Quantum deformation of the Dirac bracket

Phys. Rev. D73, 025008 (2006)

M. I. Krivoruchenko
ITEP, Moscow
June 22, 2009, Kiev
Symmetry in Nonlinear Mathematical Physics

\uparrow Classical second-class constraints systems in phase space
\uparrow Quantum second-class constraints systems in the Hilbert space
\downarrow Weyl's association rule and the \star-product
\downarrow Quantum second-class constraints systems in phase space
\star Application: quantum spherical pendulum in phase space

Introduction

Gauge symmetries is the mathematical basis for fundamental interactions

Gauge theories $\longrightarrow 1$-st class constraints systems upon gauge fixing \longrightarrow 2-nd class constraints systems

Quantum theory:

- Operator quantization
\uparrow Path integral method
- *-product technique known also as the deformation quantization and quantum dynamics in phase space

Introduction

- Operator quantization

CLASSICAL WORLD \longleftrightarrow QUANTUM WORLD
phase space \longleftrightarrow Hilbert space canonical variables \longleftrightarrow operators of canonical variables $\xi^{i}=(q, p) \longleftrightarrow \mathfrak{x}^{i}=(\mathfrak{q}, \mathfrak{p})$ real functions \longleftrightarrow Hermitian operators

$$
\xi^{i} \in T_{*} \mathbb{R}^{n} \longleftrightarrow \mathfrak{x}^{i} \in O p\left(L^{2}\left(\mathbb{R}^{n}\right)\right)
$$

$$
\left\{\xi^{i}, \xi^{j}\right\}=-I^{i j} \longleftrightarrow\left[\mathfrak{x}^{i}, \mathfrak{x}^{j}\right]=-i \hbar I^{i j}
$$

$$
f(\xi) \in C^{\infty}\left(T_{*} \mathbb{R}^{n}\right) \longleftrightarrow \mathfrak{f} \in O p\left(L^{2}\left(\mathbb{R}^{n}\right)\right)
$$

Introduction
\leftrightarrow Path integral method

CLASSICAL WORLD \longleftrightarrow QUANTUM WORLD

phase space \longleftrightarrow phase space
canonical variables \longleftrightarrow canonical variables
phase space trajectories \longleftrightarrow transition amplitudes

$$
<q\left(t^{\prime}\right)\left|e^{-i \hat{H}\left(t^{\prime}-t\right)}\right| q(t)>=\int \prod \frac{d p d q}{2 \pi} \exp \left(-i \int_{t}^{t^{\prime}}(p \dot{q}-L) d \tau\right)
$$

$\star \star$-product technique (Groenewold (1946))
*-PRODUCT

$$
f \star g=f \exp \left(\frac{i \hbar}{2} \mathcal{P}\right) g=f \circ g+\frac{i \hbar}{2} f \wedge g
$$

$$
\begin{aligned}
\mathcal{P} & =-I^{k l} \stackrel{\overleftarrow{\partial}}{\partial \xi^{k}} \frac{\vec{\partial}}{\partial \xi^{l}} \\
I^{k l} & =\left\|\begin{array}{ll}
0 & -E_{n} \\
E_{n} & 0
\end{array}\right\|
\end{aligned}
$$

```
Brackets govern evolution of systems in phase space
```

Systems:	unconstrained	constrained
classical	$\{f, g\}$	$\{f, g\}_{D}$
quantum	$f \wedge g$	$? ? ?$

- Poisson bracket $\{f, g\}=f \mathcal{P} g$
\checkmark Dirac bracket $\{f, g\}_{D}=\{f, g\}+\left\{f, \mathcal{G}^{a}\right\}\left\{\mathcal{G}_{a}, g\right\}$
- Moyal bracket $\{f, g\} \stackrel{\text { quantum deformation }}{\rightrightarrows} \rightrightarrows \rightrightarrows \leadsto g=f \frac{2}{\hbar} \sin \left(\frac{\hbar}{2} \mathcal{P}\right) g$
\checkmark Fourth bracket $\{f, g\}_{D} \stackrel{\text { quantum deformation }}{\rightrightarrows} \rightrightarrows \rightrightarrows f_{t} \wedge g_{t}=? ? ?$

Just making Hamiltonian formalizm complete

Table 1: Euclidean and symplectic spaces: Similarities and dissimilarities

Euclidean space	Symplectic space
$x, y \in \mathbb{R}^{n}$	$\xi, \zeta \in \mathbb{R}^{2 n}$
Metric structure	Symplectic structure
$g_{i j}=g_{j i}$	$I_{i j}=-I_{j i}$
$g_{i j} g^{j k}=\delta_{i}^{k}$	$I_{i j} j^{j k}=\delta_{i}^{k}$
Scalar product	Skew - scalar product
$(x, y)=g_{i j} x^{i} y^{j}$	$(\xi, \zeta)=I_{i j} \xi^{i} \zeta^{j}$
Distance	Area
$L=\sqrt{(x-y, x-y)}$	$\mathcal{A}=(\xi, \zeta)$
Gradient	Skew - gradient
$(\nabla f)^{i}=g^{i j} \partial f / \partial x^{j}$	$(I d f)^{i} \equiv-I^{i j} \partial f / \partial \xi^{j}$
	$=\left\{\xi^{i}, f\right\}$
Scalar product	Poisson bracket
of gradients of f and g	
$(\nabla f, \nabla g)$	$(I d f, I d g)=\{f, g\}$
Orthogonality	Skew - orthogonality
$g_{i j} x^{i} y^{j}=0$	

Classical second-class constraints systems in phase space

Constraints $\mathcal{G}_{a}=0$ are non-degenerate $(a=1, \ldots, 2 m, m<n)$:

$$
\operatorname{det}\left\{\mathcal{G}_{\mathbf{a}}, \mathcal{G}_{\mathbf{b}}\right\} \neq \mathbf{0}
$$

Locally, in Riemannian space

Locally, in symplectic space

Locally, in symplectic space one can always find the Darboux basis

$$
\left\{\mathcal{G}_{\mathrm{a}}, \mathcal{G}_{\mathrm{b}}\right\}=\mathcal{I}_{\mathrm{ab}}
$$

where

$$
\mathcal{I}_{\mathbf{a b}}=\left\|\begin{array}{ll}
0 & E_{m} \\
-E_{m} & 0
\end{array}\right\|,
$$

with E_{m} being identity $m \times m$ matrix.

Classical second-class constraints systems in phase space

```
Skew-gradient projections }\mp@subsup{\xi}{s}{}(\xi
```

Expanding in the power series of \mathcal{G}_{a}, $\xi_{\mathbf{s}}(\xi)=\xi+\mathbf{X}^{\mathbf{a}} \mathcal{G}_{\mathbf{a}}+\frac{1}{2} \mathbf{X}^{\mathbf{a b}} \mathcal{G}_{\mathbf{a}} \mathcal{G}_{\mathbf{b}}+\ldots$, and requiring

$$
\left\{\xi_{\mathbf{s}}(\xi), \mathcal{G}_{\mathbf{a}}(\xi)\right\}=\mathbf{0}
$$

one gets:

$$
\begin{gathered}
\xi_{\mathbf{s}}(\xi)=\sum_{\mathbf{k}=\mathbf{0}}^{\infty} \frac{1}{\mathbf{k}!}\left\{\ldots\left\{\left\{\xi, \mathcal{G}^{\mathbf{a}_{1}}\right\}, \mathcal{G}^{\mathbf{a}_{2}}\right\}, \ldots \mathcal{G}^{\mathbf{a}_{\mathbf{k}}}\right\} \mathcal{G}_{\mathbf{a}_{1}} \mathcal{G}_{\mathbf{a}_{2}} \ldots \mathcal{G}_{\mathbf{a}_{\mathbf{k}}} \\
\mathbf{f}_{\mathbf{s}}(\xi)=\sum_{\mathbf{k}=0}^{\infty} \frac{1}{\mathbf{k}!}\left\{\ldots\left\{\left\{\mathbf{f}(\xi), \mathcal{G}^{\mathbf{a}_{1}}\right\}, \mathcal{G}^{\mathbf{a}_{\mathbf{2}}}\right\}, \ldots \mathcal{G}^{\mathbf{a}_{\mathbf{k}}}\right\} \mathcal{G}_{\mathbf{a}_{1}} \mathcal{G}_{\mathbf{a}_{2}} \ldots \mathcal{G}_{\mathbf{a}_{\mathbf{k}}}=\mathbf{f}\left(\xi_{\mathbf{s}}(\xi)\right)
\end{gathered}
$$

Classical second-class constraints systems in phase space

The average of a function $f(\xi)$ is calculated using the probability density distribution $\rho(\xi)$ and the Liouville measure restricted to the constraint submanifold:

$$
<\mathbf{f}>=\int \frac{\mathbf{d}^{2 \mathbf{n}} \xi}{(2 \pi)^{\mathbf{n}}}(2 \pi)^{\mathbf{m}} \prod_{\mathbf{a}=1}^{2 \mathbf{m}} \delta\left(\mathcal{G}_{\mathbf{a}}(\xi)\right) \mathbf{f}(\xi) \rho(\xi)
$$

On the constraint submanifold $f(\xi)$ and $\rho(\xi)$ can be replaced with $f_{s}(\xi)$ and $\rho_{s}(\xi)$

```
Equivalence classes of functions in phase space
```

$$
\mathbf{f}(\xi) \sim \mathbf{g}(\xi) \leftrightarrow \mathbf{f}_{\mathbf{s}}(\xi)=\mathbf{g}_{\mathbf{s}}(\xi)
$$

In particular, $f(\xi) \sim f_{s}(\xi)$ and $\mathcal{G}_{a} \sim 0$.

$$
\begin{aligned}
& \text { Evolution of function } f \\
& \qquad \frac{\partial}{\partial \mathbf{t}} \mathbf{f}=\{\mathbf{f}, \mathcal{H}\}_{\mathbf{D}}
\end{aligned}
$$

On the constraint submanifold

$$
\{\mathbf{f}, \mathbf{g}\}_{\mathbf{D}}=\left\{\mathbf{f}, \mathbf{g}_{\mathbf{s}}\right\}=\left\{\mathbf{f}_{\mathbf{s}}, \mathbf{g}\right\}=\left\{\mathbf{f}_{\mathbf{s}}, \mathbf{g}_{\mathbf{s}}\right\}
$$

Classical second-class constraints systems in phase space
Replacing $\mathcal{H} \longrightarrow \mathcal{H}_{s}$, one can rewrite the evolution equation in terms of the Poisson bracket:

$$
\frac{\partial}{\partial \mathbf{t}} \mathbf{f}=\left\{\mathbf{f}, \mathcal{H}_{\mathrm{s}}\right\}
$$

physical observables § equivalence classes of functions in phase space §
Poisson algebra

Quantum second-class constraints systems in the Hilbert space
To any function $f(\xi)$ in the unconstrained phase space one may associate an operator \mathfrak{f} in the corresponding Hilbert space

$$
\begin{aligned}
& \mathcal{H}(\xi) \longleftrightarrow \mathfrak{H}^{3} \\
& \mathcal{G}_{a}(\xi) \longleftrightarrow \mathfrak{G}_{a} \\
& {\left[\mathfrak{G}_{\mathbf{a}}, \mathfrak{G}_{\mathbf{b}}\right]=\mathbf{i} \hbar \mathcal{I}_{\mathbf{a b}}}
\end{aligned}
$$

$$
\begin{gathered}
\text { Projected operator } \mathfrak{f}_{s} \\
\mathfrak{f}_{\mathbf{s}}=\sum_{\mathrm{k}=0}^{\infty} \frac{(-\mathbf{i} / \hbar)^{\mathbf{k}}}{\mathrm{k}!}\left[\ldots\left[\left[\mathfrak{f}, \mathfrak{G}^{\mathbf{a}_{1}}\right], \mathfrak{G}^{\mathbf{a}_{2}}\right], \ldots \mathfrak{G}^{\mathbf{a}_{\mathrm{k}}}\right] \mathfrak{G}_{\mathbf{a}_{1}} \mathfrak{G}_{\mathbf{a}_{2}} \ldots \mathfrak{G}_{\mathbf{a}_{\mathbf{k}}} .
\end{gathered}
$$

One has

$$
\begin{gathered}
{\left[\mathfrak{f}_{\mathbf{s}}, \mathfrak{G}_{\mathrm{a}}\right]=\mathbf{0}} \\
\left(\mathfrak{f g}_{\mathrm{s}}\right)_{\mathbf{s}}=\left(\mathfrak{f}_{\mathfrak{s}} \mathfrak{g}\right)_{\mathbf{s}}=\mathfrak{f}_{\mathbf{s}} \mathfrak{g}_{\mathbf{s}}
\end{gathered}
$$

\mathfrak{f} and \mathfrak{g} belong to the same equivalence class provided

$$
\mathfrak{f} \sim \mathfrak{g} \leftrightarrow \mathfrak{f}_{\mathrm{s}}=\mathfrak{g}_{\mathrm{s}}
$$

Quantum second-class constraints systems in the Hilbert space

How to calculate the average value of an operator?

Projection operator:

$$
\mathfrak{P}=\int \frac{\mathbf{d}^{2 \mathrm{~m}} \lambda}{(2 \pi \hbar)^{\mathbf{m}}} \prod_{\mathbf{a}=1}^{2 \mathrm{~m}} \exp \left(\frac{\mathbf{i}}{\hbar} \mathfrak{G}^{\mathbf{a}} \lambda_{\mathbf{a}}\right)
$$

Chose basis in the Hilbert space in which the first m constraint operators are diagonal,

$$
\mathfrak{G}^{\mathbf{a}}\left|\mathbf{g}, \mathbf{g}_{*}>=\mathbf{g}^{\mathbf{a}}\right| \mathbf{g}, \mathbf{g}_{*}>,
$$

for $a=1, \ldots, m . \mathfrak{G}^{a}$ might be taken as momentum operators. The last m constraint operators can be treated as quantal coordinates.

$$
\mathfrak{P}\left|\mathbf{g}, \mathbf{g}_{*}>=\right| \mathbf{0}, \mathbf{g}_{*}>
$$

The average value of an operator \mathfrak{f}

$$
<\mathfrak{f}>=\operatorname{Tr}\left[\mathfrak{P} \mathfrak{F}_{\mathbf{s}} \mathfrak{r}_{\mathrm{s}}\right]=\int \frac{\mathrm{d}^{\mathrm{n}-\mathrm{m}} \mathrm{~g}_{*}}{(2 \pi \hbar)^{\mathrm{n}-\mathrm{m}}}<0, \mathrm{~g}_{*}\left|\mathfrak{f}_{\mathfrak{s}_{\mathbf{s}}}\right| 0, \mathrm{~g}_{*}>.
$$

is determined by the physical subspace of the Hilbert space, spanned by $\left|0, g_{*}\right\rangle$.

Quantum second-class constraints systems in the Hilbert space

Physical states satisfy

$$
\mathfrak{G}^{\mathbf{a}} \mid 0, \mathrm{~g}_{*}>=\mathbf{0}
$$

Dirac's supplementary condition

for an equivalent gauge system, where
\mathfrak{G}^{a} with $a=1, \ldots, m$ are gauge generators
\mathfrak{G}^{a} with $a=m+1, \ldots, 2 m$ are gauge-fixing operators.

Quantum evolution equation

$$
\mathbf{i} \hbar \frac{\mathrm{d}}{\mathrm{dt}} \mathfrak{f}=\left[\mathfrak{f}, \mathfrak{H}_{\mathrm{s}}\right]
$$

Evolution does not mix equivalence classes of operators

$$
\mathfrak{f}(\mathrm{t}) \sim \mathfrak{g}(\mathrm{t}) \leftrightarrow \mathfrak{f}(\mathbf{0}) \sim \mathfrak{g}(\mathbf{0})
$$

Weyl's association rule and the star-product

physical observables I

 equivalence classes of operators in the Hilbert space

Vector space? Choose basis! Weyl's basis:

$$
\mathfrak{B}(\xi)=(\mathbf{2} \pi \hbar)^{\mathbf{n}} \delta^{2 \mathbf{n}}(\xi-\mathfrak{x})=\int \frac{\mathbf{d}^{2 \mathbf{n}} \eta}{(2 \pi \hbar)^{\mathbf{n}}} \exp \left(-\frac{\mathbf{i}}{\hbar} \eta_{\mathbf{k}}(\xi-\mathfrak{x})^{\mathbf{k}}\right) .
$$

The Weyl's association rule

$$
\begin{aligned}
\mathbf{f}(\xi) & =\operatorname{Tr}[\mathfrak{B}(\xi) \mathfrak{f}], \\
\mathfrak{f} & =\int \frac{\mathbf{d}^{\mathbf{2 n}} \xi}{(\mathbf{2 \pi} \hbar)^{\mathbf{n}}} \mathbf{f}(\xi) \mathfrak{B}(\xi) .
\end{aligned}
$$

$\mathfrak{B}(\xi) \in O p\left(L^{2}\left(\mathbb{R}^{n}\right)\right)$ and projection operators $P_{i}=\mathbf{e}_{i} \otimes \mathbf{e}_{i}$ acting in \mathbb{R}^{n} satisfy

$$
\begin{aligned}
\mathfrak{B}(\xi)^{+}=\mathfrak{B}(\xi) & \leftrightarrow\left(P_{i}\right)^{+}=P_{i}, \\
\operatorname{Tr}[\mathfrak{B}(\xi)]=1 & \leftrightarrow \mathbf{e}_{i} \cdot \mathbf{e}_{i}=1, \\
\int \frac{d^{2 n} \xi}{(2 \pi \hbar)^{n}} \mathfrak{B}(\xi)=1 & \leftrightarrow \sum_{i} \mathbf{e}_{i} \otimes \mathbf{e}_{i}=1, \\
\int \frac{d^{2 n} \xi}{(2 \pi \hbar)^{n}} \mathfrak{B}(\xi) \operatorname{Tr}[\mathfrak{B}(\xi) \mathfrak{f}]=\mathfrak{f} \leftrightarrow \sum_{i} P_{i}\left(P_{i}\left(\sum_{j} g_{j} P_{j}\right)\right) & =\sum_{j} g_{j} P_{j}, \\
\operatorname{Tr}\left[\mathfrak{B}(\xi) \mathfrak{B}\left(\xi^{\prime}\right)\right]=(2 \pi \hbar)^{n} \delta^{2 n}\left(\xi-\xi^{\prime}\right) & \leftrightarrow \mathbf{e}_{i} \cdot \mathbf{e}_{j}=\delta_{i j}, \\
\mathfrak{B}(\xi) \exp \left(-\frac{i \hbar}{2} \mathcal{P}_{\xi \xi^{\prime}}\right) \mathfrak{B}\left(\xi^{\prime}\right)=(2 \pi \hbar)^{n} \delta^{2 n}\left(\xi-\xi^{\prime}\right) \mathfrak{B}\left(\xi^{\prime}\right) & \leftrightarrow ?
\end{aligned}
$$

and therefore $\xi \leftrightarrow i$.

Quantum second-class constraints systems in phase space

Symplectic basis for constraint functions

$$
\mathbf{G}_{\mathbf{a}}(\xi) \wedge \mathbf{G}_{\mathbf{b}}(\xi)=\mathcal{I}_{\mathbf{a b}}
$$

Skew-gradient projections for canonical variables and functions in phase space

$$
\xi_{\mathbf{t}}(\xi) \wedge \mathbf{G}_{\mathbf{a}}(\xi)=\mathbf{0} \quad \& \quad \mathbf{f}_{\mathbf{t}}(\xi) \wedge \mathbf{G}_{\mathbf{a}}(\xi)=\mathbf{0}
$$

Projected canonical variables

$$
\begin{gathered}
\xi_{\mathbf{t}}(\xi)=\sum_{\mathbf{k}=0}^{\infty} \frac{1}{\mathbf{k}!}\left(\ldots\left(\left(\xi \wedge \mathbf{G}^{\mathbf{a}_{1}}\right) \wedge \mathbf{G}^{\mathbf{a}_{\mathbf{2}}}\right) \ldots \wedge \mathbf{G}^{\mathbf{a}_{\mathbf{k}}}\right) \circ \mathbf{G}_{\mathbf{a}_{1}} \circ \mathbf{G}_{\mathbf{a}_{2}} \ldots \circ \mathbf{G}_{\mathbf{a}_{\mathbf{k}}} \\
\mathbf{f}_{\mathbf{t}}(\xi)=\sum_{\mathbf{k}=0}^{\infty} \frac{1}{\mathbf{k}!}\left(\ldots\left(\left(\mathbf{f}(\xi) \wedge \mathbf{G}^{\mathbf{a}_{1}}\right) \wedge \mathbf{G}^{\mathbf{a}_{\mathbf{2}}}\right) \ldots \wedge \mathbf{G}^{\mathbf{a}_{\mathbf{k}}}\right) \circ \mathbf{G}_{\mathbf{a}_{1}} \circ \mathbf{G}_{\mathbf{a}_{2} \ldots \circ \mathbf{G}_{\mathbf{a}_{\mathrm{k}}}}
\end{gathered}
$$

Classical limit

$$
\lim _{\hbar \rightarrow 0} \xi_{\mathbf{t}}(\xi)=\xi_{\mathbf{s}}(\xi) \quad \& \quad \lim _{\hbar \rightarrow 0} \mathbf{f}_{\mathbf{t}}(\xi)=\mathbf{f}_{\mathbf{s}}(\xi)
$$

Quantum second-class constraints systems in phase space

Equivalence relations between functions

$$
\mathbf{f}(\xi) \sim \mathbf{g}(\xi) \leftrightarrow \mathbf{f}_{\mathbf{t}}(\xi)=\mathbf{g}_{\mathbf{t}}(\xi)
$$

$$
\begin{aligned}
& f(\xi) \sim f_{t}(\xi) \text { and } f(\xi) \neq f_{t}(\xi) \text { for } G_{a}(\xi)=0, \\
& \text { therefore } \sim \text { and } \approx \text { acquire distinct meaning. }
\end{aligned}
$$

The average value of function

$$
<\mathbf{f}>=\int \frac{\mathbf{d}^{2 \mathbf{n}} \xi}{(2 \pi \hbar)^{\mathbf{n}}} \mathbf{P}(\xi) \star \mathbf{f}_{\mathbf{t}}(\xi) \star \mathbf{W}_{\mathbf{t}}(\xi)
$$

where $P(\xi)$ is the symbol of the projection operator \mathfrak{P} and $W(\xi)$ is the Wigner function.

EVOLUTION EQUATION:

$$
\frac{\partial}{\partial \mathbf{t}} \mathbf{f}(\xi)=\mathbf{f}(\xi) \wedge \mathbf{H}_{\mathbf{t}}(\xi)
$$

Quantum spherical pendulum in phase space

Mathematical pendulum on S^{n-1} sphere of unit radius in n-dimensional Euclidean space with coordinates ϕ^{α}.

The hamiltonian function projected onto the constraint submanifold

$$
\mathbf{H}_{\mathbf{t}}=\frac{\mathbf{1}}{\mathbf{2}}\left(\phi^{2} \delta^{\alpha \beta}-\phi^{\alpha} \phi^{\beta}\right) \pi^{\alpha} \pi^{\beta}
$$

Constraint functions

$$
\begin{aligned}
G^{1}(\xi) & =\frac{1}{2} \ln \phi^{\alpha} \phi^{\alpha} \\
G^{2}(\xi) & =\phi^{\alpha} \pi^{\alpha}
\end{aligned}
$$

where $\xi=\left(\phi^{\alpha}, \pi^{\alpha}\right)$, so that

$$
\mathbf{G}_{\mathbf{a}}(\xi) \wedge \mathbf{G}_{\mathbf{b}}(\xi)=\mathcal{I}_{\mathbf{a b}}
$$

the global symplectic basis exists!

Quantum spherical pendulum in phase space

```
Evolution equation for Wigner function
```

The power series expansion of the Moyal bracket is truncated at $O\left(\hbar^{2}\right)$, since the Hamiltonian $H_{t}(\xi)$ is a fourth degree polynomial of canonical variables, so we obtain

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{t}} \mathbf{W}= & -\left\{\mathbf{W}, \mathcal{H}_{\mathrm{s}}\right\}+\frac{\hbar^{2}}{\mathbf{8}}\left(\frac{\partial^{\mathbf{3}} \mathbf{W}}{\partial \phi^{\alpha} \partial \phi^{\beta} \partial \pi^{\gamma}}\left(\mathbf{2} \delta^{\alpha \beta} \phi^{\gamma}-\delta^{\alpha \gamma} \phi^{\beta}-\delta^{\beta \gamma} \phi^{\alpha}\right)\right. \\
& \left.-\frac{\partial^{\mathbf{3}} \mathbf{W}}{\partial \pi^{\alpha} \partial \pi^{\beta} \partial \phi^{\gamma}}\left(\mathbf{2} \delta^{\alpha \beta} \pi^{\gamma}-\delta^{\alpha \gamma} \pi^{\beta}-\delta^{\beta \gamma} \pi^{\alpha}\right)\right)
\end{aligned}
$$

The first term in the right side is of the classical origin, while the second term represents a quantum correction to the classical Liouville equation and there are no other quantum corrections. Given $W(\xi, 0)$ in the unconstrained phase space, $W(\xi, t)$ can be found by solving the PDE.

Conclusion

Systems:	unconstrained	constrained
classical	$\{f, g\}$	$\{f, g\}_{D}$
quantum	$f \wedge g$	$f_{t} \wedge g_{t}$

\checkmark Four types of systems

- Four types of brackets which govern evolution of systems
\uparrow The fourth bracket $f_{t} \wedge g_{t}$ has been constructed

Many thanks to my collaborators:
Apolodor Raduta (Buharest University)
Amand Faessler (Tübigen University)

