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1. Symmetries of differential equations

We consider canonical Hamiltonian equations

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q
, H = H(t, q, p)

and their Lie group transformation

t̄ = t̄(t, q, p, a) ≈ t+ ξ(t, q, p)a

q̄ = q̄(t, q, p, a) ≈ q + η(t, q, p)a

p̄ = p̄(t, q, p, a) ≈ p+ ζ(t, q, p)a

Lie group transformations in the space (t, q, p) are generated by operators of
the form

X = ξ(t, q, p)
∂

∂t
+ η(t, q, p)

∂

∂q
+ ζ(t, q, p)

∂

∂p

Symmetries ←→ transformed equations have the same form
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Example: Harmonic oscillator H = 1
2
(p2 + q2).

The canonical Hamiltonian equations

q̇ = p, ṗ = −q
are invariant, for example, for

1. Translation in time

t̄ = t+ a, q̄ = q, p̄ = p,

generated by the operator

X1 =
∂

∂t

2. Scaling

t̄ = t, q̄ = eaq ≈ q + qa, p̄ = eap ≈ p+ pa,

generated by the operator

X2 = q
∂

∂q
+ p

∂

∂p
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Infinitesimal criterion of invariance

We prolong the operator on q̇ and ṗ:

X = ξ
∂

∂t
+ η

∂

∂q
+ ζ

∂

∂p
+ (D(η)− q̇D(ξ))

∂

∂q̇
+ (D(ζ)− ṗD(ξ))

∂

∂ṗ

The equations are invariant with respect to operator X if

X

(
q̇ −

∂H

∂p

)∣∣∣∣
q̇= ∂H

∂p
, ṗ=− ∂H

∂q

= 0, X

(
ṗ+

∂H

∂q

)∣∣∣∣
q̇= ∂H

∂p
, ṗ=− ∂H

∂q

= 0

Example: Harmonic oscillator.

1. Translation in time

X1 =
∂

∂t
, X1(q̇ − p) ≡ 0, X1(ṗ+ q) ≡ 0.

2. Scaling

X2 = q
∂

∂q
+ p

∂

∂p
+ q̇

∂

∂q̇
+ ṗ

∂

∂ṗ

X2(q̇ − p) = q̇ − p, X2(ṗ+ q) = ṗ+ q.
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2. Canonical Hamiltonian equations

2.a. Hamiltonian symmetries and first integrals

Hamiltonian symmetries have the form

X = 0
∂

∂t
+ η(t, q, p)

∂

∂q
+ ζ(t, q, p)

∂

∂p
,

where

η =
∂I

∂p
, ζ = −

∂I

∂q
, I = I(t, q, p).

They generate transformations which preserve the canonical Hamiltonian form
of the equations, i.e. generate canonical transformations, which are usu-
ally known as provided by generating functions S1(q, q̄), S2(p̄, q), S3(p, q̄) and
S4(p, p̄). For example,

S1(q, q̄) : p =
∂S1

∂q
(q, q̄), p̄ = −

∂S1

∂q̄
(q, q̄).
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Invariance of the equation q̇ = ∂H
∂p

with respect to a Hamiltonian symmetry

ηt + ηqq̇ + ηpṗ = η
∂

∂q

(
∂H

∂p

)
+ ζ

∂

∂p

(
∂H

∂p

)
, where η =

∂I

∂p
, ζ = −

∂I

∂q

on the solutions q̇ = ∂H
∂p

, ṗ = −∂H
∂q

yields

∂2I

∂t∂p
+
∂H

∂p

∂2I

∂q∂p
−
∂H

∂q

∂2I

∂p∂p
=
∂I

∂p

∂2H

∂q∂p
−
∂I

∂q

∂2H

∂p∂p
.

This can be rewritten as

∂

∂p

(
∂I

∂t
+
∂H

∂p

∂I

∂q
−
∂H

∂q

∂I

∂p

)
= 0.

Similarly, invariance of ṗ = −∂H
∂q

leads to

∂

∂q

(
∂I

∂t
+
∂H

∂p

∂I

∂q
−
∂H

∂q

∂I

∂p

)
= 0.
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Therefore,
∂I

∂t
+
∂H

∂p

∂I

∂q
−
∂H

∂q

∂I

∂p
= f(t).

Since

∂I

∂t
+
∂H

∂p

∂I

∂q
−
∂H

∂q

∂I

∂p
=

∂I

∂t
+
∂I

∂q
q̇ +

∂I

∂p
ṗ

∣∣∣∣
q̇= ∂H

∂p
, ṗ=− ∂H

∂q

= D(I)|q̇= ∂H

∂p
, ṗ=− ∂H

∂q

we get a first integral I(t) − F (t). Function F (t) is to be found from the
Hamiltonian equations.

• PROBLEM: How to consider discrete case?
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2.b. Variational formulation

Canonical Hamiltonian equations

q̇ =
∂H

∂p
, ṗ = −

∂H

∂q

can be obtained by the variational principle from the action functional∫ t2

t1

(pq̇ −H(t, q, p)) dt, δq(t1) = δq(t2) = 0

Indeed,

δ

∫ t2

t1

(pq̇ −H(t, q, p)) dt =

∫ t2

t1

(
δpq̇ + pδq̇ −

∂H

∂q
δq −

∂H

∂p
δp

)
dt

=

∫ t2

t1

[(
q̇ −

∂H

∂p

)
δp−

(
ṗ+

∂H

∂q

)
δq

]
dt+ [pδq]t2

t1
.
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2.c. Variational symmetries and first integrals

Invariance of elementary action

(pq̇ −H)dt = pdq −Hdt

Theorem. The elementary Hamiltonian action (we say a Hamiltonian) is
invariant with respect to a symmetry operator if and only if

ζq̇ + pD(η)−X(H)−HD(ξ) = 0.

Proof. Application of prolonged X yields:

X (pdq −Hdt) = (ζq̇ + pD(η)−X(H)−HD(ξ)) dt = 0.

�
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Lemma. (The Hamiltonian identity) The identity

ζq̇ + pD(η)−X(H)−HD(ξ) ≡ ξ
(
D(H)−

∂H

∂t

)

−η
(
ṗ+

∂H

∂q

)
+ ζ

(
q̇ −

∂H

∂p

)
+D [pη − ξH]

is true for any smooth function H = H(t, q, p).

Theorem. (Noether theorem) The canonical Hamiltonian equations possess
a first integral

I = pη − ξH
if and only if the Hamiltonian function is invariant with respect to the corre-
sponding symmetry operator on the solutions of Hamiltonian equations.

Remark. If the Hamiltonian is divergence invariant, i.e.

ζq̇ + pD(η)−X(H)−HD(ξ) = D(V ), V = V (t, q, p),

then there is a first integral

I = pη − ξH − V.
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Invariance of canonical Hamiltonian equations

Let us consider variation operators

δ

δp
=

∂

∂p
−D

∂

∂ṗ
,

δ

δq
=

∂

∂q
−D

∂

∂q̇
, D =

∂

∂t
+ q̇

∂

∂q
+ ṗ

∂

∂p
+ ...

Lemma. Application of variational operators to invariance condition yields

δ

δp
(ζq̇ + pD(η)−X(H)−HD(ξ)) =

[
D(η)− q̇D(ξ)−X

(
∂H

∂p

)]

+ξp

(
D(H)−

∂H

∂t

)
− ηp

(
ṗ+

∂H

∂q

)
+ (ζp +D(ξ))

(
q̇ −

∂H

∂p

)
.

and

δ

δq
(ζq̇ + pD(η)−X(H)−HD(ξ)) = −

[
D(ζ)− ṗD(ξ) +X

(
∂H

∂q

)]

+ξq

(
D(H)−

∂H

∂t

)
− (ηq +D(ξ))

(
ṗ+

∂H

∂q

)
+ ζq

(
q̇ −

∂H

∂p

)
.
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Theorem. If a Hamiltonian is invariant with respect to a symmetry operator,
then the canonical Hamiltonian equations are also invariant.

Remark. The same is true for divergence symmetries of the Hamiltonian,
because the term D(V ) belongs to the kernel of the variational operators.

Theorem. Canonical Hamiltonian equations are invariant with respect to an
operator X if and only if the following conditions are true (on the solutions
of the canonical Hamiltonian equations):

δ

δp
(ζq̇ + pD(η)−X(H)−HD(ξ))

∣∣∣∣
q̇= ∂H

∂p
, ṗ=− ∂H

∂q

= 0,

δ

δq
(ζq̇ + pD(η)−X(H)−HD(ξ))

∣∣∣∣
q̇= ∂H

∂p
, ṗ=− ∂H

∂q

= 0.
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Example

The Hamiltonian equations

q̇ = p, ṗ =
1

q3
,

provided by the Hamiltonian function

H(t, q, p) =
1

2

(
p2 +

1

q2

)
,

admit symmetries

X1 =
∂

∂t
, X2 = 2t

∂

∂t
+ q

∂

∂q
− p

∂

∂p
, X3 = t2

∂

∂t
+ tq

∂

∂q
+ (q − tp)

∂

∂p
.
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1. Variational symmetries

Variational symmetry operators X1 and X2 provide first integrals

I1 = −H = −
1

2

(
p2 +

1

q2

)
, I2 = pq − t

(
p2 +

1

q2

)
.

Operator X3 is a divergence symmetry with V3 = q2/2. It yields the following
conserved quantity

I3 = −
1

2

(
t2

q2
+ (q − tp)2

)
.

Putting I1 = A/2 and I2 = B, we find the solution as

Aq2 + (At−B)2 + 1 = 0, p =
B −At

q
.
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2. Hamiltonian symmetries

We rewrite symmetry operators in the evolutionary form

X̄1 = −q̇
∂

∂q
− ṗ

∂

∂p
, X̄2 = (q − 2tq̇)

∂

∂q
− (p+ 2tṗ)

∂

∂p
,

X̄3 = (tq − t2q̇)
∂

∂q
+ (q − tp− t2ṗ)

∂

∂p
.

On the solutions of the canonical Hamiltonian equations q̇ = p, ṗ = 1
q3 these

operators are equivalent to the set

X̃1 = −p
∂

∂q
−

1

q3

∂

∂p
, X̃2 = (q − 2tp)

∂

∂q
−
(
p+

2t

q3

)
∂

∂p
,

X̃3 =
(
tq − t2p

) ∂
∂q

+

(
q − tp−

t2

q3

)
∂

∂p
.

To find first integrals one should integrate the equations

η =
∂I

∂p
, ζ = −

∂I

∂q
, X̃ = η

∂

∂q
+ ζ

∂

∂p

for each symmetry. Integration provides us with the same first integrals.
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3. Discrete Hamiltonian equations

3.a. Discrete variational equations in Lagrangian framework

We consider a finite–difference functional

Lh =
∑

Ω

L(t, t+, q, q+)h+,

defined on some one-dimensional lattice Ω with step h+ = t+ − t.

Let us take a variation of the functional along some curve q = φ(t) at some
point (t, q). The variation will effect only two terms in the sum:

Lh = ...+ L(t−, t, q−, q)h− + L(t, t+, q, q+)h+ + ...,

so we get the following expression for the variation of the difference functional

δLh =
δL
δq
δq +

δL
δt
δt,

where δq = φ′δt and
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δL
δq

= h+
∂L
∂q

+ h−
∂L
∂q

−
,

δL
δt

= h+
∂L
∂t

+ h−
∂L
∂t

−
+ L− − L,

where L = L(t, t+, q, q+) and L− = S
−h

(L) = L(t−, t, q−, q).

Thus, for an arbitrary curve the stationary value of difference functional is
given by any solution of the 2 equations, called quasiextremal equations,

δL
δq

= 0,
δL
δt

= 0.

These equations represent the entire difference scheme (approximation of
ODE and mesh) and could be called ”the discrete Euler–Lagrange system”.

• Noether theorem links variational symmetries and first integrals.



3.b. Discrete Legendre transform and discrete Hamiltonian equations

We consider discrete Legendre transform (t, t+, q, q+)→ (t, t+, q, p+):

p+ = h+
∂L
∂q+

(t, t+, q, q+),

H(t, t+, q, p+) = p+D
+h

(q)− L(t, t+, q, q+), D
+h

(q) =
q+ − q
t+ − t

,

which is a slightly modified version of the transform proposed in

Lall S, West M, Discrete variational Hamiltonian mechanics,
J. Phys. A 39, 19 (2006) 5509-5519,

where the discrete Hamiltonian equations were developed as the dual, in the
sense of optimization, to discrete Euler–Lagrange equations.

Alternatively, on can use discrete Legendre transform (t, t+, q, q+)→ (t, t+, p, q+):

p = −h+
∂L
∂q

(t, t+, q, q+),

H(t, t+, q+, p) = pD
+h

(q)− L(t, t+, q, q+).
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Relations for derivatives of the Lagrangian and Hamiltonian:

h+
∂H
∂t
−H = −h+

∂L
∂t

+ L, h+
∂H
∂t+

+H = −h+
∂L
∂t+
− L,

h+
∂H
∂q

= −p+ − h+
∂L
∂q
, h+

∂H
∂p+

= q+ − q.

Transforming 2 quasiextremal equations (discrete Euler–Lagrange equations)
into Hamiltonian framework, we obtain discrete Hamiltonian equations.

D
+h

(q) =
∂H
∂p+

, D
+h

(p) = −
∂H
∂q

,

h+
∂H
∂t
−H+ h−

∂H−

∂t
+H− = 0,

where H = H(t, t+, q, p+) and H− = H(t−, t, q−, p).
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3.c. Variational formulation

We consider the finite–difference functional

Hh =
∑

Ω

(p+(q+ − q)−H(t, t+, q, p+)h+).

A variation of this functional along a curve q = φ(t), p = ψ(t) at some point
(t, q, p) will effect only two term of the sum:

Hh = ...+ p(q − q−)−H(t−, t, q−, p)h− + p+(q+ − q)−H(t, t+, q, p+)h+ + ...

Therefore, we get the following expression for the variation

δHh =
δH
δp
δp+

δH
δq
δq +

δH
δt
δt,

where δq = φ′δt, δp = ψ′δt and
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δH
δp

= q − q− − h−
∂H
∂p

−
,

δH
δq

= −
(
p+ − p+ h+

∂H
∂q

)
,

δH
δt

= −
(
h+

∂H
∂t
−H+ h−

∂H
∂t

−
+H−

)
,

where H = H(t, t+, q, p+) and H− = H(t−, t, q−, p).

For the stationary value of the finite–difference functional we obtain the
system of 3 equations

δH
δp

= 0,
δH
δq

= 0,
δH
δt

= 0,

which are equivalent to the discrete Hamiltonian equations.



3.d. Variational symmetries and first integrals
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(t−, q−, p−)
(t, q, p)

(t+, q+, p+)

h− h+

Discrete prolongation of the operator X:

X = ξ
∂

∂t
+ η

∂

∂q
+ ζ

∂

∂p
+ ξ−

∂

∂t−
+ η−

∂

∂q−
+ ζ−

∂

∂p−
+ ξ+

∂

∂t+
+ η+

∂

∂q+
+ ζ+

∂

∂p+

where

ξ− = ξ(t−, q−, p−), η− = η(t−, q−, p−), ζ− = ζ(t−, q−, p−),

ξ+ = ξ(t+, q+, p+), η+ = η(t+, q+, p+), ζ+ = ζ(t+, q+, p+).

20



Let us consider the finite–difference functional

Hh =
∑

Ω

(p+(q+ − q)−H(t, t+, q, p+)h+).

on some lattice given by equation

Ω(t, h+, h−, q, p) = 0.

The lattice is provided by the discrete Hamiltonian equations.

Theorem. The discrete action functional (we say a Hamiltonian function)
considered together with the mesh is invariant with respect to a group gen-
erated by operator X if and only if the conditions

ζ+ D
+h

(q) + p+ D
+h

(η)−X(H)−H D
+h

(ξ)

∣∣∣∣
Ω=0

= 0,

XΩ(t, h+, h−, q, p)|Ω=0 = 0

hold on the solutions of the discrete Hamiltonian equations.

• Since the mesh is provided by discrete Hamiltonian equations we need
their invariance
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Lemma. (Discrete Hamiltonian identity) The following identity is true for
any smooth function H = H(t, t+, q, p+):

ζ+ D
+h

(q) + p+ D
+h

(η)−X(H)−H D
+h

(ξ) ≡ ξ
(
h−

h+
D
−h

(H)−
∂H
∂t
−
h−

h+

∂H
∂t

−)

−η
(
D
+h

(p) +
∂H
∂q

)
+ ζ+

(
D
+h

(q)−
∂H
∂p+

)
+ D

+h

[
ηp− ξ

(
H− + h−

∂H−

∂t

)]
Theorem. (Noether theorem) The invariant with respect to symmetry op-
erator X discrete Hamiltonian equations possess a first integral

I = ηp− ξ
(
H− + h−

∂H
∂t

−)
if and only if the Hamiltonian function is invariant with respect to the same
symmetry on the solutions of the equations.
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Remark 1. If the operator X is a divergence symmetry of the Hamiltonian
action, i.e.

ζ+ D
+h

(q) + p+ D
+h

(η)−X(H)−H D
+h

(ξ) = D
+h

(V ), V = V (t, q, p),

then there is a first integral

I = ηp− ξ
(
H− + h−

∂H
∂t

−)
− V.

Remark 2. If Hamiltonian is invariant with respect to time translations, i.e.
H = H(h+,q,p+), where h+ = t+ − t, then there is a conservation of energy

E = H− + h−
∂H−

∂h−
= H+ h+

∂H
∂h+

.



Example: Discrete harmonic oscillator.

Let us consider the one-dimensional harmonic oscillator

q̇ = p, ṗ = −q,
which is generated by the Hamiltonian function

H(t, q, p) =
1

2
(p2 + q2).

As a discretization we consider the application of the midpoint rule

q+ − q
h+

=
p+ p+

2
,

p+ − p
h+

= −
q + q+

2

on a uniform mesh h+ = h− = h.

• The midpoint rule conserves quadratic first integral. Therefore, H is
conserved.
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This discretization can be rewritten as the system

D
+h

(q) =
4

4− h2
+

(
p+ +

h+

2
q

)
, D

+h
(p) = −

4

4− h2
+

(
q +

h+

2
p+

)
, h+ = h− = h.

It can be shown that this system provides discrete Hamiltonian equations
D
+h

(q) =
∂H
∂p+

, D
+h

(p) = −
∂H
∂q

,

h+
∂H
∂t
−H+ h−

∂H−

∂t
+H− = 0,

generated by the discrete Hamiltonian

H(t, t+, q, p+) =
2

4− h2
+

(q2 + p2
+ + h+qp+).
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The system admits, in particular, symmetries

X1 = sin(ωt)
∂

∂q
+ cos(ωt)

∂

∂p
, X2 = cos(ωt)

∂

∂q
− sin(ωt)

∂

∂p
,

X3 =
∂

∂t
, X4 = q

∂

∂q
+ p

∂

∂p
, X5 = p

∂

∂q
− q

∂

∂p
,

where

ω =
arctan(h/2)

h/2
.

Operators X1 and X2 are divergence symmetries with functions V1 = q cos(ωt)
and V2 = −q sin(ωt) respectively. Therefore, we obtain two first integrals

I1 = p sin(ωt)− q cos(ωt), I2 = p cos(ωt) + q sin(ωt).

From the first integrals I1 and I2 we have conservation

I2
1 + I2

2 = q2 + p2 = const.
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Operator X3 is a variational symmetry. It provides the first integral

I3 = −
4

4− h2
−

(
4 + h2

−
4− h2

−

q2
− + p2

2
+

4h−
4− h2

−
q−p

)
.

Using the equations, we can simplify it as

I3 = −
4

4 + h2
−

q2 + p2

2

Using q2 + p2 = const, we can take the third first integrals equivalently as

Ĩ3 = h−.

Finally, we have three first integrals I1, I2, Ĩ3, which are sufficient for inte-
gration of the discrete system. We obtain the solution

q = I2 sin(ωt)− I1 cos(ωt), p = I1 sin(ωt) + I2 cos(ωt)

on the lattice

ti = t0 + ih, i = 0,±1,±2, ..., h = Ĩ3.
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Example.

The discrete Hamiltonian

H(t, t+, q, p+) =
1

2

(
p2

+ +
1

q2

)
yields the discrete Hamiltonian equations:

D
+h

(q) = p+, D
+h

(p) =
1

q3
, p2

+ +
1

q2
= p2 +

1

q2
−
.

Operators

X1 =
∂

∂t
, X2 = 2t

∂

∂t
+ q

∂

∂q
− p

∂

∂p

are variational symmetries. They provide first integrals

I1 = −
1

2

(
p2 +

1

q2
−

)
, I2 = qp− t

(
p2 +

1

q2
−

)
.

Therefore, the solution satisfies the relation

I2 = qp+ 2tI1

in all points of the lattice.
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4. Concluding remarks

1. For canonical Hamiltonian equations and discrete Hamiltonian equations
there is a relation:

Variational (divergence) symmetries ←→ first integrals

2. The same holds for n degrees of freedom

q = (q1, ..., qn), p = (p1, ..., pn).

3. Two discrete versions of discrete Legendre transform

(t, t+,q,q+)→ (t, t+,q,p+), and (t, t+,q,q+)→ (t, t+,p,q+)

let us obtain 2n + 1 discrete Hamiltonian equations from n + 1 discrete
Euler–Lagrangian equations.
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4. For discrete Hamiltonian equations with Hamiltonian functions invariant
with respect to time translations, i.e. H = H(h+,q,p+), where h+ =
t+ − t, there is a conservation of energy

E = H− + h−
∂H
∂t

−
.

Note that H is not the discrete energy, it has a meaning of a generating
function for discrete Hamiltonian flow.

This is related to

Kane C., Marsden J.E., Ortiz M.,
Symplectic–energy–momentum preserving variational integrators,
J. Math. Phys. 40 (1999) no. 7, 3353-3371.



5. It is possible to consider complete discrete Legendre transform.

Given a discrete Lagrangian L(t, t+,q,q+), we can consider, for example,
a discrete Legendre transform (t, t+,q,q+)→ (t, E+,q,p+):

p+ =
∂L
∂q+

, E+ = −
∂L
∂t+

,

S(t, E+,q,p+) = p+(q+ − q)− E+(t+ − t)− L(t, t+,q,q+).

In this case n+1 discrete Euler–Lagrange equations are transformed into
the system of 2n+ 2 equations

q+−q =
∂S
∂p+

, p+−p = −
∂S
∂q
, E+−E =

∂S
∂t
, t+− t = −

∂S
∂E+

.

• Stepsize h+ = t+ − t becomes a complicated expression.


