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Periodic Toda lattice

Periodic Toda lattice

Hamiltonian of Toda lattice with N particles:

HToda =
1
2

N∑
n=1

p2
n + α2

N∑
n=1

eqn−qn+1 ,

with periodic boundary conditions (qi+N ,pi+N) = (qi ,pi ) ∀i ∈ N.

The Toda lattice is a special case of a Fermi-Pasta-Ulam chain, a
system with a Hamiltonian similar to HToda but with potential
V (x) = 1

2 x2 − αFPU
3! x3 + βFPU

4! x4 + . . . instead of V (x) = e−x .

Since the total momentum
∑N

n=1 pn is conserved, we only consider
the motion of the N − 1 relative coordinates (qN+1 − qn); the
corresponding phase space is then R2N−2, and we denote by Hβ,α
the Hamiltonian with respect to these relative coordinates for the total
momentum β = 1

N

∑N
n=1 pn.
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Perturbed integrable systems

Kolmogorov, Arnol’d, Moser, Nekhoroshev

Figure: Kolmogorov, Arnol’d, Moser

Kolmogorov (1954), Arnol’d (1963), Moser (1962): Stability of the
motion of nondegenerate integrable systems under small
perturbations for a “majority” of initial conditions
Nekhoroshev (1977): Stability for all initial conditions, under
stronger assumptions (convexity) on the unperturbed system
In the sequel: Many refinements and generalizations



Outline Introduction Results Proof ideas Conclusion

Perturbed integrable systems

The classical KAM theorem

Assumptions:
Perturbed Hamiltonian H = H0(I) + εH1(x , y), where
(x , y) = (xj , yj )1≤j≤n ∈ D ⊆ R2n, I = (I1, . . . , In) are the actions,
and Ij = 1

2 (x2
j + y2

j ) for 1 ≤ j ≤ n.
The unperturbed Hamiltonian H0(I) is an integrable system, i.e.
the (Ij )1≤j≤n are functionally independent integrals in involution.
Therefore the phase space of the unperturbed system is foliated
into tori of dimension d with 0 ≤ d ≤ n.
Kolmogorov condition: The unperturbed integrable Hamiltonian
H0(I) is nondegenerate, i.e. for all (x , y) ∈ D

det
(
∂2H0

∂Ii∂Ij

)
1≤i,j≤n

6= 0.

Conclusions:
There exists an ε0 > 0 such that for any ε < ε0, a “majority” of all
tori of maximal dimension of the unperturbed system H0 persist
as tori of the perturbed system H = H0(I) + εH1(x , y).
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Perturbed integrable systems

The Nekhoroshev theorem

Assumptions:
Perturbed Hamiltonian H = H0(I) + εH1(x , y) (as above).
The unperturbed Hamiltonian H0(I) is an integrable system (as
above).
Nekhoroshev condition: The unperturbed integrable Hamiltonian
H0(I) is convex, i.e. for all (x , y) ∈ D(

∂2H0

∂Ii∂Ij

)
1≤i,j≤n

is positive definite.

Conclusions:
There exists an ε0 > 0 such that for any ε < ε0, the trajectory of
the perturbed system H = H0(I) + εH1(x , y) stays “close” to the
trajectory of H0 for an “exponentially” long time.

Problem with the KAM and (especially) Nekhoroshev theorems:
The assumptions are difficult to check. For the Nekhoroshev
theorem, they require deriving an explicit formula for the
Hamiltonian in terms of the action variables.



Outline Introduction Results Proof ideas Conclusion

Perturbed integrable systems

The Nekhoroshev theorem

Assumptions:
Perturbed Hamiltonian H = H0(I) + εH1(x , y) (as above).
The unperturbed Hamiltonian H0(I) is an integrable system (as
above).
Nekhoroshev condition: The unperturbed integrable Hamiltonian
H0(I) is convex, i.e. for all (x , y) ∈ D(

∂2H0

∂Ii∂Ij

)
1≤i,j≤n

is positive definite.

Conclusions:
There exists an ε0 > 0 such that for any ε < ε0, the trajectory of
the perturbed system H = H0(I) + εH1(x , y) stays “close” to the
trajectory of H0 for an “exponentially” long time.

Problem with the KAM and (especially) Nekhoroshev theorems:
The assumptions are difficult to check. For the Nekhoroshev
theorem, they require deriving an explicit formula for the
Hamiltonian in terms of the action variables.



Outline Introduction Results Proof ideas Conclusion

Perturbed integrable systems

The Nekhoroshev theorem

Assumptions:
Perturbed Hamiltonian H = H0(I) + εH1(x , y) (as above).
The unperturbed Hamiltonian H0(I) is an integrable system (as
above).
Nekhoroshev condition: The unperturbed integrable Hamiltonian
H0(I) is convex, i.e. for all (x , y) ∈ D(

∂2H0

∂Ii∂Ij

)
1≤i,j≤n

is positive definite.

Conclusions:
There exists an ε0 > 0 such that for any ε < ε0, the trajectory of
the perturbed system H = H0(I) + εH1(x , y) stays “close” to the
trajectory of H0 for an “exponentially” long time.

Problem with the KAM and (especially) Nekhoroshev theorems:
The assumptions are difficult to check. For the Nekhoroshev
theorem, they require deriving an explicit formula for the
Hamiltonian in terms of the action variables.



Outline Introduction Results Proof ideas Conclusion

Birkhoff normal form

Birkhoff normal form up to order m

The application of the KAM and Nekhoroshev theorems requires
introducing canonical coordinates (qi ,pi )1≤i≤n such that the
Hamiltonian of a given system depends up to order 4 only on the
action variables 1

2 (q2
i + p2

i ); the terms of higher order will then be
considered as perturbation.
Assume that H is expressed in canonical coordinates (q,p) near
an isolated equilibrium of a Hamiltonian system on some
symplectic manifold with coordinates (q,p) = (0,0).

Definition
A Hamiltonian H is in Birkhoff normal form up to order 4, if it is of the
form

H = N2 + N4 + H5 + . . . ,

where N2 und N4 are homogeneous polynomials of order 2 and 4,
respectively, which are actually functions of q2

1 + p2
1, . . . , q2

n + p2
n, and

where H5 + . . . stands for (arbitrary) terms of order strictly greater
than 4. The coordinates (qi ,pi )1≤i≤n are Birkhoff coordinates.



Outline Introduction Results Proof ideas Conclusion

Birkhoff normal form

Birkhoff normal form up to order m

The application of the KAM and Nekhoroshev theorems requires
introducing canonical coordinates (qi ,pi )1≤i≤n such that the
Hamiltonian of a given system depends up to order 4 only on the
action variables 1

2 (q2
i + p2

i ); the terms of higher order will then be
considered as perturbation.
Assume that H is expressed in canonical coordinates (q,p) near
an isolated equilibrium of a Hamiltonian system on some
symplectic manifold with coordinates (q,p) = (0,0).

Definition
A Hamiltonian H is in Birkhoff normal form up to order 4, if it is of the
form

H = N2 + N4 + H5 + . . . ,

where N2 und N4 are homogeneous polynomials of order 2 and 4,
respectively, which are actually functions of q2

1 + p2
1, . . . , q2

n + p2
n, and

where H5 + . . . stands for (arbitrary) terms of order strictly greater
than 4. The coordinates (qi ,pi )1≤i≤n are Birkhoff coordinates.



Outline Introduction Results Proof ideas Conclusion

Overview over the results for the periodic Toda lattice with N particles:

Normal form results
Global Birkhoff coordinates, i.e. Birkhoff coordinates in the entire
phase space
Explicit computation of the Birkhoff normal form around the
equilibrium point up to order 4
Nondegeneracy around the equilibrium point and hence, by
principles of complex analysis, almost everywhere in phase
space
Convexity around the the equilibrium point
By an argument from Riemann surface theory, convexity in an
open dense subset of the phase space

Perturbation theory results
By (iii), KAM theorem almost everywhere in phase space
By (iv), Nekhoroshev theorem, locally around the equilibrium
point
By (v), Nekhoroshev theorem in an open dense subset of the
phase space
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Global Birkhoff normal form for the periodic Toda lattice

Global Birkhoff coordinates with expansion up to order 4 at the origin
for the Toda Hamiltonian Hβ,α with respect to the 2N − 2 relative
coordinates:

Theorem

For any fixed β ∈ R, α > 0, and N ≥ 2, the periodic Toda lattice
admits a Birkhoff normal form. More precisely, there are (globally
defined) canonical coordinates (xk , yk )1≤k≤N−1 so that Hβ,α, when
expressed in these coordinates, takes the form
Hβ,α(I) := Nβ2

2 + Hα(I), where Hα(I) is a real analytic function of the
action variables Ik = (x2

k + y2
k )/2 (1 ≤ k ≤ N − 1). Moreover, near

I = 0, Hα(I) has an expansion of the form

Nα2 + 2α
N−1∑
k=1

sin
kπ
N

Ik +
1

4N

N−1∑
k=1

I2
k + O(I3). (1)
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Hessian at the origin

Corollary

Let α > 0 and β ∈ R be arbitrary. Then the Hessian of Hβ,α(I) at I = 0
is given by

d2
I Hβ,α|I=0 =

1
2N

IdN−1.

In particular, the frequency map I 7→ ∇IHβ,α is nondegenerate at
I = 0 and hence, by analyticity, nondegenerate on an open dense
subset of (R≥0)N−1.

Consequently, the KAM theorem can be applied on an open dense
subset of the phase space, and the Nekhoroshev theorem can be
applied locally around the fixed point.
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Convexity of the frequency map

Theorem

The Hamiltonian of Hβ,α, when expressed in the globally defined
action variables (Ik )1≤k≤N−1, is a (strictly) convex function. More
precisely, for any bounded set U ⊆ RN−1

>0 and any 0 < α1 < α2 there
exists m > 0, m = m(Uα1α2 ), such that

〈∂2
I Hβ,α(I)ξ, ξ〉 ≥ m‖ξ‖2, ∀ξ ∈ RN−1 (2)

for any I ∈ U, any β ∈ R, and any α1 ≤ α ≤ α2.

Consequently, the Nekhoroshev theorem holds in the an open dense
subset phase space.
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General remarks

Motivation for our work: Previous results for the periodic KdV
equation, an infinite-dimensional system closely related to the Toda
lattice (via the Lax pair formalism), by

Kappeler & Pöschel (“KAM & KdV”), establishing an
inifinite-dimensional KAM theorem
Krichever, Bikbaev & Kuksin, discussing the parametrization of
certain solutions of KdV by suitable quantities on an associated
Riemann surface

Main steps in the proof of our results: Imitation of the steps of the
above mentioned work, namely

construction of global action-angle variables and Birkhoff
coordinates for the Toda lattice exactly following the method used
for the KdV equation by Kappeler & Pöschel, and computation of
the BNF of order 4 by standard methods
proof of the global convexity of the Toda Hamiltonian by following
the method of Bikbaev & Kuksin



Outline Introduction Results Proof ideas Conclusion

General remarks

Motivation for our work: Previous results for the periodic KdV
equation, an infinite-dimensional system closely related to the Toda
lattice (via the Lax pair formalism), by

Kappeler & Pöschel (“KAM & KdV”), establishing an
inifinite-dimensional KAM theorem
Krichever, Bikbaev & Kuksin, discussing the parametrization of
certain solutions of KdV by suitable quantities on an associated
Riemann surface

Main steps in the proof of our results: Imitation of the steps of the
above mentioned work, namely

construction of global action-angle variables and Birkhoff
coordinates for the Toda lattice exactly following the method used
for the KdV equation by Kappeler & Pöschel, and computation of
the BNF of order 4 by standard methods
proof of the global convexity of the Toda Hamiltonian by following
the method of Bikbaev & Kuksin



Outline Introduction Results Proof ideas Conclusion

Proof of the theorem on global convexity

The Hessian of the Toda Hamiltonian is the Jacobian of the
frequency map ωβ,α := ∂Hβ,α/∂I.
Using tools from the theory of Riemann surfaces and tridiagonal
Jacobi matrices, the frequencies (ωk )1≤k≤N−1 = ∂Hβ,α/∂Ik can
be shown to be identical to the integrals of certain Abelian
differentials on the Riemann surface associated to the spectrum
of the matrix L associated to the Toda lattice.
Following a method of Bikbaev & Kuksin, we show that these
contour integrals are a globally nondegenerate function of the
eigenvalues of L.
The convexity of the Toda Hamiltonian at the origin together with
its global nondegeneracy imply the global convexity.
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The spectrum of the matrix L(b,a)

The Toda equations can be put into the Lax pair formulation
L̇ = [L,B] with the Jacobi matrix L = L(b,a), a periodic
tridiagonal matrix with the bj ’s as diagonal and the aj ’s as
offdiagonal entries.
Associated to L(b,a) is the eigenvalue equation

ak−1y(k − 1) + bk y(k) + ak y(k + 1) = λy(k) (3)

and its fundamental solutions y1(·, λ) and y2(·, λ).
The discriminant ∆(λ) ≡ ∆(λ,b,a) of (3) is defined by

∆(λ) ≡ ∆λ := y1(N, λ) + y2(N + 1, λ)

It follows from Floquet theory that we have the product
representation

∆2
λ − 4 = α−2N

2N∏
j=1

(λ− λj ),

where (λj )1≤j≤2N is the combined sequence of the eigenvalues
of L = L+ and L− (antiperiodic version of L+).
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Asymptotic expansion of arcosh ∆λ(b,a)

Lemma

arcosh
∆λ

2
= N logλ− N logα +

Nβ
λ
− HToda

λ2 + O(λ−3).

Proof.
Consider the difference equation L(b,a)y = λy and the
associated Floquet multiplier w(λ).
Note that log w(λ) = arcosh ∆λ

2 .
For an associated nonzero solution u(·, λ) of L(b,a)y = λy , we
define φ(n) = u(n+1)

u(n) .

Note that φ(·) satisfies the discrete Riccati equation
anφ(n)φ(n − 1) + (bn − λ)φ(n − 1) + an−1 = 0.
By substituting an expansion of φ(n, λ) ≡ φ(n) into the Riccati
equation, comparing coefficients and comparing the above
formulas, we obtain the desired identity.
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Riemann surface Σb,a

Consider the Riemann surface

Σb,a = {(λ, z) ∈ C2 : z2 = ∆2
λ(b,a)− 4} ∪ {∞±}.

Pairwise disjoint cycles (ck )1≤k≤N−1, (dk )1≤k≤N−1 on Σb,a:
(ck )1≤k≤N−1: the projection of cn onto C is a closed curve around
[λ2k , λ2k+1].
(dk )1≤k≤N−1: the intersection indices with (ck )1≤k≤N−1 are given
by cn ◦ dk = δnk .

Abelian differentials Ω1, Ω2 on Σb,a:
Ω1, Ω2 holomorphic on Σb,a

Prescribed expansions at infinity
Normalization conditions

∫
ck

Ωi = 0(i = 1,2) for any
1 ≤ k ≤ N − 1
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Differentials on Σb,a

We consider for any 1 ≤ n ≤ N − 1 the following holomorphic
one-forms on Σb,a:

ηn := ∂In

(
arcosh

∆λ

2

)
dλ, ζn :=

ψn(λ)√
∆2
λ − 4

dλ

Lemma
For any 1 ≤ n ≤ N − 1,

ηn = ζn.

Corollary

For any (b,a) ∈M• and any 1 ≤ n ≤ N − 1,

ωn =
i
2

∫
dn

Ω2.
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Krichever’s theorem

Define
Uk :=

∫
dk

Ω1, Vk :=

∫
dk

Ω2

and consider the map

F : (λ1 < . . . < λ2N) 7→ ((Ui ,Vi )1≤i≤N−1,e1,e0),

where
∫ λ
λ2N

Ω1 = −
(
logλ+ e0 + e1

1
λ + . . .

)
near∞+.

Theorem
At each point λ = (λ1 < . . . < λ2N), the map F is a local
diffeomorphism, i.e. the differential dλF : R2N → R2N is a linear
isomorphism.

The proof follows the scheme by Bikbaev & Kuksin to prove a similar
theorem by Krichever; it mainly consists of couting the zeroes and
poles of various auxiliary differentials.
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Summary and Discussion

Results for the periodic Toda lattice

Global Birkhoff normal form
Global convexity of the frequency map
Applications of the KAM and Nekhoroshev theorems

Ongoing projects:

Extension to the entire phase space, i.e. the parts of the phase
space where some of the action variables vanish
Extension to the Toda lattice with Dirichlet boundary conditions
Related projects for general Fermi-Pasta-Ulam chains
Perturbation theory for the infinite Toda lattice
. . .
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