On the hidden supersymmetry of the reflectionless Pöschl-Teller model

Vít Jakubský
(the results elaborated with F. Correa and M. Plyushchay) sponsored by FONDECYT 3085013

26/06/2009

Table of contents

- Few words on supersymmetry
- Pöschl-Teller model
- Particle on $A d S_{2}$ space
- Non-linear susy of PT system in terms of ladder operators
- Outlook

Nonlinear $N=2$ supersymmetry

Hamiltonian H with two self-adjoint supercharges Q_{1} and Q_{2} satisfy

$$
\left[H, Q_{a}\right]=0, \quad\left\{Q_{a}, Q_{b}\right\}=\delta_{a b} P(H)
$$

where $P(H)$ is polynomial in H.
Γ is the grading operator of the superalgebra - classifies bosonic and fermionic operators

- an operator is bosonic when it commutes with 「
- an operator is fermionic when it anticommutes with Γ

Hamiltonian is supposed to be bosonic

Explicit supersymmetry

$$
H=\left(\begin{array}{cc}
H_{+} & 0 \\
0 & H_{-}
\end{array}\right), \quad Q_{1}=\left(\begin{array}{cc}
0 & q_{1} \\
q_{1}^{\dagger} & 0
\end{array}\right), \quad Q_{2}=i \Gamma Q_{1}=\left(\begin{array}{cc}
0 & q_{2} \\
q_{2}^{\dagger} & 0
\end{array}\right)
$$

$H_{ \pm}$are second-order differential operators, q_{a} can be of higher order
Grading operator $\Gamma=\sigma_{3}$

$$
\left\{Q_{a}, \Gamma\right\}=0, \quad[H, \Gamma]=0
$$

Hidden supersymmetry

$$
[H, Z]=0, \quad Z=Z^{\dagger}
$$

H is just second order differential operator, Z is differential operator of higher order, Г can be nonlocal operator (parity,....)

Intertwining relations of the explicit supersymmetry

$$
\left[Q_{a}, H\right]=0 \Rightarrow \quad H_{+} q_{a}=q_{a} H_{-}, \quad H_{-} q_{a}^{\dagger}=q_{a}^{\dagger} H_{+}
$$

Crum-Darboux theorem:
If a differential operator A_{n} of order n annihilates n eigenstates ψ_{i} of a Hamiltonian \mathcal{H}, one can construct another Hamiltonian $\tilde{H}=H-2\left(\ln \mathcal{W}\left(\psi_{1}, \ldots, \psi_{n}\right)\right)^{\prime \prime}$, and these three operators are related by the identities

$$
\tilde{\mathcal{H}} A_{n}=A_{n} \mathcal{H}, \quad A_{n}^{\dagger} \tilde{\mathcal{H}}=\mathcal{H} A_{n}^{\dagger}
$$

Here, \mathcal{W} is the Wronskian of not obligatorly to be physical states $\psi_{i}, i=1, \ldots, n$, such that $\mathcal{W} \neq 0$.

Pöschl-Teller model

$$
H_{m}=-\frac{d^{2}}{d x^{2}}-\frac{m(m+1)}{\cosh ^{2} x} .
$$

-finite number of bound states, doubly degenerated energies of scattering states

- symmetry with respect to the substitution $m \rightarrow-m-1$ (!!!)
- nuclear physics
- used in investigation of the tachyon condensation phenomenon in gauge field string dynamics

Vít Jakubský (the results elaborated with F. Correa and M. Pl

Poschl-Teller Hamiltonians satisfy

$$
\mathcal{D}_{m} H_{m}=H_{m-1} \mathcal{D}_{m},
$$

where the transformation

$$
\mathcal{D}_{m}=\frac{d}{d x}+m \tanh x, \quad \mathcal{D}_{-m}=-\mathcal{D}_{m}^{\dagger}
$$

annihilates just the ground state of H_{m}

- H_{m} and H_{m-1} are superpartner Hamiltonians in the realm of standard (linear) supersymmetry - effect of shape invariance

Using of the intertwining relations n-times, we get

$$
\mathcal{D}_{m-n} . . \mathcal{D}_{m} H_{m}=H_{m-n-1} \mathcal{D}_{m-n} . . \mathcal{D}_{m}
$$

Two special cases:
$n=m-1$:
$\left(\mathcal{D}_{-m} \mathcal{D}_{-(m-1)} \ldots \mathcal{D}_{-1}\right) H_{0}=H_{m}\left(\mathcal{D}_{-m} \mathcal{D}_{-(m-1)} \ldots \mathcal{D}_{-1}\right)$,
!!! when m is integer, H_{m} is intertwined with free particle Hamiltonian H_{0} and is reflectionless!!!
$n=2 m+1$: using the symmetry $H_{m}=H_{-m-1}$, we get

$$
\left(\mathcal{D}_{-m} \mathcal{D}_{-(m-1)} \ldots \mathcal{D}_{m}\right) H_{m}=H_{m}\left(\mathcal{D}_{-m} \mathcal{D}_{-(m-1)} \ldots \mathcal{D}_{m}\right)
$$

we can define hermitian operator which commutes with H_{m}

$$
Z_{m}=i^{2 m+1} \mathcal{D}_{-m} . . \mathcal{D}_{m}, \quad\left[H_{m}, Z_{m}\right]=0
$$

!!!when $m \in \mathbb{N},\{Z, R\}=0$ where $R x R=-x$ - hidden susy!!!

In general case

$$
H_{l} X_{m, l}=X_{m, l} H_{m}, \quad H_{l} Y_{m, l}=Y_{m, l} H_{m}
$$

where

$$
\begin{aligned}
& X_{m, l}=-i^{m-l} \mathcal{D}_{l+1} \mathcal{D}_{l+2} . . \mathcal{D}_{m} \\
& Y_{m, l}=i^{2 l+1} \mathcal{D}_{-m} \mathcal{D}_{-m+1} . . \mathcal{D}_{m}
\end{aligned}
$$

and

$$
H_{l} \tilde{Z}_{m, l}=\tilde{Z}_{m, l} H_{l}, \quad H_{m} Z_{m, l}=Z_{m, l} H_{m}
$$

where

$$
Z_{m, l}=X_{m, l}^{\dagger} Y_{m, l}, \quad \tilde{Z}_{m, l}=X_{m, l} Y_{m, l}^{\dagger}
$$

order of $\left|X_{m, I}\right|=m-I$, of $\left|Y_{m, l}\right|=m+I+1$ and of
$\left|Z_{m, l}\right|=\left|\tilde{Z}_{m, l}\right|=2 m+1$

Non-linear supersymmetry of reflectionless PT model

Superextended system

$$
\mathcal{H}_{m, l}=\left(\begin{array}{cc}
H_{l} & 0 \\
0 & H_{m}
\end{array}\right)
$$

Integrals of motion

$$
\begin{gathered}
\mathcal{X}_{m, l}=\left(\begin{array}{cc}
0 & X_{m, l} \\
X_{m, l}^{\dagger} & 0
\end{array}\right), \quad \mathcal{Y}_{m, l}=\left(\begin{array}{cc}
0 & Y_{m, l} \\
Y_{m, l}^{\dagger} & 0
\end{array}\right), \\
\mathcal{Z}_{m, l}=\mathcal{X}_{m, l} \mathcal{Y}_{m, l}=\mathcal{Y}_{m, l} \mathcal{X}_{m, l}=\left(\begin{array}{cc}
\tilde{Z}_{m, l} & 0 \\
0 & Z_{m, l}
\end{array}\right) \\
{\left[\mathcal{H}_{m, l}, \mathcal{X}_{m, l}\right]=\left[\mathcal{H}_{m, l}, \mathcal{Y}_{m, l}\right]=\left[\mathcal{H}_{m, l}, \mathcal{Z}_{m, l}\right]=0}
\end{gathered}
$$

Algebra graded to superalgebra by one of the three operators grading operators σ_{3}, R or $\sigma_{3} R$

$$
\sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad R x R=-x
$$

the bosonic and fermionic operators (for $m-l$ odd):
grading operator fermionic operators bosonic operators

$$
\sigma_{3}
$$

$$
R \quad \mathcal{X}_{m, l}, \mathcal{Z}_{m, l}
$$

$$
\mathcal{Y}_{m, l}, \mathcal{Z}_{m, l}
$$

$$
\begin{aligned}
& \mathcal{H}_{m, l}, \mathcal{Z}_{m, l} \\
& \mathcal{H}_{m, l}, \mathcal{Y}_{m, l} \\
& \mathcal{H}_{m, l}, \mathcal{X}_{m, l}
\end{aligned}
$$

\rightarrow structure of tri-supersymmetry

Other relations of the superalgebra

$$
\begin{aligned}
& {\left[\mathcal{X}_{m, l}, \mathcal{Y}_{m, l}\right]=\left[\mathcal{Y}_{m, l}, \mathcal{Z}_{m, l}\right]=\left[\mathcal{X}_{m, l}, \mathcal{Z}_{m, l}\right]=0 } \\
\mathcal{X}_{m, l}^{2}= & P_{\mathcal{X}}\left(\mathcal{H}_{m, l}\right)=\prod_{n=0}^{m-1-1}\left(\mathcal{H}_{m, l}-E_{m ; n}\right) \\
\mathcal{Y}_{m, l}^{2}= & P_{\mathcal{Y}}\left(\mathcal{H}_{m, l}\right)=P_{\mathcal{X}}\left(\mathcal{H}_{m, l}\right) \cdot\left(\mathcal{H}_{m, l}-E_{m ; m}\right) \prod_{n=m-l}^{m-1}\left(\mathcal{H}_{m, l}-E_{m ; n}\right)^{2} \\
\mathcal{Z}_{m, l}^{2}= & P_{\mathcal{Z}}\left(\mathcal{H}_{m, l}\right)=P_{\mathcal{X}}\left(\mathcal{H}_{m, l}\right) P_{\mathcal{Y}}\left(\mathcal{H}_{m, l}\right)
\end{aligned}
$$

where $E_{m ; n}$ are energies of bound states of H_{m}

Geometry and external field

One-sheeted hyperboloid in Minkowski space with $S O(2,1)$ symmetry group: $x^{\mu} x_{\mu}=-x_{1}^{2}-x_{2}^{2}+x_{3}^{2}=-\mathcal{R}^{2}$
$x^{1}=\mathcal{R} \cosh \chi \cos \varphi$
$x^{2}=\mathcal{R} \cosh \chi \sin \varphi, \quad x^{3}=\mathcal{R} \sinh \chi$,
External Aharonov-Bohm field:

$$
\begin{aligned}
& A_{1}=-\frac{\Phi}{2 \pi} \frac{x_{2}}{x_{1}^{2}+x_{2}^{2}}, \quad A_{2}=\frac{\Phi}{2 \pi} \frac{x_{1}}{x_{1}^{2}+x_{2}^{2}} \\
& A_{3}=0 \\
& B_{\mu}=\epsilon_{\mu \nu \lambda} \partial^{\nu} A^{\lambda}=\left(0,0, \Phi \delta^{2}\left(x_{1}, x_{2}\right)\right)
\end{aligned}
$$

The system and its algebraic properties

Hamiltonian \hat{H} coincides with Casimir operator of $\operatorname{so}(2,1)$

$$
\hat{H}=\hat{\jmath}_{+} \hat{\jmath}_{-}-\left(\hat{\jmath}_{3}-1 / 2\right)^{2}=\hat{\jmath}_{-} \hat{\jmath}_{+}-\left(\hat{\jmath}_{3}+1 / 2\right)^{2},
$$

- "free" particle on the hyperboloid - analog to the Laplace operator in Euclidean space
- ladder operators $\hat{J}_{ \pm}$and \hat{J}_{3} satisfy

$$
\left[\hat{\jmath}_{3}, \hat{\jmath}_{ \pm}\right]= \pm \hat{\jmath}_{ \pm}, \quad\left[\hat{\jmath}_{+}, \hat{\jmath}_{-}\right]=-2 \hat{\jmath}_{3}
$$

$-\hat{J}_{3}$ is "shifted" due to the magnetic flux

Explicitly in curvilinear coordinates

$$
\begin{aligned}
& \hat{\jmath}_{+}=e^{i \varphi}\left(\frac{\partial}{\partial \chi}-\left(\hat{\jmath}_{3}+\frac{1}{2}\right) \tanh \chi\right), \\
& \hat{\jmath}_{-}=e^{-i \varphi}\left(-\frac{\partial}{\partial \chi}-\left(\hat{\jmath}_{3}-\frac{1}{2}\right) \tanh \chi\right) . \\
& \hat{\jmath}_{3}=-i \partial_{\varphi}+\alpha, \quad \alpha \equiv \frac{e \Phi}{2 \pi c}
\end{aligned}
$$

Hamiltonian

$$
\hat{H}=-\partial_{\chi}^{2}-\frac{\hat{\jmath}_{3}^{2}-\frac{1}{4}}{\cosh ^{2} \chi}
$$

!!! corresponds to PT system for fixed values of \hat{J}_{3} !!!

Spectrum of the $2 D$ system

For half-integer values of $\hat{J}_{3} \sim \mathbb{Z}+\frac{1}{2}, \hat{H}$ corresponds to reflectionless PT Hamiltonian

$$
\left.\hat{H}\right|_{J_{3}=m+\frac{1}{2}}=H_{m} .
$$

We fix $\alpha=1 / 2$
Then

$$
\left.\hat{H}\right|_{J_{3} \sim m+\frac{1}{2}}=H_{m}=H_{-m-1}=\left.\hat{H}\right|_{J_{3} \sim-m-1+\frac{1}{2}}
$$

\rightarrow restrictions $\hat{J}_{3} \sim j_{3}$ and $\hat{J}_{3} \sim-j_{3}$ gives the same system
The spectral properties \hat{H} can be deduced from the spectrum of H_{m}

wave functions of fixed energy form semi-bounded (negative and zero energy) and unbounded (positive energies) infinite dimensional representation of so $(2,1)$
-red triangles annihilated by \hat{J}_{-}

wave functions of fixed energy form semi-bounded (negative and zero energy) and unbounded (positive energies) infinite dimensional representation of $s o(2,1)$
-red triangles annihilated by $\hat{\jmath}_{-}$
-blue squares annihilated by \hat{J}_{+}

The idea:
\hat{H} is Casimir operator and hence commutes with any function $f=f\left(\hat{J}_{3}, \hat{J}_{+}, \hat{J}_{-}\right)$and with $J_{ \pm}^{n}$ in particular.

We will find the relation of $J_{ \pm}^{n}$ with supercharges $\mathcal{X}_{m, l}, \mathcal{Y}_{m, l}$ and $\mathcal{Z}_{m, l}$ of Pöschl-Teller system. Commutation relation $\left[H, J_{ \pm}^{n}\right]=0$ will correspond to intertwining relations of H_{m} and H_{l} mediated by $X_{m, l}, Y_{m, l}$ and $Z_{m, l}$.

Non-linear susy of PT system in terms of ladder operators

Subspaces with fixed value of $\hat{J}_{3}: \hat{J}_{3}|j\rangle=\left(j_{3}+\frac{1}{2}\right)|j\rangle$

Non-linear susy of PT system in terms of ladder operators

Subspaces with fixed value of $\hat{J}_{3}: \hat{J}_{3}|j\rangle=\left(j_{3}+\frac{1}{2}\right)|j\rangle$

Non-linear susy of PT system in terms of ladder operators

Subspaces with fixed value of $\hat{J}_{3}: \hat{J}_{3}|j\rangle=\left(j_{3}+\frac{1}{2}\right)|j\rangle$

Non-linear susy of PT system in terms of ladder operators

Subspaces with fixed value of $\hat{J}_{3}: \hat{J}_{3}|j\rangle=\left(j_{3}+\frac{1}{2}\right)|j\rangle$

Non-linear susy of PT system in terms of ladder operators

Subspaces with fixed value of $\hat{J}_{3}: \hat{J}_{3}|j\rangle=\left(j_{3}+\frac{1}{2}\right)|j\rangle$

Non-linear susy of PT system in terms of ladder operators

Subspaces with fixed value of $\hat{J}_{3}: \hat{J}_{3}|j\rangle=\left(j_{3}+\frac{1}{2}\right)|j\rangle$

$$
\begin{aligned}
{\left[\hat{H}, J_{ \pm}^{2}\right]=0 \Rightarrow } & H_{1} X_{3,1}=X_{3,1} H_{3} \\
& X_{3,1}=\langle 1| \hat{J}_{-}^{2}|3\rangle=\langle-2| \hat{\jmath}_{+}^{2}|-4\rangle
\end{aligned}
$$

Non-linear susy of PT system in terms of ladder operators

Subspaces with fixed value of $\hat{J}_{3}: \hat{J}_{3}|j\rangle=\left(j_{3}+\frac{1}{2}\right)|j\rangle$

$$
\begin{gathered}
{\left[\hat{H}, J_{ \pm}^{2}\right]=0 \Rightarrow \begin{array}{c}
H_{1} X_{3,1}=X_{3,1} H_{3} \\
X_{3,1}=\langle 1| \hat{J}_{-}^{2}|3\rangle=\langle-2| \hat{\jmath}_{+}^{2}|-4\rangle \\
\left.X_{m, I}=-(-i)^{m-1}\langle |\left|\hat{J}_{-}^{m-l}\right| m\right\rangle=-i^{m-1}\langle-I-1| \hat{\jmath}_{+}^{m-1}|-m-1\rangle
\end{array}}
\end{gathered}
$$

$$
\begin{aligned}
& \hat{J}_{-}^{5} \quad \hat{J}_{-}^{5} \\
& {\left[\hat{H}, J_{ \pm}^{5}\right]=0 \quad \Rightarrow \quad H_{1} Y_{3,1}=Y_{3,1} H_{3}} \\
& Y_{3,1}=\langle-2| \hat{\jmath}_{-}^{5}|3\rangle=\langle 1| \hat{J}_{+}^{5}|-4\rangle \\
& \left.Y_{m, l}=(-i)^{m+l+1}\langle-l-1| \hat{J}_{-}^{m+l+1}|m\rangle=i^{m+l+1}\langle |\left|\hat{\jmath}_{+}^{m+l+1}\right|-m-1\right\rangle
\end{aligned}
$$

$$
\left[\hat{H}, J_{ \pm}^{7}\right]=0 \Rightarrow \quad H_{3} Z_{3,1}=Z_{3,1} H_{3}
$$

Summary

Restrictions of AB system in AdS_{2} to fixed values of $\hat{J}_{3} \rightarrow$ Pöschl-Teller model

- $\left[\hat{H}, \hat{J}_{ \pm}^{n}\right]=0 \rightarrow$ intertwining relations between H_{m} and H_{m-n}
- $\alpha \in \mathbb{Z}+\frac{1}{2}$ hidden supersymmetry represented by nontrivial supercharge $Z_{m, l}$
\rightarrow subsystem with fixed angular momentum coincides with reflectionless PT model
\rightarrow coexistence of two different Crum-Darboux transformations between two PT systems of different coupling parameter, existence of non-trivial integral of motion $Z_{m, l}$

Outlook

- the algebraic properties of PT system explained in a simple way in the framework of more-dimensional system properties of the system explained by its merging into the higher-dimensional setting
- superextended reflectionless Pöschl-Teller system is limit of tri-supersymmetric associated Lamé system \rightarrow could we merge this periodic system into the higher-dimensional setting as well?
F. Correa, M.Plyushchay, V.J., Ann.Phys. 324, (2009), 1078-1094, hep-th/0809.2854
F. Correa, M. Plyushchay, L. M. Nieto, V.J., PRL 101030403 (2008)
F. Correa, M. Plyushchay, V. J., JPA 41 (2008) 485303

