequence of right orthonormal L-polynomials

χ
(n)
2k (λ) = e−ikλQ

(n)
2k (λ)

χ
(n)
2k+1 (λ) = e−ikλP

(n)
2k+1 (λ) .

(13)
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Lemma 3 Let χ
(n)
k be the system of orthogonal polynomials, defined above.

Then

eiλχ
(n)
2k−1 (λ) = −α(n)

2k ρ
(n)
2k−1χ

(n)
2k−2 (λ)− α(n)

2k α
(n)
2k−1χ

(n)
2k−1 (λ)

− α(n)
2k+1ρ

(n)
2k χ

(n)
2k (λ) + ρ

(n)
2k ρ

(n)
2k+1χ

(n)
2k+1 (λ) , (14)

eiλχ
(n)
2k (λ) = ρ

(n)
2k ρ

(n)
2k−1χ

(n)
2k−2 (λ) + α

(n)
2k−1ρ

(n)
2k χ

(n)
2k−1 (λ)

− α(n)
2k+1α

(n)
2k χ

(n)
2k (λ) + α

(n)
2k ρ

(n)
2k+1χ

(n)
2k+1 (λ) , (15)

where α
(n)
k =

c
(n)
k,0

c
(n)
k,k

and ρ
(n)
k =

c
(n)
k−1,k−1

c
(n)
k,k

the Schur parameters of the system{
P

(n)
k (λ)

}∞
k=0

and (
ρ

(n)
k

)2
+
(
α

(n)
k

)2
= 1. (16)

The last lemma allows us to construct a five diagonal CMV matrix ([8]).
Consider the space L = L2

(
[−π, π] , e−nV (λ)

)
and a multiplication operator

C(n) : L→ L, defined by

C(n) [f ] (λ) = eiλf (λ) . (17)

Using the orthogonal polynomials
{
χ

(n)
k (λ)

}∞
k=0

as a basis, we obtain a

matrix representation of C(n).

C(n) =



−α(n)
1 ρ

(n)
1 0 0 0 0 . . .

−ρ(n)
1 α

(n)
2 −α(n)

1 α
(n)
2 −ρ(n)

2 α
(n)
3 ρ

(n)
2 ρ

(n)
3 0 0 . . .

ρ
(n)
1 ρ

(n)
2 α

(n)
1 ρ

(n)
2 −α(n)

2 α
(n)
3 α

(n)
2 ρ

(n)
3 0 0 . . .

0 0 −ρ(n)
3 α

(n)
4 −α(n)

3 α
(n)
4 −ρ(n)

4 α
(n)
5 ρ

(n)
4 ρ

(n)
5 . . .

0 0 ρ
(n)
3 ρ

(n)
4 α

(n)
3 ρ

(n)
4 −α(n)

4 α
(n)
5 α

(n)
4 ρ

(n)
5 . . .

0 0 0
. . . . . . . . . . . .


.

(18)
The main result of our work is the next theorem.

Theorem 4 If the support of the DOS is the interval [−θ, θ] then

α
(n)
n+k,n+k = (−1)n+ks

(
cos

θ

2
+
k

n
c∗
)

+O

(
n−4/3 +

k2

n2

)
, (19)

for |k| ≤ εn with some small enough n independent ε, where s = ±1 and
c∗ some constant.
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First we derive from (3) the expression for the DOS.

ρ (µ) =
1

4π2χ (µ)P (µ) , (20)

where

χ (µ) =
√

cosµ− cos θ, P (µ) =

∫ θ

−θ

V ′ (λ)− V ′ (µ)

sin
λ− µ

2

dλ

χ (λ)
. (21)

From determinant formulas [1] we obtain the equation valid for any twice
differentiable on the unit circle function φ.

v.p.

∫
dλ

∫ θ

−θ
dµφ (µ) cot

λ− µ
2

ρ (µ)
∣∣∣ψ(n)

k+n (λ)
∣∣∣2 +

+
1

2π

∫
σc

signλφ (λ)P (λ)
√

cos θ − cosλ
∣∣∣ψ(n)

k+n (λ)
∣∣∣2 dλ =

= O

((
n−1/2 log1/2 n+

|k|+ 1

n

)
(‖φ′‖∞ + ‖φ′′‖∞)

)
. (22)

Taking in (22) φ (µ) = P−1 (µ) cos
µ

2
cot

z − µ
2

, we obtain a diagonal ele-

ments of the Herglotz transformation for matrix C(n). From this relation
we get a system of equations on Shur parameters and solving it obtain a
first order asymptotics

α
(n)
n+k = (−1)n+ks cos

θ

2
+O

(
n−1/4 log1/2 n+

(
|k|
n

)1/2
)
. (23)

Further we use a well-known string equation∫ 2π

0
sinλV ′ (cosλ)χ

(n)
n+k

(
eiλ
)
χ

(n)
n+k−1 (eiλ)dλ

= i (−1)n+k−1 n+ k

n

α
(n)
n+k

ρ
(n)
n+k

. (24)

We consider these equations for different k as a system of nonlinear equa-
tions with respect to the coefficients α

(n)
n+k. Using the perturbation theory

we obtain from this system the second order asymptotics (19).
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