Non-linear superposition for hyperbolic Burgers equation

Ekaterina Kutafina

Faculty of Applied Mathematics
AGH University of Science and Technology

Symmetry in Nonlinear Mathematical Physics, Kiev’09

Introduction

- Classical Burgers equation

$$
u_{t}-u u_{x}-\kappa u_{x x}=0
$$

- Taking into account the memory effects (relaxation)

Hyperbolic modincation of Burgers equation

$$
\tau u_{t t}-\kappa u_{x x}+A u u_{x}+B u_{t}+H u_{x}=f(u)
$$

Introduction

- Classical Burgers equation

$$
u_{t}-u u_{x}-\kappa u_{x x}=0
$$

- Taking into account the memory effects (relaxation)

Hyperbolic modification of Burgers equation

$$
\begin{equation*}
\tau u_{t t}-\kappa u_{x x}+A u u_{x}+B u_{t}+H u_{x}=f(u) \tag{1}
\end{equation*}
$$

Introduction

I. Traveling-wave variables

$$
u(x, t)=U(\xi) \quad \xi=x+\mu t
$$

Reduced equation

$$
\Delta U^{\prime \prime}(\xi)+\Theta U^{\prime}(\xi)+A U(\xi) U^{\prime}(\xi)=f(U)
$$

- Qualitative analysis
- Ansatz-based methods
- Approximated solutions
- Cole-Hopf transformation
- Painleve analysis

Introduction

I. Traveling-wave variables

$$
u(x, t)=U(\xi) \quad \xi=x+\mu t
$$

Reduced equation

$$
\begin{equation*}
\Delta U^{\prime \prime}(\xi)+\Theta U^{\prime}(\xi)+A U(\xi) U^{\prime}(\xi)=f(U) \tag{2}
\end{equation*}
$$

$$
\Delta=\tau \mu^{2}-\kappa, \quad \Theta=H+B \mu
$$

Introduction

I. Traveling-wave variables

$$
u(x, t)=U(\xi) \quad \xi=x+\mu t
$$

Reduced equation

$$
\begin{equation*}
\Delta U^{\prime \prime}(\xi)+\Theta U^{\prime}(\xi)+A U(\xi) U^{\prime}(\xi)=f(U) \tag{2}
\end{equation*}
$$

$$
\Delta=\tau \mu^{2}-\kappa, \quad \Theta=H+B \mu
$$

- Qualitative analysis
- Ansatz-based methods
- Approximated solutions
- Cole Honf trancformation
- Painleve analysis

Introduction

I. Traveling-wave variables

$$
u(x, t)=U(\xi) \quad \xi=x+\mu t
$$

Reduced equation

$$
\begin{equation*}
\Delta U^{\prime \prime}(\xi)+\Theta U^{\prime}(\xi)+A U(\xi) U^{\prime}(\xi)=f(U) \tag{2}
\end{equation*}
$$

$$
\Delta=\tau \mu^{2}-\kappa, \quad \Theta=H+B \mu
$$

- Qualitative analysis
- Ansatz-based methods
- Approximated solutions
- Cole-Hopf transformation
- Dainleve analysic

Introduction

I. Traveling-wave variables

$$
u(x, t)=U(\xi) \quad \xi=x+\mu t
$$

Reduced equation

$$
\begin{equation*}
\Delta U^{\prime \prime}(\xi)+\Theta U^{\prime}(\xi)+A U(\xi) U^{\prime}(\xi)=f(U) \tag{2}
\end{equation*}
$$

$$
\Delta=\tau \mu^{2}-\kappa, \quad \Theta=H+B \mu
$$

- Qualitative analysis
- Ansatz-based methods
- Approximated solutions
- Cole-Hopf transformation
- Painleve analysis

Introduction

I. Traveling-wave variables

$$
u(x, t)=U(\xi) \quad \xi=x+\mu t
$$

Reduced equation

$$
\begin{equation*}
\Delta U^{\prime \prime}(\xi)+\Theta U^{\prime}(\xi)+A U(\xi) U^{\prime}(\xi)=f(U) \tag{2}
\end{equation*}
$$

$$
\Delta=\tau \mu^{2}-\kappa, \quad \Theta=H+B \mu
$$

- Qualitative analysis
- Ansatz-based methods
- Approximated solutions
- Cole-Hopf transformation

Introduction

I. Traveling-wave variables

$$
u(x, t)=U(\xi) \quad \xi=x+\mu t
$$

Reduced equation

$$
\begin{equation*}
\Delta U^{\prime \prime}(\xi)+\Theta U^{\prime}(\xi)+A U(\xi) U^{\prime}(\xi)=f(U) \tag{2}
\end{equation*}
$$

$$
\Delta=\tau \mu^{2}-\kappa, \quad \Theta=H+B \mu
$$

- Qualitative analysis
- Ansatz-based methods
- Approximated solutions
- Cole-Hopf transformation
- Painleve analysis

Introduction

II. Other solutions

- Classical Lie's symmetries
- Q-conditional symmetries

Introduction

II. Other solutions

- Classical Lie's symmetries
- Q-conditional symmetries

Introduction

II. Other solutions

- Classical Lie's symmetries
- Q-conditional symmetries

Classical Burgers equation

- Classical Burgers equation:

$$
\begin{equation*}
u_{t}-u u_{x}-\kappa u_{x x}=0 \tag{3}
\end{equation*}
$$

leads us to linear heat equation (for $c=-2 \kappa$):

Classical Burgers equation

- Classical Burgers equation:

$$
\begin{equation*}
u_{t}-u u_{x}-\kappa u_{x x}=0 \tag{3}
\end{equation*}
$$

- Cole-Hopf transformation:

$$
\begin{equation*}
u(x, t)=c(\log f(x, t))_{x}=c f_{x}(x, t) / f(x, t) \tag{4}
\end{equation*}
$$

leads us to linear heat equation (for $c=-2 \kappa$):

Classical Burgers equation

- Classical Burgers equation:

$$
\begin{equation*}
u_{t}-u u_{x}-\kappa u_{x x}=0 \tag{3}
\end{equation*}
$$

- Cole-Hopf transformation:

$$
\begin{equation*}
u(x, t)=c(\log f(x, t))_{x}=c f_{x}(x, t) / f(x, t) \tag{4}
\end{equation*}
$$

leads us to linear heat equation (for $c=-2 \kappa$):

$$
\begin{equation*}
f_{t}-\kappa f_{x x}=0 \tag{5}
\end{equation*}
$$

Classical Burgers equation

- Linearity of heat equation

$$
\begin{gather*}
u=\left(\log \left(f_{1}+f_{2}\right)\right)_{x}=\frac{f_{1 x}+f_{2 x}}{f_{1}+f_{2}}= \tag{6}\\
=\frac{\frac{f_{1 x}}{f_{1}} \frac{f_{1}}{f_{2}}+\frac{f_{2 x}}{f_{2}}}{\frac{f_{1}}{f_{2}}+1}
\end{gather*}
$$

New solution of Burgers equation

Classical Burgers equation

- Linearity of heat equation

$$
\begin{gather*}
u=\left(\log \left(f_{1}+f_{2}\right)\right)_{x}=\frac{f_{1 x}+f_{2 x}}{f_{1}+f_{2}}= \tag{6}\\
=\frac{\frac{f_{1 x}}{f_{1}} \frac{f_{1}}{f_{2}}+\frac{f_{2 x}}{f_{2}}}{\frac{f_{1}}{f_{2}}+1}
\end{gather*}
$$

New solution of Burgers equation

$$
\begin{equation*}
u=\frac{u_{1} \operatorname{Exp}(h)+u_{2}}{\operatorname{Exp}(h)+1} \tag{7}
\end{equation*}
$$

where $u_{i}=\frac{f_{i x}}{f_{i}}, i=1,2$ are already known solutions and $h(x, t)=\log \left(f_{1} / f_{2}\right)$.

$G B E$

GBE

$$
\begin{equation*}
\tau u_{t t}+A u u_{x}+B u_{t}+H u_{x}-\kappa u_{x x}=\lambda\left(u-m_{1}\right)\left(u-m_{2}\right)\left(u-m_{3}\right) \tag{8}
\end{equation*}
$$

$G B E$

GBE

$$
\begin{equation*}
\tau u_{t t}+A u u_{x}+B u_{t}+H u_{x}-\kappa u_{x x}=\lambda\left(u-m_{1}\right)\left(u-m_{2}\right)\left(u-m_{3}\right) \tag{8}
\end{equation*}
$$

Ansatz

$$
\begin{equation*}
u(x, t)=\frac{M(x, t) \operatorname{Exp}(h(x, t))+Q(x, t)}{\operatorname{Exp}(h(x, t))+1} \tag{9}
\end{equation*}
$$

$G B E$

GBE

$$
\begin{equation*}
\tau u_{t t}+A u u_{x}+B u_{t}+H u_{x}-\kappa u_{x x}=\lambda\left(u-m_{1}\right)\left(u-m_{2}\right)\left(u-m_{3}\right) \tag{8}
\end{equation*}
$$

Ansatz

$$
\begin{equation*}
u(x, t)=\frac{M(x, t) \operatorname{Exp}(h(x, t))+Q(x, t)}{\operatorname{Exp}(h(x, t))+1} \tag{9}
\end{equation*}
$$

- $P=M-Q$

GBE

- E1:

$$
\begin{equation*}
P^{2}(x, t)-2 \tau h_{t}^{2}(x, t)+A P(x, t) h_{x}(x, t)+2 \kappa h_{x}^{2}(x, t)=0 \tag{10}
\end{equation*}
$$

- E2:

$$
\begin{gather*}
P^{3}(x, t)-\lambda\left(m_{1}+m_{2}+m_{3}\right) P^{2}(x, t)+3 P^{2}(x, t) Q(x, t)+2 \tau h_{t}(x, t) P_{t}(x, t)-(11) \tag{11}\\
-2 \kappa h_{x}(x, t) P_{x}(x, t)+P(x, t)\left(B h_{t}(x, t)+\tau h_{t}^{2}(x, t)+\tau h_{t t}(x, t)+H h_{x}(x, t)+\right. \\
\left.+A Q(x, t) h_{x}(x, t)-\kappa h_{x}^{2}(x, t)-A P_{x}(x, t)-\kappa h_{x x}(x, t)\right)=0
\end{gather*}
$$

$G B E$

- Scaling transformation of E1

$$
\begin{equation*}
\sqrt{2 \tau} h_{t}(x, t)-P(x, t)-\sqrt{2 \kappa} h_{x}(x, t)=0 \tag{12}
\end{equation*}
$$

$G B E$

- Scaling transformation of E1

$$
\begin{equation*}
\sqrt{2 \tau} h_{t}(x, t)-P(x, t)-\sqrt{2 \kappa} h_{x}(x, t)=0 \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
h(x, t)=\frac{1}{\sqrt{2 \tau}} \int_{0}^{t} P(\xi, x+\sqrt{\kappa / \tau} t-\sqrt{\kappa / \tau} \xi) d \xi+\Phi(x+\sqrt{\kappa / \tau} t) \tag{13}
\end{equation*}
$$

Equivalence relation

Definition

Let $M=\frac{M_{1} \operatorname{Exp}\left(h_{1}\right)+Q_{1}}{\left.\operatorname{Exp}\left(h_{1}\right)\right)+1}, Q=\frac{M_{2} \operatorname{Exp}\left(h_{2}\right)+Q_{2}}{\operatorname{Exp}\left(h_{2}\right)+1}$ satisfy GBE. $M \sim Q$ if $u=\frac{M \operatorname{Exp}(h)+Q}{\operatorname{Exp}(h)+1}$ satisfies GBE.

Equivalence relation

Definition

Let $M=\frac{M_{1} \operatorname{Exp}\left(h_{1}\right)+Q_{1}}{\left.\operatorname{Exp}\left(h_{1}\right)\right)+1}, Q=\frac{M_{2} \operatorname{Exp}\left(h_{2}\right)+Q_{2}}{\operatorname{Exp}\left(h_{2}\right)+1}$ satisfy GBE.
$M \sim Q$ if $u=\frac{M \operatorname{Exp}(h)+Q}{\operatorname{Exp}(h)+1}$ satisfies GBE.

Theorem

" \sim " is the equivalence relation.

Algebraic structure

Notation

Γ denotes the equivalence class of the stationary solution $u(x, t)=m_{1}$.

Lemma

Γ is closel with respect to the operation "on"

Algebraic structure

Notation

Γ denotes the equivalence class of the stationary solution $u(x, t)=m_{1}$.

Definition

In Γ

$$
M \circ_{h} Q:=\frac{M \operatorname{Exp}(h)+Q}{\operatorname{Exp}(h)+1} .
$$

Algebraic structure

Notation

Γ denotes the equivalence class of the stationary solution $u(x, t)=m_{1}$.

Definition

In Γ

$$
M \circ_{h} Q:=\frac{M \operatorname{Exp}(h)+Q}{\operatorname{Exp}(h)+1} .
$$

Lemma

Γ is closed with respect to the operation $" \mathrm{o}_{\mathrm{h}}$ ".
Γ has the following properties: - Any element of Γ is the unity for itself: $M \circ_{h} M=M$ - The operation is commutative: $M \circ_{h} Q=Q \circ_{-h} M$ - Association property: $M_{1}^{\circ}{ }_{H_{1}}\left(Q_{1} \circ_{-h_{2}} M_{2}\right)=\left(M_{1} \circ_{h_{1}} Q_{1}\right) \circ_{H_{2}} M_{2}$
Γ has the following properties:

- Any element of Γ is the unity for itself: $M \circ_{h} M=M$
- The operation is commutative: $M \circ_{h} Q=Q \circ_{-h} M$
Γ has the following properties:
- Any element of Γ is the unity for itself: $M \circ_{h} M=M$
- The operation is commutative: $M \circ_{h} Q=Q \circ_{-h} M$

Algebraic structure

Γ has the following properties:

- Any element of Γ is the unity for itself: $M \circ_{h} M=M$
- The operation is commutative: $M \circ_{h} Q=Q \circ_{-h} M$
- Association property: $M_{1} \circ_{H_{1}}\left(Q_{1} \circ_{-h_{2}} M_{2}\right)=\left(M_{1} \circ_{h_{1}} Q_{1}\right) \circ_{H_{2}} M_{2}$

Examples

- Let $m_{1}=0, M(x, t)=m_{2}, Q(x, t)=m_{1}=0$.
- We can construct the solution: where $\phi(t+x \sqrt{\tau})$ is arbitrary C^{1} function.

Examples

- Let $m_{1}=0, M(x, t)=m_{2}, Q(x, t)=m_{1}=0$.
- We can construct the solution:

$$
\begin{equation*}
h(x, t)=\frac{\left(m_{1}-m_{2}\right) x}{\sqrt{2}}+\phi(t+x \sqrt{\tau}), \tag{14}
\end{equation*}
$$

where $\phi(t+x \sqrt{\tau})$ is arbitrary C^{1} function.

Examples

- For

$$
\begin{gather*}
\phi(t+x \sqrt{\tau})=\operatorname{Sin}(t+x \sqrt{\tau}) \\
u(x, t)=m_{2}-\frac{2\left(m_{2}+m_{3}\right)}{1+\operatorname{Exp}\left(-\sqrt{2}\left(m_{2}+m_{3}\right) x+\operatorname{Sin}(t+x \sqrt{\tau})\right)} \tag{15}
\end{gather*}
$$

Examples

- For

$$
\begin{gather*}
\phi(t+x \sqrt{\tau})=\operatorname{Sin}(t+x \sqrt{\tau}) \\
u(x, t)=m_{2}-\frac{2\left(m_{2}+m_{3}\right)}{1+\operatorname{Exp}\left(-\sqrt{2}\left(m_{2}+m_{3}\right) x+\operatorname{Sin}(t+x \sqrt{\tau})\right)} \tag{15}
\end{gather*}
$$

- For

$$
\begin{gather*}
\phi(t+x \sqrt{\tau})=\log \left(\frac{1+\operatorname{Exp}(t+x \sqrt{\tau}) R}{1+\operatorname{Exp}(t+x \sqrt{\tau})}\right) \\
u(x, t)=\frac{m_{2} \operatorname{Exp}\left(\omega_{1}\right)\left[1+R \operatorname{Exp}\left(\omega_{2}\right)\right]}{1+\operatorname{Exp}\left(\omega_{1}\right)+\operatorname{Exp}\left(\omega_{2}\right)+R \operatorname{Exp}\left(\omega_{1}+\omega_{2}\right)}, \tag{16}
\end{gather*}
$$

where $\omega_{1}=-\frac{m_{2} x}{\sqrt{2}}, \quad \omega_{2}=t+x \sqrt{\tau}$

Solutions

References

- P. Clarkson, L. Mansfield, Physica D, 70, (1993), 250-288
- V. Fushchich, I. Tsyfra, J. Phys. A: Math. Gen., 20 (1985), L45-L48
- A.S. Makarenko, Control and Cybernetics, 25, 621-630 (1996)
- E.V. Kutafina,V.A. Vladimirov, Collection of Works of Math. Inst. of Science Akademy of Ukraine (2006), vol.3, pp. 170-181
- V.A. Vladimirov, E.V. Kutafina, Rep. Math. Physics, vol. 58/3, (2006)
- K.A. Volosov, Mathematical Notes, 71, no.3,(2002), 339-354.

