Outline	Introduction	Results	Proof ideas	Conclusion

Nekhoroshev theorem for the periodic Toda lattice

Andreas Henrici

June 24, 2009

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Outline				

1 Introduction

- Periodic Toda lattice
- Perturbed integrable systems
- Birkhoff normal form

2 Results

Proof ideas

Outline	Introduction •••••	Results	Proof ideas	Conclusion
Periodic Toda lattice				
Periodic T	oda lattice			

Hamiltonian of Toda lattice with N particles:

$$H_{Toda} = rac{1}{2} \sum_{n=1}^{N} p_n^2 + \alpha^2 \sum_{n=1}^{N} e^{q_n - q_{n+1}},$$

with periodic boundary conditions $(q_{i+N}, p_{i+N}) = (q_i, p_i) \quad \forall i \in \mathbb{N}.$

The Toda lattice is a special case of a *Fermi-Pasta-Ulam chain*, a system with a Hamiltonian similar to H_{Toda} but with potential $V(x) = \frac{1}{2}x^2 - \frac{\alpha_{FPU}}{3!}x^3 + \frac{\beta_{FPU}}{4!}x^4 + \dots$ instead of $V(x) = e^{-x}$.

Since the total momentum $\sum_{n=1}^{N} p_n$ is conserved, we only consider the motion of the N-1 relative coordinates $(q_{N+1} - q_n)$; the corresponding phase space is then \mathbb{R}^{2N-2} , and we denote by $H_{\beta,\alpha}$ the Hamiltonian with respect to these relative coordinates for the total momentum $\beta = \frac{1}{N} \sum_{n=1}^{N} p_n$.

Outline	Introduction •••••	Results	Proof ideas	Conclusion
Periodic Toda lattice				
Periodic T	oda lattice			

Hamiltonian of Toda lattice with N particles:

$$H_{Toda} = rac{1}{2} \sum_{n=1}^{N} p_n^2 + \alpha^2 \sum_{n=1}^{N} e^{q_n - q_{n+1}},$$

with periodic boundary conditions $(q_{i+N}, p_{i+N}) = (q_i, p_i) \quad \forall i \in \mathbb{N}.$

The Toda lattice is a special case of a *Fermi-Pasta-Ulam chain*, a system with a Hamiltonian similar to H_{Toda} but with potential $V(x) = \frac{1}{2}x^2 - \frac{\alpha_{FPU}}{3!}x^3 + \frac{\beta_{FPU}}{4!}x^4 + \dots$ instead of $V(x) = e^{-x}$.

Since the total momentum $\sum_{n=1}^{N} p_n$ is conserved, we only consider the motion of the N-1 relative coordinates $(q_{N+1} - q_n)$; the corresponding phase space is then \mathbb{R}^{2N-2} , and we denote by $H_{\beta,\alpha}$ the Hamiltonian with respect to these relative coordinates for the total momentum $\beta = \frac{1}{N} \sum_{n=1}^{N} p_n$.

Outline	Introduction •••••	Results	Proof ideas	Conclusion
Periodic Toda lattice				
Periodic T	oda lattice			

Hamiltonian of Toda lattice with N particles:

$$H_{Toda} = rac{1}{2} \sum_{n=1}^{N} p_n^2 + \alpha^2 \sum_{n=1}^{N} e^{q_n - q_{n+1}},$$

with periodic boundary conditions $(q_{i+N}, p_{i+N}) = (q_i, p_i) \quad \forall i \in \mathbb{N}.$

The Toda lattice is a special case of a *Fermi-Pasta-Ulam chain*, a system with a Hamiltonian similar to H_{Toda} but with potential $V(x) = \frac{1}{2}x^2 - \frac{\alpha_{FPU}}{3!}x^3 + \frac{\beta_{FPU}}{4!}x^4 + \dots$ instead of $V(x) = e^{-x}$.

Since the total momentum $\sum_{n=1}^{N} p_n$ is conserved, we only consider the motion of the N-1 relative coordinates $(q_{N+1} - q_n)$; the corresponding phase space is then \mathbb{R}^{2N-2} , and we denote by $H_{\beta,\alpha}$ the Hamiltonian with respect to these relative coordinates for the total momentum $\beta = \frac{1}{N} \sum_{n=1}^{N} p_n$.

Perturbed integrable systems	

Figure: Kolmogorov, Arnol'd, Moser

- Kolmogorov (1954), Arnol'd (1963), Moser (1962): Stability of the motion of nondegenerate integrable systems under small perturbations for a "majority" of initial conditions
- Nekhoroshev (1977): Stability for all initial conditions, under stronger assumptions (convexity) on the unperturbed system
- In the sequel: Many refinements and generalizations

Outline	Introduction	Results	Proof ideas	Conclusion
Perturbed integrable systems				
The classical k	AM theorem			

- Perturbed Hamiltonian $H = H_0(I) + \varepsilon H_1(x, y)$, where $(x, y) = (x_j, y_j)_{1 \le j \le n} \in D \subseteq \mathbb{R}^{2n}$, $I = (I_1, \ldots, I_n)$ are the actions, and $I_j = \frac{1}{2}(x_j^2 + y_j^2)$ for $1 \le j \le n$.
- The unperturbed Hamiltonian $H_0(I)$ is an *integrable system*, i.e. the $(I_j)_{1 \le j \le n}$ are functionally independent integrals in involution. Therefore the phase space of the unperturbed system is foliated into tori of dimension d with $0 \le d \le n$.
- Kolmogorov condition: The unperturbed integrable Hamiltonian $H_0(I)$ is nondegenerate, i.e. for all $(x, y) \in D$

$$\det\left(\frac{\partial^2 H_0}{\partial I_i \partial I_j}\right)_{1 \le i,j \le n} \neq 0.$$

Conclusions:

There exists an ε₀ > 0 such that for any ε < ε₀, a "majority" of all tori of maximal dimension of the unperturbed system H₀ persist as tori of the perturbed system H = H₀(I) + εH₁(x, y).

Outline	Introduction	Results	Proof ideas	Conclusion
Perturbed integrable systems				
The classical k	AM theorem			

- Perturbed Hamiltonian $H = H_0(I) + \varepsilon H_1(x, y)$, where $(x, y) = (x_j, y_j)_{1 \le j \le n} \in D \subseteq \mathbb{R}^{2n}$, $I = (I_1, \ldots, I_n)$ are the actions, and $I_j = \frac{1}{2}(x_j^2 + y_j^2)$ for $1 \le j \le n$.
- The unperturbed Hamiltonian $H_0(I)$ is an *integrable system*, i.e. the $(I_j)_{1 \le j \le n}$ are functionally independent integrals in involution. Therefore the phase space of the unperturbed system is foliated into tori of dimension d with $0 \le d \le n$.
- Kolmogorov condition: The unperturbed integrable Hamiltonian $H_0(I)$ is nondegenerate, i.e. for all $(x, y) \in D$

$$\det\left(\frac{\partial^2 H_0}{\partial I_i \partial I_j}\right)_{1 \le i,j \le n} \neq 0.$$

Conclusions:

There exists an ε₀ > 0 such that for any ε < ε₀, a "majority" of all tori of maximal dimension of the unperturbed system H₀ persist as tori of the perturbed system H = H₀(I) + εH₁(x, y).

Outline	Introduction	Results	Proof ideas	Conclusion
Perturbed integrable systems				
The Nekhorosh	nev theorem			

- Perturbed Hamiltonian $H = H_0(I) + \varepsilon H_1(x, y)$ (as above).
- The unperturbed Hamiltonian *H*₀(*I*) is an *integrable system* (as above).
- Nekhoroshev condition: The unperturbed integrable Hamiltonian $H_0(I)$ is convex, i.e. for all $(x, y) \in D$

$$\left(\frac{\partial^2 H_0}{\partial I_i \partial I_j}\right)_{1 \le i, j \le n}$$
 is positive definite.

Conclusions:

 There exists an ε₀ > 0 such that for any ε < ε₀, the trajectory of the perturbed system H = H₀(I) + εH₁(x, y) stays "close" to the trajectory of H₀ for an "exponentially" long time.

Problem with the KAM and (especially) Nekhoroshev theorems:

• The assumptions are difficult to check. For the Nekhoroshev theorem, they require deriving an explicit formula for the Hamiltonian in terms of the action variables.

Outline	Introduction	Results	Proof ideas	Conclusion
Perturbed integrable system	s			
The Nekhoro	shev theorem			

- Perturbed Hamiltonian $H = H_0(I) + \varepsilon H_1(x, y)$ (as above).
- The unperturbed Hamiltonian *H*₀(*I*) is an *integrable system* (as above).
- Nekhoroshev condition: The unperturbed integrable Hamiltonian $H_0(I)$ is convex, i.e. for all $(x, y) \in D$

$$\left(\frac{\partial^2 H_0}{\partial I_i \partial I_j}\right)_{1 \le i,j \le n} \quad \text{is positive definite.}$$

Conclusions:

 There exists an ε₀ > 0 such that for any ε < ε₀, the trajectory of the perturbed system H = H₀(I) + εH₁(x, y) stays "close" to the trajectory of H₀ for an "exponentially" long time.

Problem with the KAM and (especially) Nekhoroshev theorems:

• The assumptions are difficult to check. For the Nekhoroshev theorem, they require deriving an explicit formula for the Hamiltonian in terms of the action variables.

Outline	Introduction	Results	Proof ideas	Conclusion
Perturbed integrable systems				
The Nekhoros	hev theorem			

- Perturbed Hamiltonian $H = H_0(I) + \varepsilon H_1(x, y)$ (as above).
- The unperturbed Hamiltonian *H*₀(*I*) is an *integrable system* (as above).
- Nekhoroshev condition: The unperturbed integrable Hamiltonian $H_0(I)$ is convex, i.e. for all $(x, y) \in D$

$$\left(\frac{\partial^2 H_0}{\partial I_i \partial I_j}\right)_{1 \le i, j \le n} \quad \text{is positive definite.}$$

Conclusions:

 There exists an ε₀ > 0 such that for any ε < ε₀, the trajectory of the perturbed system H = H₀(I) + εH₁(x, y) stays "close" to the trajectory of H₀ for an "exponentially" long time.

Problem with the KAM and (especially) Nekhoroshev theorems:

• The assumptions are difficult to check. For the Nekhoroshev theorem, they require deriving an explicit formula for the Hamiltonian in terms of the action variables.

Birkhoff norma	I form up to order	m		
Birkhoff normal form				
Outline	Introduction	Results	Proof ideas	Conclusion

- The application of the KAM and Nekhoroshev theorems requires introducing canonical coordinates $(q_i, p_i)_{1 \le i \le n}$ such that the Hamiltonian of a given system depends up to order 4 only on the *action variables* $\frac{1}{2}(q_i^2 + p_i^2)$; the terms of higher order will then be considered as perturbation.
- Assume that H is expressed in canonical coordinates (q, p) near an isolated equilibrium of a Hamiltonian system on some symplectic manifold with coordinates (q, p) = (0, 0).

Definition

A Hamiltonian *H* is in *Birkhoff normal form up to order* 4, if it is of the form

$$H=N_2+N_4+H_5+\ldots,$$

where N_2 und N_4 are homogeneous polynomials of order 2 and 4, respectively, which are actually functions of $q_1^2 + p_1^2, \ldots, q_n^2 + p_n^2$, and where $H_5 + \ldots$ stands for (arbitrary) terms of order strictly greater than 4. The coordinates $(q_i, p_i)_{1 \le i \le n}$ are *Birkhoff coordinates*.

Birkhoff normal form up to order m					
Birkhoff normal form					
Outline	Introduction	Results	Proof ideas	Conclusion	

- The application of the KAM and Nekhoroshev theorems requires introducing canonical coordinates $(q_i, p_i)_{1 \le i \le n}$ such that the Hamiltonian of a given system depends up to order 4 only on the *action variables* $\frac{1}{2}(q_i^2 + p_i^2)$; the terms of higher order will then be considered as perturbation.
- Assume that *H* is expressed in canonical coordinates (q, p) near an isolated equilibrium of a Hamiltonian system on some symplectic manifold with coordinates (q, p) = (0, 0).

Definition

A Hamiltonian *H* is in *Birkhoff normal form up to order* 4, if it is of the form

$$H=N_2+N_4+H_5+\ldots,$$

where N_2 und N_4 are homogeneous polynomials of order 2 and 4, respectively, which are actually functions of $q_1^2 + p_1^2, \ldots, q_n^2 + p_n^2$, and where $H_5 + \ldots$ stands for (arbitrary) terms of order strictly greater than 4. The coordinates $(q_i, p_i)_{1 \le i \le n}$ are *Birkhoff coordinates*.

Outline	Introduction	Results	Proof ideas	Conclusion

Overview over the results for the periodic Toda lattice with N particles:

Normal form results

- Global Birkhoff coordinates, i.e. Birkhoff coordinates in the entire phase space
- Explicit computation of the Birkhoff normal form around the equilibrium point up to order 4
- Nondegeneracy around the equilibrium point and hence, by principles of complex analysis, almost everywhere in phase space
- Convexity around the the equilibrium point
- By an argument from Riemann surface theory, convexity in an open dense subset of the phase space

Perturbation theory results

- By (iii), KAM theorem almost everywhere in phase space
- By (iv), Nekhoroshev theorem, locally around the equilibrium point
- By (v), Nekhoroshev theorem in an open dense subset of the phase space

Outline	Introduction	Results	Proof ideas	Conclusion

Overview over the results for the periodic Toda lattice with *N* particles:

Normal form results

- Global Birkhoff coordinates, i.e. Birkhoff coordinates in the entire phase space
- Explicit computation of the Birkhoff normal form around the equilibrium point up to order 4
- Nondegeneracy around the equilibrium point and hence, by principles of complex analysis, almost everywhere in phase space
- Convexity around the the equilibrium point
- By an argument from Riemann surface theory, convexity in an open dense subset of the phase space

Perturbation theory results

- By (iii), KAM theorem almost everywhere in phase space
- By (iv), Nekhoroshev theorem, locally around the equilibrium point
- By (v), Nekhoroshev theorem in an open dense subset of the phase space

Outline	Introduction	Results	Proof ideas	Conclusion

Global Birkhoff normal form for the periodic Toda lattice

Global Birkhoff coordinates with expansion up to order 4 at the origin for the Toda Hamiltonian $H_{\beta,\alpha}$ with respect to the 2N - 2 relative coordinates:

Theorem

For any fixed $\beta \in \mathbb{R}$, $\alpha > 0$, and $N \ge 2$, the periodic Toda lattice admits a Birkhoff normal form. More precisely, there are (globally defined) canonical coordinates $(x_k, y_k)_{1 \le k \le N-1}$ so that $H_{\beta,\alpha}$, when expressed in these coordinates, takes the form $H_{\beta,\alpha}(I) := \frac{N\beta^2}{2} + H_{\alpha}(I)$, where $H_{\alpha}(I)$ is a real analytic function of the action variables $I_k = (x_k^2 + y_k^2)/2$ ($1 \le k \le N - 1$). Moreover, near I = 0, $H_{\alpha}(I)$ has an expansion of the form

$$N\alpha^{2} + 2\alpha \sum_{k=1}^{N-1} \sin \frac{k\pi}{N} I_{k} + \frac{1}{4N} \sum_{k=1}^{N-1} I_{k}^{2} + O(I^{3}).$$
 (1)

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Hessian at	the origin			

Corollary

Let $\alpha > 0$ and $\beta \in \mathbb{R}$ be arbitrary. Then the Hessian of $H_{\beta,\alpha}(I)$ at I = 0 is given by

$$d_I^2 H_{\beta,\alpha}|_{I=0} = \frac{1}{2N} I d_{N-1}.$$

In particular, the frequency map $I \mapsto \nabla_I H_{\beta,\alpha}$ is nondegenerate at I = 0 and hence, by analyticity, nondegenerate on an open dense subset of $(\mathbb{R}_{\geq 0})^{N-1}$.

Consequently, the KAM theorem can be applied on an *open dense subset* of the phase space, and the Nekhoroshev theorem can be applied *locally around the fixed point*.

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Hessian a	t the origin			

Corollary

Let $\alpha > 0$ and $\beta \in \mathbb{R}$ be arbitrary. Then the Hessian of $H_{\beta,\alpha}(I)$ at I = 0 is given by

$$d_I^2 H_{\beta,\alpha}|_{I=0} = \frac{1}{2N} I d_{N-1}.$$

In particular, the frequency map $I \mapsto \nabla_I H_{\beta,\alpha}$ is nondegenerate at I = 0 and hence, by analyticity, nondegenerate on an open dense subset of $(\mathbb{R}_{\geq 0})^{N-1}$.

Consequently, the KAM theorem can be applied on an *open dense subset* of the phase space, and the Nekhoroshev theorem can be applied *locally around the fixed point*.

Outline	Introduction	Results	Proof ideas	Conclusion

Convexity of the frequency map

Theorem

The Hamiltonian of $H_{\beta,\alpha}$, when expressed in the globally defined action variables $(I_k)_{1 \le k \le N-1}$, is a (strictly) convex function. More precisely, for any bounded set $U \subseteq \mathbb{R}_{>0}^{N-1}$ and any $0 < \alpha_1 < \alpha_2$ there exists m > 0, $m = m(U_{\alpha_1\alpha_2})$, such that

$$\langle \partial_l^2 H_{\beta,\alpha}(l)\xi,\xi \rangle \ge m \|\xi\|^2, \qquad \forall \xi \in \mathbb{R}_{N-1}$$
 (2)

for any $I \in U$, any $\beta \in \mathbb{R}$, and any $\alpha_1 \leq \alpha \leq \alpha_2$.

Consequently, the Nekhoroshev theorem holds in the an open dense subset phase space.

Outline	Introduction	Results	Proof ideas	Conclusion

Convexity of the frequency map

Theorem

The Hamiltonian of $H_{\beta,\alpha}$, when expressed in the globally defined action variables $(I_k)_{1 \le k \le N-1}$, is a (strictly) convex function. More precisely, for any bounded set $U \subseteq \mathbb{R}_{>0}^{N-1}$ and any $0 < \alpha_1 < \alpha_2$ there exists m > 0, $m = m(U_{\alpha_1\alpha_2})$, such that

$$\langle \partial_l^2 H_{\beta,\alpha}(l)\xi,\xi \rangle \ge m \|\xi\|^2, \qquad \forall \xi \in \mathbb{R}_{N-1}$$
 (2)

for any $I \in U$, any $\beta \in \mathbb{R}$, and any $\alpha_1 \leq \alpha \leq \alpha_2$.

Consequently, the Nekhoroshev theorem holds in the *an open dense* subset phase space.

Outline	Introduction	Results	Proof ideas	Conclusion
General remark	۲S			

Motivation for our work: Previous results for the periodic KdV equation, an infinite-dimensional system closely related to the Toda lattice (via the Lax pair formalism), by

- Kappeler & Pöschel ("KAM & KdV"), establishing an inifinite-dimensional KAM theorem
- Krichever, Bikbaev & Kuksin, discussing the parametrization of certain solutions of KdV by suitable quantities on an associated Riemann surface

Main steps in the proof of our results: Imitation of the steps of the above mentioned work, namely

- construction of global action-angle variables and Birkhoff coordinates for the Toda lattice exactly following the method used for the KdV equation by Kappeler & Pöschel, and computation of the BNF of order 4 by standard methods
- proof of the global convexity of the Toda Hamiltonian by following the method of Bikbaev & Kuksin

Outline	Introduction 00000	Results	Proof ideas	Conclusion
General rema	rks			

Motivation for our work: Previous results for the periodic KdV equation, an infinite-dimensional system closely related to the Toda lattice (via the Lax pair formalism), by

- Kappeler & Pöschel ("KAM & KdV"), establishing an inifinite-dimensional KAM theorem
- Krichever, Bikbaev & Kuksin, discussing the parametrization of certain solutions of KdV by suitable quantities on an associated Riemann surface

Main steps in the proof of our results: Imitation of the steps of the above mentioned work, namely

- construction of global action-angle variables and Birkhoff coordinates for the Toda lattice exactly following the method used for the KdV equation by Kappeler & Pöschel, and computation of the BNF of order 4 by standard methods
- proof of the global convexity of the Toda Hamiltonian by following the method of Bikbaev & Kuksin

- The Hessian of the Toda Hamiltonian is the Jacobian of the frequency map $\omega_{\beta,\alpha} := \partial H_{\beta,\alpha} / \partial I$.
- Using tools from the theory of Riemann surfaces and tridiagonal Jacobi matrices, the frequencies $(\omega_k)_{1 \le k \le N-1} = \partial H_{\beta,\alpha}/\partial I_k$ can be shown to be identical to the integrals of certain Abelian differentials on the Riemann surface associated to the spectrum of the matrix *L* associated to the Toda lattice.
- Following a method of Bikbaev & Kuksin, we show that these contour integrals are a globally nondegenerate function of the eigenvalues of *L*.
- The convexity of the Toda Hamiltonian at the origin together with its global nondegeneracy imply the global convexity.

Outline	Introduction	Results	Proof ideas	Conclusion

The spectrum of the matrix L(b, a)

- The Toda equations can be put into the *Lax pair* formulation $\dot{L} = [L, B]$ with the Jacobi matrix L = L(b, a), a periodic tridiagonal matrix with the b_j 's as diagonal and the a_j 's as offdiagonal entries.
- Associated to *L*(*b*, *a*) is the eigenvalue equation

$$a_{k-1}y_{k}(k-1) + b_{k}y(k) + a_{k}y(k+1) = \lambda y(k)$$
 (3)

and its fundamental solutions $y_1(\cdot, \lambda)$ and $y_2(\cdot, \lambda)$.

• The discriminant $\Delta(\lambda) \equiv \Delta(\lambda, b, a)$ of (3) is defined by

$$\Delta(\lambda) \equiv \Delta_{\lambda} := y_1(N,\lambda) + y_2(N+1,\lambda)$$

It follows from Floquet theory that we have the product representation

$$\Delta_{\lambda}^{2} - 4 = \alpha^{-2N} \prod_{j=1}^{2N} (\lambda - \lambda_{j}),$$

where $(\lambda_j)_{1 \le j \le 2N}$ is the combined sequence of the eigenvalues of $L = L^+$ and L^- (antiperiodic version of L^+).

Outline	Introduction	Results	Proof ideas	Conclusion
	00000			

Asymptotic expansion of $\operatorname{arcosh} \Delta_{\lambda}(b, a)$

Lemma

$$arcosh \frac{\Delta_{\lambda}}{2} = N \log \lambda - N \log \alpha + \frac{N\beta}{\lambda} - \frac{H_{Toda}}{\lambda^2} + O(\lambda^{-3}).$$

Proof.

- Consider the difference equation L(b, a)y = λy and the associated Floquet multiplier w(λ).
- Note that $\log w(\lambda) = \operatorname{arcosh} \frac{\Delta_{\lambda}}{2}$.
- For an associated nonzero solution $u(\cdot, \lambda)$ of $L(b, a)y = \lambda y$, we define $\phi(n) = \frac{u(n+1)}{u(n)}$.
- Note that $\phi(\cdot)$ satisfies the discrete Riccati equation $a_n\phi(n)\phi(n-1) + (b_n \lambda)\phi(n-1) + a_{n-1} = 0.$
- By substituting an expansion of φ(n, λ) ≡ φ(n) into the Riccati equation, comparing coefficients and comparing the above formulas, we obtain the desired identity.

Outline	Introduction 00000	Results	Proof ideas	Conclusion

Asymptotic expansion of $\operatorname{arcosh} \Delta_{\lambda}(b, a)$

Lemma

$$arcosh \frac{\Delta_{\lambda}}{2} = N \log \lambda - N \log \alpha + \frac{N\beta}{\lambda} - \frac{H_{Toda}}{\lambda^2} + O(\lambda^{-3}).$$

Proof.

- Consider the difference equation L(b, a)y = λy and the associated Floquet multiplier w(λ).
- Note that $\log w(\lambda) = \operatorname{arcosh} \frac{\Delta_{\lambda}}{2}$.
- For an associated nonzero solution $u(\cdot, \lambda)$ of $L(b, a)y = \lambda y$, we define $\phi(n) = \frac{u(n+1)}{u(n)}$.
- Note that $\phi(\cdot)$ satisfies the discrete Riccati equation $a_n\phi(n)\phi(n-1) + (b_n \lambda)\phi(n-1) + a_{n-1} = 0.$
- By substituting an expansion of φ(n, λ) ≡ φ(n) into the Riccati equation, comparing coefficients and comparing the above formulas, we obtain the desired identity.

Outline	Introduction	Results	Proof ideas	Conclusion
Riemann s	surface $\Sigma_{b,a}$			

Consider the Riemann surface

$$\Sigma_{b,a} = \{(\lambda, z) \in \mathbb{C}^2 : z^2 = \Delta^2_{\lambda}(b, a) - 4\} \cup \{\infty^{\pm}\}.$$

Pairwise disjoint cycles $(c_k)_{1 \le k \le N-1}$, $(d_k)_{1 \le k \le N-1}$ on $\Sigma_{b,a}$:

- $(c_k)_{1 \le k \le N-1}$: the projection of c_n onto \mathbb{C} is a closed curve around $[\lambda_{2k}, \lambda_{2k+1}]$.
- (*d_k*)_{1≤k≤N-1}: the intersection indices with (*c_k*)_{1≤k≤N-1} are given by *c_n* ◦ *d_k* = δ_{nk}.

Abelian differentials Ω_1 , Ω_2 on $\Sigma_{b,a}$:

- Ω_1 , Ω_2 holomorphic on $\Sigma_{b,a}$
- Prescribed expansions at infinity
- Normalization conditions $\int_{c_k} \Omega_i = 0 (i = 1, 2)$ for any $1 \le k \le N 1$

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Riemann s	urface Σ _{b,a}			

Consider the Riemann surface

$$\Sigma_{b,a} = \{(\lambda, z) \in \mathbb{C}^2 : z^2 = \Delta^2_{\lambda}(b, a) - 4\} \cup \{\infty^{\pm}\}.$$

Pairwise disjoint cycles $(c_k)_{1 \le k \le N-1}$, $(d_k)_{1 \le k \le N-1}$ on $\Sigma_{b,a}$:

- $(c_k)_{1 \le k \le N-1}$: the projection of c_n onto \mathbb{C} is a closed curve around $[\lambda_{2k}, \lambda_{2k+1}]$.
- (*d_k*)_{1≤k≤N-1}: the intersection indices with (*c_k*)_{1≤k≤N-1} are given by *c_n* ∘ *d_k* = δ_{nk}.

Abelian differentials Ω_1 , Ω_2 on $\Sigma_{b,a}$:

- Ω_1 , Ω_2 holomorphic on $\Sigma_{b,a}$
- Prescribed expansions at infinity
- Normalization conditions $\int_{c_k} \Omega_i = 0 (i = 1, 2)$ for any $1 \le k \le N 1$

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Riemann s	surface $\Sigma_{b,a}$			

Consider the Riemann surface

$$\Sigma_{b,a} = \{(\lambda, z) \in \mathbb{C}^2 : z^2 = \Delta^2_{\lambda}(b, a) - 4\} \cup \{\infty^{\pm}\}.$$

Pairwise disjoint cycles $(c_k)_{1 \le k \le N-1}$, $(d_k)_{1 \le k \le N-1}$ on $\Sigma_{b,a}$:

- $(c_k)_{1 \le k \le N-1}$: the projection of c_n onto \mathbb{C} is a closed curve around $[\lambda_{2k}, \lambda_{2k+1}]$.
- (*d_k*)_{1≤k≤N-1}: the intersection indices with (*c_k*)_{1≤k≤N-1} are given by *c_n* ∘ *d_k* = δ_{nk}.

Abelian differentials Ω_1 , Ω_2 on $\Sigma_{b,a}$:

- Ω₁, Ω₂ holomorphic on Σ_{b,a}
- Prescribed expansions at infinity
- Normalization conditions $\int_{C_k} \Omega_i = 0 (i = 1, 2)$ for any $1 \le k \le N 1$

Outline	Introduction	Results	Proof ideas	Conclusion

Differentials on $\Sigma_{b,a}$

We consider for any $1 \le n \le N - 1$ the following holomorphic one-forms on $\Sigma_{b,a}$:

$$\eta_n := \partial_{I_n} \left(\operatorname{arcosh} \frac{\Delta_\lambda}{2} \right) d\lambda, \qquad \zeta_n := \frac{\psi_n(\lambda)}{\sqrt{\Delta_\lambda^2 - 4}} d\lambda$$

Lemma

For any $1 \leq n \leq N-1$,

$$\eta_n = \zeta_n.$$

Corollary

For any $(b, a) \in \mathcal{M}^{\bullet}$ and any $1 \leq n \leq N - 1$,

$$\omega_n=\frac{i}{2}\int_{d_n}\Omega_2.$$

Outline	Introduction	Results	Proof ideas	Conclusion

Differentials on $\Sigma_{b,a}$

We consider for any $1 \le n \le N - 1$ the following holomorphic one-forms on $\Sigma_{b,a}$:

$$\eta_n := \partial_{I_n} \left(\operatorname{arcosh} \frac{\Delta_\lambda}{2} \right) d\lambda, \qquad \zeta_n := \frac{\psi_n(\lambda)}{\sqrt{\Delta_\lambda^2 - 4}} d\lambda$$

Lemma

For any $1 \leq n \leq N-1$,

$$\eta_n = \zeta_n.$$

Corollary

For any $(b, a) \in \mathcal{M}^{\bullet}$ and any $1 \leq n \leq N - 1$,

$$\omega_n=\frac{i}{2}\int_{d_n}\Omega_2.$$

Outline	Introduction	Results	Proof ideas	Conclusion

Differentials on $\Sigma_{b,a}$

We consider for any $1 \le n \le N - 1$ the following holomorphic one-forms on $\Sigma_{b,a}$:

$$\eta_n := \partial_{I_n} \left(\operatorname{arcosh} \frac{\Delta_\lambda}{2} \right) d\lambda, \qquad \zeta_n := \frac{\psi_n(\lambda)}{\sqrt{\Delta_\lambda^2 - 4}} d\lambda$$

Lemma

For any $1 \leq n \leq N-1$,

$$\eta_n = \zeta_n.$$

Corollary

For any $(b, a) \in \mathcal{M}^{\bullet}$ and any $1 \leq n \leq N - 1$,

$$\omega_n = rac{i}{2} \int_{d_n} \Omega_2.$$

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Krichever	s theorem			

Define

$$U_k := \int_{d_k} \Omega_1, \qquad V_k := \int_{d_k} \Omega_2$$

and consider the map

$$\mathfrak{F}: (\lambda_1 < \ldots < \lambda_{2N}) \mapsto ((U_i, V_i)_{1 \leq i \leq N-1}, e_1, e_0),$$

where
$$\int_{\lambda_{2N}}^{\lambda} \Omega_1 = -\left(\log \lambda + e_0 + e_1 \frac{1}{\lambda} + \ldots\right)$$
 near ∞^+ .

Theorem

At each point $\lambda = (\lambda_1 < \ldots < \lambda_{2N})$, the map \mathfrak{F} is a local diffeomorphism, i.e. the differential $d_{\lambda}\mathfrak{F} : \mathbb{R}^{2N} \to \mathbb{R}^{2N}$ is a linear isomorphism.

The proof follows the scheme by Bikbaev & Kuksin to prove a similar theorem by Krichever; it mainly consists of couting the zeroes and poles of various auxiliary differentials.

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Krichever	s theorem			

Define

$$U_k := \int_{d_k} \Omega_1, \qquad V_k := \int_{d_k} \Omega_2$$

and consider the map

$$\mathfrak{F}: (\lambda_1 < \ldots < \lambda_{2N}) \mapsto ((U_i, V_i)_{1 \le i \le N-1}, e_1, e_0),$$

where
$$\int_{\lambda_{2N}}^{\lambda} \Omega_1 = -\left(\log \lambda + e_0 + e_1 \frac{1}{\lambda} + \ldots\right)$$
 near ∞^+ .

Theorem

At each point $\lambda = (\lambda_1 < \ldots < \lambda_{2N})$, the map \mathfrak{F} is a local diffeomorphism, i.e. the differential $d_{\lambda}\mathfrak{F} : \mathbb{R}^{2N} \to \mathbb{R}^{2N}$ is a linear isomorphism.

The proof follows the scheme by Bikbaev & Kuksin to prove a similar theorem by Krichever; it mainly consists of couting the zeroes and poles of various auxiliary differentials.

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Summarv	and Discussion			

Results for the periodic Toda lattice

- Global Birkhoff normal form
- Global convexity of the frequency map
- Applications of the KAM and Nekhoroshev theorems

Ongoing projects:

- Extension to the entire phase space, i.e. the parts of the phase space where some of the action variables vanish
- Extension to the Toda lattice with Dirichlet boundary conditions
- Related projects for general Fermi-Pasta-Ulam chains
- Perturbation theory for the infinite Toda lattice

• . . .

Outline	Introduction 00000	Results	Proof ideas	Conclusion
Summarv	and Discussion			

Results for the periodic Toda lattice

- Global Birkhoff normal form
- Global convexity of the frequency map
- Applications of the KAM and Nekhoroshev theorems

Ongoing projects:

- Extension to the entire phase space, i.e. the parts of the phase space where some of the action variables vanish
- Extension to the Toda lattice with Dirichlet boundary conditions
- Related projects for general Fermi-Pasta-Ulam chains
- Perturbation theory for the infinite Toda lattice

• ...