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Realizations of certain five-dimensional Lie algebras by vector fields on spaces of arbitrary
finite numbers of variables are classified by means of using the direct method.

1 Megaideals and realizations of Lie algebras

Now we define the notion of megaideal that is useful for constructing realizations
and proving their inequivalence in a simpler way. Let A be an m-dimensional (real
or complex) Lie algebra (m ∈ N) and let Aut(A) and Int(A) denote the groups
of all the automorphisms of A and of its inner automorphisms respectively. The
Lie algebra of the group Aut(A) coincides with the Lie algebra Der(A) of all the
derivations of the algebra A. (A derivation D of A is called a linear mapping from
A into itself which satisfy the condition D[u, v] = [Du, v] + [u, Dv] for all u, v ∈ A.)
Der(A) contains as an ideal the algebra Ad(A) of inner derivations of A, which
is the Lie algebra of Int(A). (The inner derivation corresponding to u ∈ A is the
mapping ad u : v → [v, u].) Fixing a basis {eµ, µ = 1, m} in A, we associate an
arbitrary linear mapping l : A → A (e.g., an automorphism or a derivation of A)
with a matrix α = (ανµ)

m
µ,ν=1 by means of the expanding l(eµ) = ανµeν. Then each

group of automorphisms of A is associated with a subgroup of the general linear
group GL(m) of all the non-degenerated m × m matrices (over R or C) as well as
each algebra of derivations of A is associated with a subalgebra of the general linear
algebra gl(m) of all the m×m matrices.

Definition. We call a vector subspace of A, which is invariant under any transfor-
mation from Aut(A), a megaideal of A.

Since Int(A) is a normal subgroup of Aut(A), it is clear that any megaideal of A

is a subalgebra and, moreover, an ideal in A. But when Int(A) 6= Aut(A) (e.g., for
nilpotent algebras) there exist ideals in A, which are not megaideals. Moreover, any
megaideal I of A is invariant with respect to all the derivations of A: Der(A)I ⊂
I, i.e. it is a characteristic subalgebra. Characteristic subalgebras which are not
megaideals can exist only if Aut(A) is a disconnected Lie group.

Both improper subsets of A (the empty set and A itself) are always megaideals
in A. The following lemmas are obvious.

Lemma 1. If I1 and I2 are megaideals of A then so are I1 + I2, I1 ∩ I2 and [I1, I2],
i.e. sums, intersections and Lie products of megaideals are also megaideals.

Similar statements are true for both ideals and characteristic ideals.
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Lemma 1′. If I ′ is a megaideal of I and I is a megaideal of A then I ′ is a megaideal
of A, i.e. megaideals of megaideals are also megaideals.

In contrast to Lemma 1, a similar statement is true for characteristic ideals but
not for usual ideals.

Corollary 1. All the members of the commutator (derived) and the lower cen-
tral series of A, i.e. all the derivatives A(n) and all the Lie powers An (A(n) =
[A(n−1), A(n−1)], An = [A, An−1], A(0) = A0 = A) are megaideals in A.

This corollary follows from Lemma 1 by induction since A is a megaideal in A.

Corollary 2. The center A(1) and all the other members of the upper central
series {A(n), n ≥ 0} of A are megaideals in A.

Let us remind that A(0) = {0} and A(n+1)/A(n) is the center of A/A(n).

Lemma 2. The radical (i.e. the maximal solvable ideal) and the nil-radical (i.e. the
maximal nilpotent ideal) of A are its megaideals.

The above lemmas give a number of invariant subspaces of all the automorphisms
in A and, therefore, simplify calculating Aut(A).

Let M denote a n-dimensional smooth manifold and Vect(M) denote the Lie
algebra of smooth vector fields (i.e. first-order linear differential operators) on M

with the Lie bracket of vector fields as a commutator. Here and below smoothness
means analyticity.

Definition. A realization of a Lie algebra A in vector fields on M is called a
homomorphism R: A → Vect(M). The realization is said faithful if ker R = {0} and
unfaithful otherwise. Let G be a subgroup of Aut(A). The realizations R1: A →
Vect(M1) and R2: A → Vect(M2) are called G-equivalent if there exist ϕ ∈ G and a
diffeomorphism f from M1 to M2 such that R2(v) = f∗ R1(ϕ(v)) for all v ∈ A. Here
f∗ is the isomorphism from Vect(M1) to Vect(M2) induced by f. If G contains only
the identical transformation, the realizations are called strongly equivalent. The
realizations are weakly equivalent if G = Aut(A). A restriction of the realization
R on a subalgebra A0 of the algebra A is called a realization induced by R and is
denoted as R

∣∣
A0

.

Within the framework of local approach that we use M can be considered as an
open subset of Rn and all the diffeomorphisms are local.

Usually realizations of a Lie algebra have been classified with respect to the weak
equivalence. This it is reasonable although the equivalence used in the represen-
tation theory is similar to the strong one. The strong equivalence suits better for
construction of realizations of algebras using realizations of their subalgebras and
is verified in a simpler way than the weak equivalence. It is not specified in some
papers what equivalence has been used, and this results in classification mistakes.
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To classify realizations of a m-dimensional Lie algebra A in the most direct way, we
have to take m linearly independent vector fields of the general form ei = ξia(x)∂a,

where ∂a = ∂/∂xa, x = (x1, x2, . . . , xn) ∈ M, and require them to satisfy the com-
mutation relations of A. As a result, we obtain a system of first-order PDEs for the
coefficients ξia and integrate it, considering all the possible cases. For each case we
transform the solution into the simplest form, using either local diffeomorphisms of
the space of x and automorphisms of A if the weak equivalence is meant or only local
diffeomorphisms of the space of x for the strong equivalence. A drawback of this
method is the necessity to solve a complicated nonlinear system of PDEs. Another
way is to classify sequentially realizations of a series of nested subalgebras of A,

starting with a one-dimensional subalgebra and ending up with A.

Let V be a subset of Vect(M) and r(x) = dim〈V (x)〉, x ∈ M. 0 ≤ r(x) ≤ n. The
general value of r(x) on M is called the rank of V and is denoted as rank V.

Lemma 3. Let B be a subset and R1 and R2 be realizations of the algebra A.

If R1(B) and R2(B) are inequivalent with respect to endomorphisms of Vect(M)
generated by diffeomorphisms on M . Then R1 and R2 are strongly inequivalent.

Corollary 2. If there exists a subset B of A such that rank R1(B) 6= rank R2(B)
then the realizations R1 and R2 are strongly inequivalent.

Lemma 4. Let I be a megaideal and R1 and R2 be realizations of the algebra A.

If R1
∣∣
I

and R2
∣∣
I

are Aut(A)|I-inequivalent then R1 and R2 are weakly inequivalent.

Corollary 3. If R1
∣∣
I

and R2
∣∣
I

are weakly inequivalent then R1 and R2 also are
weakly inequivalent.

Corollary 4. If there exists a megaideal I of A such that rank R1(I) 6= rank R2(I)
then the realizations R1 and R2 are weakly inequivalent.

2 The technique of classification

• For certain five-dimensional algebra A from Mubarakzyanov’s classification we
find the automorphism group Aut(A) and the set of megaideals of A. (Our
notions of low-dimensional algebras, choice of their basis elements, and, con-
sequently, the form of commutative relations coincide with Mubarakzyanov’s
ones.) Calculations of this step is quite simple due to low dimensions and
simplicity of the canonical commutation relations. Lemmas 1 and 2, Corol-
lary 1 and other similar statements are useful for such calculations. See also
the remarks below.

• We choose a maximal proper subalgebra B of A. As rule, dimension of B is
equal to m−1. So, if A is solvable, it necessarily contains a (m−1)-dimensional
ideal. The simple algebra sl(2, R) has a two-dimensional subalgebra. The Levi
factors of unsolvable four-dimensional algebras (sl(2, R) ⊕ A1 and so(3) ⊕ A1)
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are three-dimensional ideals of these algebras. Only so(3) does not contain a
subalgebra of dimension m−1 = 2 that is a reason of difficulties in constructing
realizations for this algebra. Moreover, the algebras sl(2, R), so(3), mA1, A3.1,

A3.1⊕A1 and 2A2.1 exhaust the list of algebras under consideration that do not
contain (m− 1)–dimensional megaideals.

• Let us suppose that a complete list of strongly inequivalent realizations of B

has been already constructed. (If B is a megaideal of A and realizations of A

are classified only with respect to the weak equivalence, it is sufficient to use
only Aut(A)|B-inequivalent realizations of B.) For each realization R(B) from
this list we make the following procedure. We find the set DiffR(B) of local
diffeomorphisms of the space of x, which preserve R(B). Then, we realize the
basis vector ei (or the basis vectors in the case of so(3)) from A\B in the most
general form ei = ξia(x)∂a, where ∂a = ∂/∂xa, and require that it satisfied
the commutation relations of A with the basis vectors from R(B). As a result,
we obtain a system of first-order PDEs for the coefficients ξia and integrate it,
considering all possible cases. For each case we reduce the found solution to the
simplest form, using either diffeomorphisms from DiffR(B) and automorphisms
of A if the weak equivalence is meant or only diffeomorphisms from DiffR(B) for
the strong equivalence.

• The last step is to test inequivalence of the constructed realizations. We asso-
ciate the N -th one of them with the ordered collection of integers (rNj), where
rNj is equal to the rank of the elements of Sj in the realization R(A, N). Here
Sj is either the j-th subset of basis of A with |Sj| > 1 in the case of strong
equivalence or the basis of the j-th megaideals Ij of A with dim Ij > 1 in the
case of weak equivalence. Inequivalence of realizations with different associated
collection of integers immediately follows from Corollary 2 or Corollary 4 re-
spectively. Inequivalence of realizations in the pairs with identical collections
of ranks is proved using another method, e.g. Casimir operators (for simple
algebras), Lemmas 2 and 3, Corollary 3 and the rule of constraries (see the
following section).

3 Five-dimensional Lie algebras

We present realizations of five-dimensional Lie algebras which contain the algebra
A3.1 ⊕ A1 as an ideal.

N
A5.19 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, (1 + α)x1∂1 + βx2∂2 + x3∂3 + αx4∂4 + ∂5

[e1, e5] = (1+α)e1 2 ∂1, ∂3, x3∂1 + ∂4, ∂2, (1 + α)x1∂1 + βx2∂2 + x3∂3 + αx4∂4

[e2, e5] = e2 3 ∂1, ∂3, x3∂1 +x4∂2 +x5∂5, ∂2, (1+α)x1∂1 +βx2∂2 +x3∂3 +(β−α)x4∂4 +
(1− α)x5∂5
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[e3, e5] = αe3 4 ∂1,∂3, x3∂1 +Cx
β−α
1−α

4 ∂2 +x4∂3, ∂2, (1+α)x1∂1 +βx2∂2 +x3∂3 +(1−α)x4∂4

[e4, e5] = βe4 5 ∂1, ∂3, x3∂1 + x4∂2, ∂2, (1 + α)x1∂1 + βx2∂2 + x3∂3 + (β − α)x4∂4

[e2, e3] = e1 6 ∂1, ∂3, x3∂1, ∂2, (1 + α)x1∂1 + βx2∂2 + x3∂3 + ∂4

β 6= 0 7 ∂1, ∂3, x3∂1, ∂2, (1 + α)x1∂1 + βx2∂2 + x3∂3

8 ∂1, ∂3, x3∂1 + ∂4, x2∂1, (1 + α)x1∂1 + (1 + α− β)x2∂2 + x3∂3 + αx4∂4

9 ∂1, ∂3, x3∂1+x4∂3, x2∂1, (1+α)x1∂1+(1+α−β)x2∂2+x3∂3+(1−α)x4∂4

10 ∂1, ∂3, x3∂1 + Cx
1−α

1+α−β

2 ∂3, x2∂1, (1 + α)x1∂1 + (1 + α− β)x2∂2 + x3∂3

A5.20 1 ∂1, ∂3, x3∂1 +∂4, ∂2, ((1+α)x1 +x2)∂1 +(1+α)x2∂2 +x3∂3 +αx4∂4 +∂5

[e1, e5] = (1+α)e1 2 ∂1, ∂3, x3∂1 + ∂4, ∂2, ((1 + α)x1 + x2)∂1 + (1 + α)x2∂2 + x3∂3 + αx4∂4

[e2, e5] = e2 3 ∂1, ∂3, x3∂1 + x4∂2 + x5∂5, ∂2, (1 + α)x1∂1 + (1 + α)x2∂2 + (x3 + x4)∂3 +
x4∂4 + (1− α)x5∂5

[e3, e5] = αe3 4 ∂1,∂3, x3∂1 +Cx
1

1−α

4 ∂2 +x4∂3, ∂2, ((1+α)x1 +x2)∂1 +(1+α)x2∂2 +(x3 +

Cx
1

1−α

4 )∂3 + (1− α)x4∂4

[e4, e5] =e1+ 5 ∂1, ∂3, x3∂1 + x4∂2, ∂2, (1 + α)x1∂1 + (1 + α)x2∂2 + (x3 + x4)∂3 + x4∂4

+(1 + α)e4 6 ∂1, ∂3, x3∂1, ∂2, ((1 + α)x1 + x2)∂1 + (1 + α)x2∂2 + x3∂3 + ∂4

[e2, e3] = e1 7 ∂1, ∂3, x3∂1, ∂2, (1 + α)x1 + x2)∂1 + (1 + α)x2∂2 + x3∂3

8 ∂1, ∂3, x3∂1 + ∂4, x2∂1, (1 + α)x1∂1 − ∂2 + x3∂3 + αx4∂4

9 ∂1, ∂3, x3∂1 + x4∂3, x2∂1, (1 + α)x1∂1 − ∂2 + x3∂3 + (1− α)x4∂4

10 ∂1, ∂3, x3∂1 + eC(α−1)x2∂3, x2∂1, (1 + α)x1∂1 − ∂2 + x3∂3

A5.21 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, (2x1 +
x2
3

2
)∂1 + (x2 + x4)∂2 + x3∂3 + (x3 + x4)∂4 + ∂5

[e1, e5] = 2e1 2 ∂1, ∂3, x3∂1 + ∂4, ∂2, (2x1 +
x2
3

2
∂1 + (x2 + x4)∂2 + x3∂3 + (x3 + x4)∂4

[e2, e5] = e2 + e3 3 ∂1, ∂3, x3∂1+x4∂2+x5∂3, ∂2, (2x1+
x2
3

2
)∂1+(x2+x3x4)∂2+(x3+x3x5)∂3+

(x4x5 − 1)∂4 + x2
5∂5

[e3, e5] = e3 + e4 4 ∂1,∂3, x3∂1+( 1
2x4

+Cx4)∂2+x4∂3, ∂2, (2x1+
x2
3

2
∂1+(x2+ x3

2x4
+Cx3x4)∂2+

(x3x4 + x3)∂3 + x2
4∂4

[e4, e5] = e4 5 ∂1, ∂3, x3∂1 + x4∂2, ∂2, (2x1 +
x2
3

2
)∂1 + (x2 + x3x4)∂2 + x3∂3 − ∂4

[e2, e3] = e1 6 ∂1, ∂3, x3∂1 + ∂4, x2∂1, (2x1 +
x2
3

2
+ x2x4)∂1 + x2∂2 + x3∂3 + (x3 + x4)∂4

7 ∂1, ∂3, x3∂1 + x4∂3, x2∂1, (2x1 +
x2
3

2
)∂1 + x2∂2 + (x3x4 + x3 − x2)∂3 + x2

4∂4

8 ∂1, ∂3, x3∂1 − 1
ln Cx2

∂3, x2∂1, (2x1 +
x2
3

2
)∂1 + x2∂2 + (x3 − x3

ln Cx2
− x2)∂3

A5.22 1 ∂1, ∂3, x3∂1 + ∂4, ∂2,
x2
3

2
∂1 + x2∂2 + x3∂4 + ∂5

[e2, e5] = e3 2 ∂1, ∂3, x3∂1 + ∂4, ∂2,
x2
3

2
∂1 + x2∂2 + x3∂4

[e4, e5] = e4 3 ∂1, ∂3, x3∂1 + x4∂2 + x5∂5, ∂2,
x2
3

2
∂1 + (x2 + x3x4)∂2 + x3x5∂3 + (x4 +

x4x5)∂4 + x2
5∂5

[e2, e3] = e1 4 ∂1,∂3, x3∂1 +Cx4e
− 1

x4 ∂2 +x4∂3, ∂2,
x2
3

2
∂1 +(x2 +Cx3x4e

− 1
x4 )∂2 +x3x4∂3 +

x2
4∂4

5 ∂1, ∂3, x3∂1 + x4∂2, ∂2,
x2
3

2
∂1 + (x2 + x3x4)∂2 + x4∂4

6 ∂1, ∂3, x3∂1, ∂2,
x2
3

2
∂1 + x2∂2 + ∂4

7 ∂1, ∂3, x3∂1, ∂2,
x2
3

2
∂1 + x2∂2

8 ∂1, ∂3, x3∂1 + ∂4, x2∂1,
x2
3

2
∂1 − x2∂2 + x3∂4

9 ∂1, ∂3, x3∂1 + x4∂3, x2∂1,
x2
3

2
∂1 − x2∂2 + x3x4∂3 + x2

4∂4

10 ∂1, ∂3, x3∂1 + 1
ln Cx2

∂3, x2∂1,
x2
3

2
∂1 − x2∂2 + x3

ln Cx2
∂3
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A5.23 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, (21 +
x2
3

2
)∂1 + bx2∂2 + x3∂3 + (x3 + x4)∂4 + ∂5

[e1, e5] = 2e1 2 ∂1, ∂3, x3∂1 + ∂4, ∂2, (21 +
x2
3

2
)∂1 + bx2∂2 + x3∂3 + (x3 + x4)∂4

[e2, e5] = e2 + e3 3 ∂1, ∂3, x3∂1 + x4∂2 + x5∂5, ∂2, (2x1 +
x2
3

2
)∂1 + (bx2 + x3x4)∂2 + (x3x5 +

x3)∂3 + x4(x5 + b− 1)∂4 + x2
5∂5

[e3, e5] = e3 4 ∂1,∂3, x3∂1 +Cx4e
− b−1

x4 ∂2 +x4∂3, ∂2, (2x1 +
x2
3

2
)∂1 +(bx2 +Cx3x4e

− b−1
x4 ∂2 +

(x3 + x3x4)∂3 + x2
4∂4

[e4, e5] = be4 5 ∂1, ∂3, x3∂1 +x4∂2, ∂2, (2x1 +
x2
3

2
)∂1 + (bx2 +x3x4)∂2 +x3∂3 + (b− 1)x4∂4

[e2, e3] = e1 6 ∂1, ∂3, x3∂1, ∂2, (2x1 +
x2
3

2
)∂1 + bx2∂2 + x3∂3 + ∂4

b 6= 0 7 ∂1, ∂3, x3∂1, ∂2, (2x1 +
x2
3

2
)∂1 + bx2∂2 + x3∂3

8 ∂1, ∂3, x3∂1 + ∂4, x2∂1, (2x1 +
x2
3

2
)∂1 + (2− b)x2∂2 + x3∂3 + (x3 + x4)∂4

9 ∂1, ∂3, x3∂1 + x4∂3, x2∂1, (2x1 +
x2
3

2
)∂1 + (2− b)x2∂2 + (x4 + 1)∂3 + x2

4∂4

10 ∂1, ∂3, x3∂1 + b−2
ln Cx2

∂3, x2∂1, (2x1 +
x2
3

2
)∂1 + (2− b)x2∂2 + ( (b−2)x3

ln Cx2
+ x3)∂3

A5.24 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, (2x1 + εx2 +
x2
3

2
)∂1 + 2x2∂2 + x3∂3 + (x3 + x4)∂4 + ∂5

[e1, e5] = 2e1 2 ∂1, ∂3, x3∂1 + ∂4, ∂2, (2x1 + εx2 +
x2
3

2
)∂1 + 2x2∂2 + x3∂3 + (x3 + x4)∂4

[e2, e5] = e2 + e3 3 ∂1, ∂3, x3∂1+x4∂2+x5∂3, ∂2, (2x1+εx2+
x2
3

2
)∂1+(2x2+x3x4)∂2+(x3x5+

x3 + εx4)∂3 + (x4 + x4x5)∂4 + x2
5∂5

[e3, e5] = e3 4 ∂1,∂3, x3∂1 + Cx4e
− 1

x4 ∂2 + x4∂3, ∂2, (2x1 + εx2 +
x2
3

2
)∂1 + (2x2 +

Cx3x4e
− 1

x4 )∂2 + (x3x4 + x3 + εCx4e
− 1

x4 )∂3 + x2
4∂4

[e4, e5] = εe1+2e4 5 ∂1, ∂3, x3∂1 +x4∂2, ∂2, (2x1 +εx2 +
x2
3

2
)∂1 +(2x2 +x3x4)∂2 +(x3 +εx4)∂3 +

x4∂4

[e2, e3] = e1 6 ∂1, ∂3, x3∂1, ∂2, (2x1 + εx2 +
x2
3

2
)∂1 + 2x2∂2 + x3∂3 + ∂4

ε = ±1 7 ∂1, ∂3, x3∂1, ∂2, (2x1 + εx2 +
x2
3

2
)∂1 + 2x2∂2 + x3∂3

8 ∂1, ∂3, x3∂1 + ∂4, x2∂1, (2x1 +
x2
3

2
)∂1 − ε∂2 + x3∂3 + (x3 + x4)∂4

9 ∂1, ∂3, x3∂1 + x4∂3, x2∂1, (2x1 +
x2
3

2
)∂1 − ε∂2 + (x3 + x3x4)∂3 + x2

4∂4

10 ∂1, ∂3, x3∂1 + Ce−εx2∂3, x2∂1, (2x1 +
x2
3

2
)∂1 − ε∂2 + (x3 + Cx3e

−εx2)∂3

A5.25 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, (2px1 +
x2
3

2
+

x2
4

2
)∂1 + βx2∂2 + (px3 − x4)∂3 + (x3 +

px4)∂4 + ∂5

[e1, e5] = 2pe1 2 ∂1, ∂3, x3∂1+∂4, ∂2, (2px1+
x2
3

2
+

x2
4

2
)∂1+βx2∂2+(px3−x4)∂3+(x3+px4)∂4

[e2, e5] =pe2 +e3 3 ∂1, ∂3, x3∂1 + x4∂2 + x5∂3, ∂2, (2px1 +
x2
3

2
)∂1 + (βx2 + x3x4)∂2 + (x3x5 +

px3)∂3 + x4(β − p + x5)∂4 + (x2
5 + 1)∂5

[e3, e5] =pe3 −e2 4 ∂1,∂3, x3∂1 +C
√

x2
4 + 1e(β−p) arctan x4∂2 +x4∂3, ∂2, (2px1 +

x2
3

2
)∂1 +(βx2 +

Cx3

√
x2

4 + 1e(β−p) arctan x4)∂2 + (px3 + x3x4)∂3 + (x2
4 + 1)∂4

[e4, e5] = βe4 5 ∂1, ∂3, x3∂1 +∂4, x2∂1, (2px1 +
x2
3

2
− x2

4

2
)∂1 +(2p−β)x2∂2 +(px3−x4)∂3 +

(x3 + px4)∂4

[e2, e3] = e1 6 ∂1, ∂3, x3∂1 +x4∂3, x2∂1, (2px1 +
x2
3

2
)∂1 +(2p−β)x2∂2 +(px3 +x3x4)∂3 +

(x2
4 + 1)∂4

β 6= 0 7 ∂1, ∂3, x3∂1+ϕ(x2)∂3, x2∂1, (2px1+
x2
3

2
)∂1−(2p−β)x2∂2+(px3+x3ϕ(x2))∂3

A5.26 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, (2px1 + εx2 +
x2
3

2
− x2

4

2
)∂1 + p(2x2 + x3)∂2 + (px3 −

x4)∂3 + (x3 + px4)∂4 + ∂5

[e1, e5] = 2pe1 2 ∂1, ∂3, x3∂1 + ∂4, ∂2, (2px1 + εx2 +
x2
3

2
− x2

4

2
)∂1 + p(2x2 + x3)∂2 + (px3 −

x4)∂3 + (x3 + px4)∂4

[e2, e5] = pe2 + e3 3 ∂1, ∂3, x3∂1 + x4∂2 + x5∂3, ∂2, (2px1 + εx2 +
x2
3

2
)∂1 + (2px2 + x3x4)∂2 +

(x3x5 + px3 + εx4)∂3 + x4(p + x5)∂4 + (x3x5 + 1)∂5
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[e3, e5] =pe3 −e2 4 ∂1,∂3, x3∂1 +C
√

x2
4 + 1ep arctan x4∂2 +x4∂3, ∂2, (2px1 +εx2

x2
3

2
)∂1 +(2px2 +

Cx3

√
x2

4 + 1e(p arctan x4)∂2 +(px3 +x3x4 +εC
√

x2
4 + 1ep arctan x4)∂3 +(x2

4 +
1)∂4

[e4, e5]=εe1+2pe4 5 ∂1, ∂3, x3∂1+∂4, x2∂1, (2px1+
x2
3

2
− x2

4

2
)∂1−ε∂2+(px3−x4)∂3+(x3+px4)∂4

[e2, e3] = e1 6 ∂1, ∂3, x3∂1+x4∂3, x2∂1, (2px1+
x2
3

2
)∂1−εx2∂2+(px3+x3x4)∂3+(x2

4+1)∂4

ε = ±1 7 ∂1, ∂3, x3∂1 + tan(−εx2 + C)∂3, x2∂1, (2px1 +
x2
3

2
)∂1 − ε∂2 + (px3 +

x3 tan(−εx2 + C))∂3

A5.27 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, (x1 + x2)∂1 + (x2 + x4)∂2 + x4∂4 + ∂5

[e1, e5] = e1 2 ∂1, ∂3, x3∂1 + ∂4, ∂2, (x1 + x2)∂1 + (x2 + x4)∂2 + x4∂4

[e3, e5] = e3 + e4 3 ∂1, ∂3, x3∂1 + x4∂2 + x5∂3, ∂2, (x1 + x2)∂1 + x2∂2 + x4∂3 − ∂4 − x5∂5

[e4, e5] = e1 + e4 4 ∂1,∂3, x3∂1 + ln Cx4∂2 + x4∂3, ∂2, (x1 + x2)∂1 + x2∂2 + ln Cx4∂3 − x4∂4

[e2, e3] = e1 5 ∂1, ∂3, x3∂1 + x4∂2, ∂2, (x1 + x2)∂1 + x2∂2 + x4)∂3 − ∂4

6 ∂1, ∂3, x3∂1 + ∂4, x2∂1, (x1 + x2x4)∂1 − ∂2 + x4∂4

7 ∂1, ∂3, x3∂1 + x4∂3, x2∂1, x1∂1 − ∂2 − x2∂3 − x4∂4

8 ∂1, ∂3, x3∂1 + Cex2∂3, x2∂1, x1∂1 − ∂2 − x2∂3

A5.28 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, ((α + 1)x1 +
αx2

3

2
− αx3x4)∂1 + (x2 + x4)∂2 + (x3 +

x4)∂4 + ∂5

[e1, e5] =(1+α)e1 2 ∂1, ∂3, x3∂1+∂4, ∂2, ((α+1)x1+
αx2

3

2
−αx3x4)∂1+(x2+x4)∂2+(x3+x4)∂4

[e2, e5] = αe3 3 ∂1, ∂3, x3∂1 + x4∂2 + x5∂5, ∂2, ((1 + α)x1 +
αx2

3

2
)∂1 + (x2 + αx3x4)∂2 +

αx3(x5 + 1)∂3 + (αx4x5 − 1)∂4 + (αx2
5 − x5)∂5

[e3, e5] = e3 + e4 4 ∂1,∂3, x3∂1 +ϕ(x4)∂2 +x4∂3, ∂2, ((1+α)x1 +
x2
3

2
)∂1 +(x2 +αx3ϕ(x4))∂2 +

αx3(x4 + 1)∂3 + (αx2
4 − x4)∂4

[e4, e5] = e4 5 ∂1, ∂3, x3∂1 +x4∂2, ∂2, ((1+α)x1 +
αx2

3

2
)∂1 +(x2 +αx3x4)∂2 +αx3∂3− ∂4

[e2, e3] = e1 6 ∂1, ∂3, x3∂1 + ∂4, x2∂1, ((1 + α)x1 +
αx2

3

2
+ x2x4 − αx3x4)∂1 + αx2∂2 +

(αx3 + x4)∂4

7 ∂1, ∂3, x3∂1 + x4∂3, x2∂1, ((1 + α)x1 +
αx2

3

2
)∂1 + αx2∂2 + (αx3x4 + αx3 −

x4)∂3 + (αx2
4 − x4)∂4

8 ∂1, ∂3, x3∂1+
α

1−Cxα
2
∂3, x2∂1, ((1+α)x1+

αx2
3

2
∂1+αx2∂2+( α2x3

1−Cxα
2
+αx3−x2∂3

A5.29 1 ∂1, ∂3, x3∂1 + ∂4, ∂2, x1∂1 + x4∂2 + x3∂3 + ∂5

[e1, e5] = e1 2 ∂1, ∂3, x3∂1 + ∂4, ∂2, x1∂1 + x4∂2 + x3∂3 + x5∂4

[e2, e5] = e2 3 ∂1, ∂3, x3∂1 + ∂4, ∂2, x1∂1 + x4∂2 + x3∂3 + C∂4

[e3, e5] = e4 4 ∂1, ∂3, x3∂1 + x4∂2 + x5∂3, ∂2, x1∂1 + x3∂3 − ∂4 + x5∂5

[e2, e3] = e1 5 ∂1, ∂3, x3∂1 + ln Cx4∂2 + x4∂3, ∂2, x1∂1 + x3∂3 + x4∂4

6 ∂1, ∂3, x3∂1 + x4∂2, ∂2, x1∂1 + x3∂3 − ∂4

7 ∂1, ∂3, x3∂1 + ∂4, x2∂1, x1∂1 + x2∂2 + x3∂3

8 ∂1, ∂3, x3∂1 + x4∂3, x2∂1, x1∂1 + x2∂2 + (x3 − x2)∂3 + x4∂4

9 ∂1, ∂3, x3∂1 + Cx2∂3, x2∂1, x1∂1 + x2∂2 + (x3 − x2)∂3
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