Nekhoroshev theorem for the periodic Toda lattice

Andreas Henrici

June 24, 2009

Outline

(1) Introduction

- Periodic Toda lattice
- Perturbed integrable systems
- Birkhoff normal form
(2) Results
(3) Proof ideas
(4) Conclusion

Periodic Toda lattice

Hamiltonian of Toda lattice with N particles:

$$
H_{\text {Toda }}=\frac{1}{2} \sum_{n=1}^{N} p_{n}^{2}+\alpha^{2} \sum_{n=1}^{N} e^{q_{n}-q_{n+1}}
$$

with periodic boundary conditions $\left(q_{i+N}, p_{i+N}\right)=\left(q_{i}, p_{i}\right) \quad \forall i \in \mathbb{N}$.
The Toda lattice is a special case of a Fermi-Pasta-Ulam chain, a system with a Hamiltonian similar to $H_{\text {Toda }}$ but with potential $V(x)=\frac{1}{2} x^{2}-\frac{\alpha_{\text {FPU }}}{3!} x^{3}+\frac{\beta_{\text {FFU }}}{4!} x^{4}+\ldots$ instead of $V(x)=e^{-x}$.
Since the total momentum $\sum_{n=1}^{N} p_{n}$ is conserved, we only consider the motion of the $N-1$ relative coordinates $\left(q_{N+1}-q_{n}\right)$; the corresponding phase space is then $\mathbb{R}^{2 N-2}$, and we denote by H_{β} the Hamiltonian with respect to these relative coordinates for the total momentum $\beta=\frac{1}{N} \sum_{n=1}^{N} p_{n}$

Periodic Toda lattice

Hamiltonian of Toda lattice with N particles:

$$
H_{\text {Toda }}=\frac{1}{2} \sum_{n=1}^{N} p_{n}^{2}+\alpha^{2} \sum_{n=1}^{N} e^{q_{n}-q_{n+1}}
$$

with periodic boundary conditions $\left(q_{i+N}, p_{i+N}\right)=\left(q_{i}, p_{i}\right) \quad \forall i \in \mathbb{N}$.
The Toda lattice is a special case of a Fermi-Pasta-Ulam chain, a system with a Hamiltonian similar to $H_{\text {Toda }}$ but with potential $V(x)=\frac{1}{2} x^{2}-\frac{\alpha_{\text {FPU }}}{3!} x^{3}+\frac{\beta_{\text {FPU }}}{4!} x^{4}+\ldots$ instead of $V(x)=e^{-x}$.

Periodic Toda lattice

Hamiltonian of Toda lattice with N particles:

$$
H_{\text {Toda }}=\frac{1}{2} \sum_{n=1}^{N} p_{n}^{2}+\alpha^{2} \sum_{n=1}^{N} e^{q_{n}-q_{n+1}}
$$

with periodic boundary conditions $\left(q_{i+N}, p_{i+N}\right)=\left(q_{i}, p_{i}\right) \quad \forall i \in \mathbb{N}$.
The Toda lattice is a special case of a Fermi-Pasta-Ulam chain, a system with a Hamiltonian similar to $H_{\text {Toda }}$ but with potential $V(x)=\frac{1}{2} x^{2}-\frac{\alpha_{\text {FPU }}}{3!} x^{3}+\frac{\beta_{\text {FPU }}}{4!} x^{4}+\ldots$ instead of $V(x)=e^{-x}$.
Since the total momentum $\sum_{n=1}^{N} p_{n}$ is conserved, we only consider the motion of the $N-1$ relative coordinates ($q_{N+1}-q_{n}$); the corresponding phase space is then $\mathbb{R}^{2 N-2}$, and we denote by $H_{\beta, \alpha}$ the Hamiltonian with respect to these relative coordinates for the total momentum $\beta=\frac{1}{N} \sum_{n=1}^{N} p_{n}$.

Kolmogorov, Arnol'd, Moser, Nekhoroshev

Figure: Kolmogorov, Arnol'd, Moser

- Kolmogorov (1954), Arnol'd (1963), Moser (1962): Stability of the motion of nondegenerate integrable systems under small perturbations for a "majority" of initial conditions
- Nekhoroshev (1977): Stability for all initial conditions, under stronger assumptions (convexity) on the unperturbed system
- In the sequel: Many refinements and generalizations

The classical KAM theorem

Assumptions:

- Perturbed Hamiltonian $H=H_{0}(I)+\varepsilon H_{1}(x, y)$, where $(x, y)=\left(x_{j}, y_{j}\right)_{1 \leq j \leq n} \in D \subseteq \mathbb{R}^{2 n}, I=\left(I_{1}, \ldots, I_{n}\right)$ are the actions, and $I_{j}=\frac{1}{2}\left(x_{j}^{2}+y_{j}^{2}\right)$ for $1 \leq j \leq n$.
- The unperturbed Hamiltonian $H_{0}(I)$ is an integrable system, i.e. the $\left(l_{j}\right)_{1 \leq j \leq n}$ are functionally independent integrals in involution. Therefore the phase space of the unperturbed system is foliated into tori of dimension d with $0 \leq d \leq n$.
- Kolmogorov condition: The unperturbed integrable Hamiltonian $H_{0}(I)$ is nondegenerate, i.e. for all $(x, y) \in D$

$$
\operatorname{det}\left(\frac{\partial^{2} H_{0}}{\partial I_{i} \partial I_{j}}\right)_{1 \leq i, j \leq n} \neq 0
$$

Conclusions:

- There exists an $\varepsilon_{0}>0$ such that for any $\varepsilon<\varepsilon_{0}$, a "majority" of all tori of maximal dimension of the unperturbed system H_{0} persist as tori of the perturbed system $H=H_{0}(I)+\varepsilon H_{1}(x, y)$.

The classical KAM theorem

Assumptions:

- Perturbed Hamiltonian $H=H_{0}(I)+\varepsilon H_{1}(x, y)$, where $(x, y)=\left(x_{j}, y_{j}\right)_{1 \leq j \leq n} \in D \subseteq \mathbb{R}^{2 n}, I=\left(I_{1}, \ldots, I_{n}\right)$ are the actions, and $I_{j}=\frac{1}{2}\left(x_{j}^{2}+y_{j}^{2}\right)$ for $1 \leq j \leq n$.
- The unperturbed Hamiltonian $H_{0}(I)$ is an integrable system, i.e. the $\left(I_{j}\right)_{1 \leq j \leq n}$ are functionally independent integrals in involution. Therefore the phase space of the unperturbed system is foliated into tori of dimension d with $0 \leq d \leq n$.
- Kolmogorov condition: The unperturbed integrable Hamiltonian $H_{0}(I)$ is nondegenerate, i.e. for all $(x, y) \in D$

$$
\operatorname{det}\left(\frac{\partial^{2} H_{0}}{\partial l_{i} \partial I_{j}}\right)_{1 \leq i, j \leq n} \neq 0
$$

Conclusions:

- There exists an $\varepsilon_{0}>0$ such that for any $\varepsilon<\varepsilon_{0}$, a "majority" of all tori of maximal dimension of the unperturbed system H_{0} persist as tori of the perturbed system $H=H_{0}(I)+\varepsilon H_{1}(x, y)$.

The Nekhoroshev theorem

Assumptions:

- Perturbed Hamiltonian $H=H_{0}(I)+\varepsilon H_{1}(x, y)$ (as above).
- The unperturbed Hamiltonian $H_{0}(I)$ is an integrable system (as above).
- Nekhoroshev condition: The unperturbed integrable Hamiltonian $H_{0}(I)$ is convex, i.e. for all $(x, y) \in D$

$$
\left(\frac{\partial^{2} H_{0}}{\partial l_{i} \partial I_{j}}\right)_{1 \leq i, j \leq n} \quad \text { is positive definite. }
$$

Conclusions:

- There exists an $\varepsilon_{0}>0$ such that for any $\varepsilon<\varepsilon_{0}$, the trajectory of the perturbed system $H=H_{0}(I)+\varepsilon H_{1}(x, y)$ stays "close" to the trajectory of H_{0} for an "exponentially" long time.

Problem with the KAM and (especially) Nekhoroshev theorems:

- The assumptions are difficult to check. For the Nekhoroshev theorem, they require deriving an explicit formula for the Hamiltonian in terms of the action variables.

The Nekhoroshev theorem

Assumptions:

- Perturbed Hamiltonian $H=H_{0}(I)+\varepsilon H_{1}(x, y)$ (as above).
- The unperturbed Hamiltonian $H_{0}(I)$ is an integrable system (as above).
- Nekhoroshev condition: The unperturbed integrable Hamiltonian $H_{0}(I)$ is convex, i.e. for all $(x, y) \in D$

$$
\left(\frac{\partial^{2} H_{0}}{\partial l_{i} \partial I_{j}}\right)_{1 \leq i, j \leq n} \quad \text { is positive definite. }
$$

Conclusions:

- There exists an $\varepsilon_{0}>0$ such that for any $\varepsilon<\varepsilon_{0}$, the trajectory of the perturbed system $H=H_{0}(I)+\varepsilon H_{1}(x, y)$ stays "close" to the trajectory of H_{0} for an "exponentially" long time.

> Problem with the KAM and (especially) Nekhoroshev theorems.
> - The assumptions are difficult to check. For the Nekhoroshev theorem, they require deriving an explicit formula for the Hamiltonian in terms of the action variables.

The Nekhoroshev theorem

Assumptions:

- Perturbed Hamiltonian $H=H_{0}(I)+\varepsilon H_{1}(x, y)$ (as above).
- The unperturbed Hamiltonian $H_{0}(I)$ is an integrable system (as above).
- Nekhoroshev condition: The unperturbed integrable Hamiltonian $H_{0}(I)$ is convex, i.e. for all $(x, y) \in D$

$$
\left(\frac{\partial^{2} H_{0}}{\partial l_{i} \partial I_{j}}\right)_{1 \leq i, j \leq n} \quad \text { is positive definite. }
$$

Conclusions:

- There exists an $\varepsilon_{0}>0$ such that for any $\varepsilon<\varepsilon_{0}$, the trajectory of the perturbed system $H=H_{0}(I)+\varepsilon H_{1}(x, y)$ stays "close" to the trajectory of H_{0} for an "exponentially" long time.
Problem with the KAM and (especially) Nekhoroshev theorems:
- The assumptions are difficult to check. For the Nekhoroshev theorem, they require deriving an explicit formula for the Hamiltonian in terms of the action variables.

Birkhoff normal form up to order m

- The application of the KAM and Nekhoroshev theorems requires introducing canonical coordinates $\left(q_{i}, p_{i}\right)_{1 \leq i \leq n}$ such that the Hamiltonian of a given system depends up to order 4 only on the action variables $\frac{1}{2}\left(q_{i}^{2}+p_{i}^{2}\right)$; the terms of higher order will then be considered as perturbation.
> - Assume that H is expressed in canonical coordinates (q, p) near an isolated equilibrium of a Hamiltonian system on some symplectic manifold with coordinates $(q, p)=(0,0)$

Birkhoff normal form up to order m

- The application of the KAM and Nekhoroshev theorems requires introducing canonical coordinates $\left(q_{i}, p_{i}\right)_{1 \leq i \leq n}$ such that the Hamiltonian of a given system depends up to order 4 only on the action variables $\frac{1}{2}\left(q_{i}^{2}+p_{i}^{2}\right)$; the terms of higher order will then be considered as perturbation.
- Assume that H is expressed in canonical coordinates (q, p) near an isolated equilibrium of a Hamiltonian system on some symplectic manifold with coordinates $(q, p)=(0,0)$.

Definition

A Hamiltonian H is in Birkhoff normal form up to order 4, if it is of the form

$$
H=N_{2}+N_{4}+H_{5}+\ldots
$$

where N_{2} und N_{4} are homogeneous polynomials of order 2 and 4 , respectively, which are actually functions of $q_{1}^{2}+p_{1}^{2}, \ldots, q_{n}^{2}+p_{n}^{2}$, and where $H_{5}+\ldots$ stands for (arbitrary) terms of order strictly greater than 4. The coordinates $\left(q_{i}, p_{i}\right)_{1 \leq i \leq n}$ are Birkhoff coordinates.

Overview over the results for the periodic Toda lattice with N particles:

Normal form results

- Global Birkhoff coordinates, i.e. Birkhoff coordinates in the entire phase space
- Explicit computation of the Birkhoff normal form around the equilibrium point up to order 4
- Nondegeneracy around the equilibrium point and hence, by principles of complex analysis, almost everywhere in phase space
- Convexity around the the equilibrium point
- By an argument from Riemann surface theory, convexity in an open dense subset of the phase space

Overview over the results for the periodic Toda lattice with N particles:

Normal form results

- Global Birkhoff coordinates, i.e. Birkhoff coordinates in the entire phase space
- Explicit computation of the Birkhoff normal form around the equilibrium point up to order 4
- Nondegeneracy around the equilibrium point and hence, by principles of complex analysis, almost everywhere in phase space
- Convexity around the the equilibrium point
- By an argument from Riemann surface theory, convexity in an open dense subset of the phase space
Perturbation theory results
- By (iii), KAM theorem almost everywhere in phase space
- By (iv), Nekhoroshev theorem, locally around the equilibrium point
- By (v), Nekhoroshev theorem in an open dense subset of the phase space

Global Birkhoff normal form for the periodic Toda lattice

Global Birkhoff coordinates with expansion up to order 4 at the origin for the Toda Hamiltonian $H_{\beta, \alpha}$ with respect to the $2 N-2$ relative coordinates:

Theorem

For any fixed $\beta \in \mathbb{R}, \alpha>0$, and $N \geq 2$, the periodic Toda lattice admits a Birkhoff normal form. More precisely, there are (globally defined) canonical coordinates $\left(x_{k}, y_{k}\right)_{1 \leq k \leq N-1}$ so that $H_{\beta, \alpha}$, when expressed in these coordinates, takes the form
$H_{\beta, \alpha}(I):=\frac{N \beta^{2}}{2}+H_{\alpha}(I)$, where $H_{\alpha}(I)$ is a real analytic function of the action variables $I_{k}=\left(x_{k}^{2}+y_{k}^{2}\right) / 2(1 \leq k \leq N-1)$. Moreover, near $I=0, H_{\alpha}(I)$ has an expansion of the form

$$
\begin{equation*}
N \alpha^{2}+2 \alpha \sum_{k=1}^{N-1} \sin \frac{k \pi}{N} I_{k}+\frac{1}{4 N} \sum_{k=1}^{N-1} I_{k}^{2}+O\left(l^{3}\right) \tag{1}
\end{equation*}
$$

Hessian at the origin

Corollary

Let $\alpha>0$ and $\beta \in \mathbb{R}$ be arbitrary. Then the Hessian of $H_{\beta, \alpha}(I)$ at $I=0$ is given by

$$
\left.d_{l}^{2} H_{\beta, \alpha}\right|_{I=0}=\frac{1}{2 N} I d_{N-1} .
$$

In particular, the frequency map $I \mapsto \nabla_{I} H_{\beta, \alpha}$ is nondegenerate at $I=0$ and hence, by analyticity, nondegenerate on an open dense subset of $\left(\mathbb{R}_{\geq 0}\right)^{N-1}$.

Consequently, the KAM theorem can be applied on an open dense subset of the phase space, and the Nekhoroshev theorem can be applied locally around the fixed point.

Hessian at the origin

Corollary

Let $\alpha>0$ and $\beta \in \mathbb{R}$ be arbitrary. Then the Hessian of $H_{\beta, \alpha}(I)$ at $I=0$ is given by

$$
\left.d_{l}^{2} H_{\beta, \alpha}\right|_{I=0}=\frac{1}{2 N} I d_{N-1} .
$$

In particular, the frequency map $I \mapsto \nabla_{I} H_{\beta, \alpha}$ is nondegenerate at $I=0$ and hence, by analyticity, nondegenerate on an open dense subset of $\left(\mathbb{R}_{\geq 0}\right)^{N-1}$.

Consequently, the KAM theorem can be applied on an open dense subset of the phase space, and the Nekhoroshev theorem can be applied locally around the fixed point.

Convexity of the frequency map

Theorem

The Hamiltonian of $H_{\beta, \alpha}$, when expressed in the globally defined action variables $\left(I_{k}\right)_{1 \leq k \leq N-1}$, is a (strictly) convex function. More precisely, for any bounded set $U \subseteq \mathbb{R}_{>0}^{N-1}$ and any $0<\alpha_{1}<\alpha_{2}$ there exists $m>0, m=m\left(U_{\alpha_{1} \alpha_{2}}\right)$, such that

$$
\begin{equation*}
\left\langle\partial_{l}^{2} H_{\beta, \alpha}(I) \xi, \xi\right\rangle \geq m\|\xi\|^{2}, \quad \forall \xi \in \mathbb{R}_{N-1} \tag{2}
\end{equation*}
$$

for any $I \in U$, any $\beta \in \mathbb{R}$, and any $\alpha_{1} \leq \alpha \leq \alpha_{2}$.

Consequently, the Nekhoroshev theorem holds in the an open dense subset phase space.

Convexity of the frequency map

Theorem

The Hamiltonian of $H_{\beta, \alpha}$, when expressed in the globally defined action variables $\left(I_{k}\right)_{1 \leq k \leq N-1}$, is a (strictly) convex function. More precisely, for any bounded set $U \subseteq \mathbb{R}_{>0}^{N-1}$ and any $0<\alpha_{1}<\alpha_{2}$ there exists $m>0, m=m\left(U_{\alpha_{1} \alpha_{2}}\right)$, such that

$$
\begin{equation*}
\left\langle\partial_{I}^{2} H_{\beta, \alpha}(I) \xi, \xi\right\rangle \geq m\|\xi\|^{2}, \quad \forall \xi \in \mathbb{R}_{N-1} \tag{2}
\end{equation*}
$$

for any $I \in U$, any $\beta \in \mathbb{R}$, and any $\alpha_{1} \leq \alpha \leq \alpha_{2}$.

Consequently, the Nekhoroshev theorem holds in the an open dense subset phase space.

General remarks

Motivation for our work: Previous results for the periodic KdV equation, an infinite-dimensional system closely related to the Toda lattice (via the Lax pair formalism), by

- Kappeler \& Pöschel ("KAM \& KdV"), establishing an inifinite-dimensional KAM theorem
- Krichever, Bikbaev \& Kuksin, discussing the parametrization of certain solutions of KdV by suitable quantities on an associated Riemann surface

Main steps in the proof of our results: Imitation of the steps of the above mentioned work, namely

- construction of global action-angle variables and Birkhoff coordinates for the Toda lattice exactly following the method used for the KdV equation by Kappeler \& Pöschel, and computation of the BNF of order 4 by standard methods
- proof of the global convexity of the Toda Hamiltonian by following the method of Bikbaev \& Kuksin

General remarks

Motivation for our work: Previous results for the periodic KdV equation, an infinite-dimensional system closely related to the Toda lattice (via the Lax pair formalism), by

- Kappeler \& Pöschel ("KAM \& KdV"), establishing an inifinite-dimensional KAM theorem
- Krichever, Bikbaev \& Kuksin, discussing the parametrization of certain solutions of KdV by suitable quantities on an associated Riemann surface
Main steps in the proof of our results: Imitation of the steps of the above mentioned work, namely
- construction of global action-angle variables and Birkhoff coordinates for the Toda lattice exactly following the method used for the KdV equation by Kappeler \& Pöschel, and computation of the BNF of order 4 by standard methods
- proof of the global convexity of the Toda Hamiltonian by following the method of Bikbaev \& Kuksin

Proof of the theorem on global convexity

- The Hessian of the Toda Hamiltonian is the Jacobian of the frequency map $\omega_{\beta, \alpha}:=\partial H_{\beta, \alpha} / \partial I$.
- Using tools from the theory of Riemann surfaces and tridiagonal Jacobi matrices, the frequencies $\left(\omega_{k}\right)_{1 \leq k \leq N-1}=\partial H_{\beta, \alpha} / \partial I_{k}$ can be shown to be identical to the integrals of certain Abelian differentials on the Riemann surface associated to the spectrum of the matrix L associated to the Toda lattice.
- Following a method of Bikbaev \& Kuksin, we show that these contour integrals are a globally nondegenerate function of the eigenvalues of L.
- The convexity of the Toda Hamiltonian at the origin together with its global nondegeneracy imply the global convexity.

The spectrum of the matrix $L(b, a)$

- The Toda equations can be put into the Lax pair formulation $\dot{L}=[L, B]$ with the Jacobi matrix $L=L(b, a)$, a periodic tridiagonal matrix with the b_{j} 's as diagonal and the a_{j} 's as offdiagonal entries.
- Associated to $L(b, a)$ is the eigenvalue equation

$$
\begin{equation*}
a_{k-1} y(k-1)+b_{k} y(k)+a_{k} y(k+1)=\lambda y(k) \tag{3}
\end{equation*}
$$

and its fundamental solutions $y_{1}(\cdot, \lambda)$ and $y_{2}(\cdot, \lambda)$.

- The discriminant $\Delta(\lambda) \equiv \Delta(\lambda, b, a)$ of (3) is defined by

$$
\Delta(\lambda) \equiv \Delta_{\lambda}:=y_{1}(N, \lambda)+y_{2}(N+1, \lambda)
$$

- It follows from Floquet theory that we have the product representation

$$
\Delta_{\lambda}^{2}-4=\alpha^{-2 N} \prod_{j=1}^{2 N}\left(\lambda-\lambda_{j}\right)
$$

where $\left(\lambda_{j}\right)_{1 \leq j \leq 2 N}$ is the combined sequence of the eigenvalues of $L=L^{+}$and L^{-}(antiperiodic version of L^{+}).

Asymptotic expansion of $\operatorname{arcosh} \Delta_{\lambda}(b, a)$

Lemma

$$
\operatorname{arcosh} \frac{\Delta_{\lambda}}{2}=N \log \lambda-N \log \alpha+\frac{N \beta}{\lambda}-\frac{H_{\text {Toda }}}{\lambda^{2}}+O\left(\lambda^{-3}\right) .
$$

Proof.

- Consider the difference equation $L(b, a) y=\lambda y$ and the associated Floquet multiplier $w(\lambda)$.
- Note that $\log w(\lambda)=\operatorname{arcosh} \frac{\Delta_{\lambda}}{2}$.
- For an associated nonzero solution $u(\cdot, \lambda)$ of $L(b, a) y=\lambda y$, we define $\phi(n)=\frac{u(n+1)}{u(n)}$
- Note that $\phi(\cdot)$ satisfies the discrete Riccati equation $a_{n} \phi(n) \phi(n-1)+\left(b_{n}-\lambda\right) \phi(n-1)+a_{n-1}=0$.
- By substituting an expansion of $\phi(n, \lambda) \equiv \phi(n)$ into the Riccati equation, comparing coefficients and comparing the above formulas, we obtain the desired identity.

Asymptotic expansion of $\operatorname{arcosh} \Delta_{\lambda}(b, a)$

Lemma

$$
\operatorname{arcosh} \frac{\Delta_{\lambda}}{2}=N \log \lambda-N \log \alpha+\frac{N \beta}{\lambda}-\frac{H_{\text {Toda }}}{\lambda^{2}}+O\left(\lambda^{-3}\right)
$$

Proof.

- Consider the difference equation $L(b, a) y=\lambda y$ and the associated Floquet multiplier $w(\lambda)$.
- Note that $\log w(\lambda)=\operatorname{arcosh} \frac{\Delta_{\lambda}}{2}$.
- For an associated nonzero solution $u(\cdot, \lambda)$ of $L(b, a) y=\lambda y$, we define $\phi(n)=\frac{u(n+1)}{u(n)}$.
- Note that $\phi(\cdot)$ satisfies the discrete Riccati equation $a_{n} \phi(n) \phi(n-1)+\left(b_{n}-\lambda\right) \phi(n-1)+a_{n-1}=0$.
- By substituting an expansion of $\phi(n, \lambda) \equiv \phi(n)$ into the Riccati equation, comparing coefficients and comparing the above formulas, we obtain the desired identity.

Riemann surface $\Sigma_{b, a}$

Consider the Riemann surface

$$
\Sigma_{b, a}=\left\{(\lambda, z) \in \mathbb{C}^{2}: z^{2}=\Delta_{\lambda}^{2}(b, a)-4\right\} \cup\left\{\infty^{ \pm}\right\}
$$

Pairwise disjoint cycles $\left(c_{k}\right)_{1 \leq k \leq N-1},\left(d_{k}\right)_{1 \leq k \leq N-1}$ on $\Sigma_{b, a}$:

- $\left(c_{k}\right)_{1 \leq k \leq N-1}$: the projection of c_{n} onto \mathbb{C} is a closed curve around $\left[\lambda_{2 k}, \bar{\lambda}_{2 k+1}\right]$.
- $\left(d_{k}\right)_{1 \leq k \leq N-1}$: the intersection indices with $\left(c_{k}\right)_{1 \leq k \leq N-1}$ are given by $c_{n} \circ d_{k}=\delta_{n k}$.

Abelian differentials Ω_{1}, Ω_{2} on $\Sigma_{b, a}$:

- Ω_{1}, Ω_{2} holomorphic on $\Sigma_{b, a}$
- Prescribed expansions at infinity
- Normalization conditions $\int_{c_{k}} \Omega_{i}=0(i=1,2)$ for any $1 \leq k \leq N-1$

Riemann surface $\Sigma_{b, a}$

Consider the Riemann surface

$$
\Sigma_{b, a}=\left\{(\lambda, z) \in \mathbb{C}^{2}: z^{2}=\Delta_{\lambda}^{2}(b, a)-4\right\} \cup\left\{\infty^{ \pm}\right\}
$$

Pairwise disjoint cycles $\left(c_{k}\right)_{1 \leq k \leq N-1},\left(d_{k}\right)_{1 \leq k \leq N-1}$ on $\Sigma_{b, a}$:

- $\left(c_{k}\right)_{1 \leq k \leq N-1}$: the projection of c_{n} onto \mathbb{C} is a closed curve around [$\left.\lambda_{2 k}, \lambda_{2 k+1}\right]$.
- $\left(d_{k}\right)_{1 \leq k \leq N-1}$: the intersection indices with $\left(c_{k}\right)_{1 \leq k \leq N-1}$ are given by $c_{n} \circ d_{k}=\delta_{n k}$.

Abelian differentials Ω_{1}, Ω_{2} on $\Sigma_{b, a}$:

- Ω_{1}, Ω_{2} holomorphic on $\Sigma_{b, a}$
- Prescribed expansions at infinity
- Normalization conditions $\int_{c_{k}} \Omega_{i}=0(i=1,2)$ for any

Riemann surface $\Sigma_{b, a}$

Consider the Riemann surface

$$
\Sigma_{b, a}=\left\{(\lambda, z) \in \mathbb{C}^{2}: z^{2}=\Delta_{\lambda}^{2}(b, a)-4\right\} \cup\left\{\infty^{ \pm}\right\}
$$

Pairwise disjoint cycles $\left(c_{k}\right)_{1 \leq k \leq N-1},\left(d_{k}\right)_{1 \leq k \leq N-1}$ on $\Sigma_{b, a}$:

- $\left(c_{k}\right)_{1 \leq k \leq N-1}$: the projection of c_{n} onto \mathbb{C} is a closed curve around [$\left.\lambda_{2 k}, \lambda_{2 k+1}\right]$.
- $\left(d_{k}\right)_{1 \leq k \leq N-1}$: the intersection indices with $\left(c_{k}\right)_{1 \leq k \leq N-1}$ are given by $c_{n} \circ d_{k}=\delta_{n k}$.

Abelian differentials Ω_{1}, Ω_{2} on $\Sigma_{b, a}$:

- Ω_{1}, Ω_{2} holomorphic on $\Sigma_{b, a}$
- Prescribed expansions at infinity
- Normalization conditions $\int_{c_{k}} \Omega_{i}=0(i=1,2)$ for any $1 \leq k \leq N-1$

Differentials on $\Sigma_{b, a}$

We consider for any $1 \leq n \leq N-1$ the following holomorphic one-forms on $\Sigma_{b, a}$:

$$
\eta_{n}:=\partial_{l_{n}}\left(\operatorname{arcosh} \frac{\Delta_{\lambda}}{2}\right) d \lambda, \quad \zeta_{n}:=\frac{\psi_{n}(\lambda)}{\sqrt{\Delta_{\lambda}^{2}-4}} d \lambda
$$

Lemma

Corollary
For any $(b, a) \in \mathcal{M}^{\circ}$ and any $1 \leq n \leq N-1$

Differentials on $\Sigma_{b, a}$

We consider for any $1 \leq n \leq N-1$ the following holomorphic one-forms on $\Sigma_{b, a}$:

$$
\eta_{n}:=\partial_{l_{n}}\left(\operatorname{arcosh} \frac{\Delta_{\lambda}}{2}\right) d \lambda, \quad \zeta_{n}:=\frac{\psi_{n}(\lambda)}{\sqrt{\Delta_{\lambda}^{2}-4}} d \lambda
$$

Lemma

For any $1 \leq n \leq N-1$,

$$
\eta_{n}=\zeta_{n}
$$

Corollary
For any $(b, a) \in \mathcal{M} \cdot{ }^{\bullet}$ and any $1 \leq n \leq N-1$

Differentials on $\Sigma_{b, a}$

We consider for any $1 \leq n \leq N-1$ the following holomorphic one-forms on $\Sigma_{b, a}$:

$$
\eta_{n}:=\partial_{l_{n}}\left(\operatorname{arcosh} \frac{\Delta_{\lambda}}{2}\right) d \lambda, \quad \zeta_{n}:=\frac{\psi_{n}(\lambda)}{\sqrt{\Delta_{\lambda}^{2}-4}} d \lambda
$$

Lemma

For any $1 \leq n \leq N-1$,

$$
\eta_{n}=\zeta_{n} .
$$

Corollary

For any $(b, a) \in \mathcal{M}^{\bullet}$ and any $1 \leq n \leq N-1$,

$$
\omega_{n}=\frac{i}{2} \int_{d_{n}} \Omega_{2}
$$

Krichever's theorem

Define

$$
U_{k}:=\int_{d_{k}} \Omega_{1}, \quad V_{k}:=\int_{d_{k}} \Omega_{2}
$$

and consider the map

$$
\mathcal{F}:\left(\lambda_{1}<\ldots<\lambda_{2 N}\right) \mapsto\left(\left(U_{i}, V_{i}\right)_{1 \leq i \leq N-1}, e_{1}, e_{0}\right),
$$

where $\int_{\lambda_{2 N}}^{\lambda} \Omega_{1}=-\left(\log \lambda+e_{0}+e_{1} \frac{1}{\lambda}+\ldots\right)$ near ∞^{+}.

Theorem

At each point $\lambda=\left(\lambda_{1}<\ldots<\lambda_{2 N}\right)$, the map \mathcal{F} is a local
diffeomorphism, i.e. the differential $d_{\lambda} \mathcal{F}: \mathbb{R}^{2 N} \rightarrow \mathbb{R}^{2 N}$ is a linear isomorphism.

The proof follows the scheme by Bikbaev \& Kuksin to prove a similar theorem by Krichever; it mainly consists of couting the zeroes and poles of various auxiliary differentials.

Krichever's theorem

Define

$$
U_{k}:=\int_{d_{k}} \Omega_{1}, \quad V_{k}:=\int_{d_{k}} \Omega_{2}
$$

and consider the map

$$
\mathcal{F}:\left(\lambda_{1}<\ldots<\lambda_{2 N}\right) \mapsto\left(\left(U_{i}, V_{i}\right)_{1 \leq i \leq N-1}, e_{1}, e_{0}\right),
$$

where $\int_{\lambda_{2 N}}^{\lambda} \Omega_{1}=-\left(\log \lambda+e_{0}+e_{1} \frac{1}{\lambda}+\ldots\right)$ near ∞^{+}.

Theorem

At each point $\lambda=\left(\lambda_{1}<\ldots<\lambda_{2 N}\right)$, the map \mathcal{F} is a local diffeomorphism, i.e. the differential $d_{\lambda} \mathcal{F}: \mathbb{R}^{2 N} \rightarrow \mathbb{R}^{2 N}$ is a linear isomorphism.

The proof follows the scheme by Bikbaev \& Kuksin to prove a similar theorem by Krichever; it mainly consists of couting the zeroes and poles of various auxiliary differentials.

Summary and Discussion

Results for the periodic Toda lattice

- Global Birkhoff normal form
- Global convexity of the frequency map
- Applications of the KAM and Nekhoroshev theorems

Ongoing projects:

- Extension to the entire phase space, i.e. the parts of the phase space where some of the action variables vanish
- Extension to the Toda lattice with Dirichlet boundary conditions
- Related projects for general Fermi-Pasta-Ulam chains
- Perturbation theory for the infinite Toda lattice

Summary and Discussion

Results for the periodic Toda lattice

- Global Birkhoff normal form
- Global convexity of the frequency map
- Applications of the KAM and Nekhoroshev theorems

Ongoing projects:

- Extension to the entire phase space, i.e. the parts of the phase space where some of the action variables vanish
- Extension to the Toda lattice with Dirichlet boundary conditions
- Related projects for general Fermi-Pasta-Ulam chains
- Perturbation theory for the infinite Toda lattice
- ...

