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1. Introduction

• In the one-dimensional approximation the dynamics of spinor BEC (in the
F = 1 hyperfine state ) is described by the following three-component nonlinear
Schrödinger (MNLS) system in (1D) x-space [Ieda,Miyakawa,Wadati;2004]:

i∂tΦ1 + ∂2
xΦ1 + 2(|Φ1|2 + 2|Φ0|2)Φ1 + 2Φ∗−1Φ

2
0 = 0,

i∂tΦ0 + ∂2
xΦ0 + 2(|Φ−1|2 + |Φ0|2 + |Φ1|2)Φ0 + 2Φ∗0Φ1Φ−1 = 0,

i∂tΦ−1 + ∂2
xΦ−1 + 2(|Φ−1|2 + 2|Φ0|2)Φ−1 + 2Φ∗1Φ

2
0 = 0.

• This model is integrable by means of inverse scattering transform method
[Ieda,Miyakawa,Wadati;2004].

– It also allows an exact description of the dynamics and interaction of bright
solitons with spin degrees of freedom.
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– Matter-wave solitons are expected to be useful in atom laser, atom
interferometry and coherent atom transport.

• Lax pairs and geometric interpretation of our 3-component MNLS type model
are given in [Fordy,Kulish;1983].

• Darboux transformation for this special integrable model is developed in
[Li,Li,Malomed,Mihalache,Liu;2005].

• We will show that our system is related to the symmetric space
BD.I ' SO(2r + 1)/SO(2)× SO(2r− 1) (in the Cartan classification
[Helgasson;2001]) with canonical Z2-reduction and has a natural Lie algebraic
interpretation.

• The model allows also a special class of soliton solutions.
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• MKdV over symmetric spaces [Athorne, Fordy]:

∂Q

∂t
+
∂3Q

∂x3
+ 3

(
QxQ

2 +Q2Qx

)
= 0.
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2. NLS and MKdV over symmetric spaces: algebraic and
analytic aspects

• Our model belongs to the class of multi-component NLS equations that can
be solved by the inverse scattering method

It is a particular case of the MNLS related to the BD.I type symmetric space
SO(2r + 1)/SO(2)× SO(2r− 1) [Fordy,Kulish;1983].

MNLS over symmetric spaces

• These MNLS systems allow Lax representation with the generalized Zakharov–
Shabat system as the Lax operator:

Lψ(x, t, λ) ≡ i
∂ψ

∂x
+ (Q(x, t)− λJ)ψ(x, t, λ) = 0.
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Mψ(x, t, λ) ≡ i
∂ψ

∂t
+ (V0(x, t) + λV1(x, t)− λ2J)ψ(x, t, λ) = 0,

V1(x, t) = Q(x, t), V0(x, t) = iad−1
J

dQ

dx
+

1
2
[
ad−1

J Q,Q(x, t)
]
.

where

Q =

 0 ~qT 0
~p 0 s0~q
0 ~pTs0 0

 , J = diag(1, 0, . . . 0,−1).

~q = (q2, . . . , qr, qr+1, qr+2, . . . , q2r)T , ~p = (p2, . . . , pr, pr+1, pr+2, . . . , p2r)T ,

S0 =
2r+1∑
k=1

(−1)k+1Ek,2r+2−k =

 0 0 1
0 −s0 0
1 0 0

 , (Ekn)ij = δikδnj
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~E±1 = (E±(e1−e2), . . . , E±(e1−er), E±e1, E±(e1+er), . . . , E±(e1+e2)),

(~q · ~E+
1 ) =

r∑
k=2

(qk(x, t)Ee1−ek
+ q2r−k+2(x, t)Ee1+ek

) + qr+1(x, t)Ee1.

• Then the generic form of the potentials Q(x, t) related to these type of
symmetric spaces is

Q(x, t) = (~q(x, t) · ~E+
1 ) + (~p(x, t) · ~E−1 ),

Eα – Weyl generators;
∆+

1 is the set of all positive roots of so(2r + 1) such that (α, e1) = 1:

∆+
1 = {e1, e1 ± ek, k = 2, . . . , r}.
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• The generic MNLS type equations on BD.I. symmetric spaces:

i~qt +~qxx + 2(~q, ~p)~q − (~q, s0~q)s0~p = 0,

i~pt −~pxx − 2(~q, ~p)~p− (~p, s0~p)s0~q = 0,

r = 2 → F = 1 spinor BEC;
r = 3 → F = 2 spinor BEC;
...
r → F = r − 1 spinor BEC.

Example: F = 2 spinor BEC

Introduce the variables: Φ2 = q2, Φ1 = q3, Φ0 = q4, Φ−1 = q5,Φ−2 = q6.

The assembly of atoms in the F = 2 hyperfine state can be described by a
normalized spinor wave vector

Φ(x, t) = (Φ2(x, t),Φ1(x, t),Φ0(x, t),Φ−1(x, t),Φ−2(x, t))T ,
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whose components are labelled by the values of mF = 2, 1, 0,−1,−2.

• The model equations read:

i~Φt +~Φxx = −2ε(~Φ, ~Φ∗)~Φ + ε(~Φ, s0~Φ)s0 ~Φ∗,

or in explicit form by components:

i∂tΦ±2 + ∂xxΦ±2 = −2ε(~Φ, ~Φ∗)Φ±2 + ε(2Φ2Φ−2 − 2Φ1Φ−1 + Φ2
0)Φ

∗
∓2,

i∂tΦ±1 + ∂xxΦ±1 = −2ε(~Φ, ~Φ∗)Φ±1 − ε(2Φ2Φ−2 − 2Φ1Φ−1 + Φ2
0)Φ

∗
∓1,

i∂tΦ0 + ∂xxΦ0 = −2ε(~Φ, ~Φ∗)Φ±0 + ε(2Φ2Φ−2 − 2Φ1Φ−1 + Φ2
0)Φ

∗
0.
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MKdV over symmetric spaces

• Lax representation

Lψ ≡
(
i
d

dx
+Q(x, t)− λJ

)
ψ(x, t, λ) = 0,

Q(x, t) =
(

0 q
p 0

)
, J =

(
11 0
0 −11

)
,

Mψ ≡
(
i
d

dt
+ V0(x, t) + λV1(x, t) + λ2V2(x, t)− 4λ3J

)
ψ(x, t, λ) = ψ(x, t, λ)C(λ),

V2(x, t) = 4Q(x, t), V1(x, t) = 2iJQx + 2JQ2, V0(x, t) = −Qxx − 2Q3,

J and Q(x, t) – 2r × 2r matrices, J – block diagonal;

Q(x, t) – block-off-diagonal matrix.
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• The MMKdV equations take the form

∂Q

∂t
+
∂3Q

∂x3
+ 3

(
QxQ

2 +Q2Qx

)
= 0.
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3. Direct and the inverse scattering problem for L

• Jost solutions φ = (φ+, φ−) and ψ = (ψ−, ψ+):

lim
x→−∞

φ(x, t, λ)eiλJx = 11, lim
x→∞

ψ(x, t, λ)eiλJx = 11

– These definitions are compatible with the class of smooth potentials Q(x, t)
vanishing sufficiently rapidly at x→ ±∞.

– It can be shown that φ+ and ψ+ (resp. φ− and ψ−) composed by 4 rows and
2 columns are analytic in the upper (resp. lower) half plane of λ.
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• The scattering matrix:

T (λ, t) =

 m+
1 −~b−T c−1

~b+ T22 −s0 ~B−
c+1

~B+Ts0 m−1

 ,

~b±(λ, t) – 2r − 1-component vectors,
T22(λ) – 2r − 1× 2r − 1 block
m±1 (λ), c±1 (λ) –scalar functions satisfying

c+1 =
(~b+ · s0~b+)

2m+
1

=
( ~B+ · s0 ~B+)

2m−1
, c−1 =

( ~B− · s0 ~B−)
2m−1

=
(~b− · s0~b−)

2m+
1

.

• The fundamental analytic solutions (FAS) χ±(x, t, λ) of L(λ) are analytic
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functions of λ for Imλ ≷ 0 and are related to the Jost solutions by:

χ±(x, t, λ) = φ(x, t, λ)S±J (t, λ) = ψ(x, t, λ)T∓J (t, λ).

Here S±J , T±J upper- and lower- block-triangular matrices:

S±J (t, λ) = exp
(
±(~τ±(λ, t) · ~E±1 )

)
, T±J (t, λ) = exp

(
∓(~ρ±(λ, t) · ~E±1 )

)
,

D+
J =

 m+
1 0 0

0 m+
2 0

0 0 1/m+
1

 , D−J =

 1/m−1 0 0
0 m−

2 0
0 0 m−1

 ,

where

~τ+(λ, t) =
~b−

m+
1

, ~ρ+(λ, t) =
~b+

m+
1

, ~τ−(λ, t) =
~B+

m−1
, ~ρ−(λ, t) =

~B−

m−1
,
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and

m+
2 = T22 +

~b+~b−T

2m+
1

, m−
2 = T22 +

s0~b
−~b+Ts0

2m−1
.

T±J (t, λ)Ŝ±J (t, λ) = T (t, λ)

→ T±J (t, λ) and S±J (t, λ) and can be viewed as the factors of a generalized
Gauss decompositions of T (t, λ) [Gerdjikov;1994].

• If Q(x, t) evolves according to our MNLS model then ~b±(λ), m±1 (t, λ) and
m±

2 (t, λ) satisfy the following linear evolution equations:

i
d~b±

dt
± λ2~b±(t, λ) = 0, i

dm±1
dt

= 0, i
dm±

2

dt
= 0,

so the block-matrices D±(λ) can be considered as generating functionals of
the integrals of motion.
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• The fact that all (2r − 1)2 matrix elements of m+
2 (λ) for λ ∈ C+ (resp. of

m−
2 (λ) for λ ∈ C−) generate integrals of motion reflect the superintegrability

of the model and are due to the degeneracy of the dispersion law of our model.

• The FAS for real λ are linearly related

χ+(x, t, λ) = χ−(x, t, λ)GJ(λ, t), G0,J(λ, t) = S−J (λ, t)S+
J (λ, t).

So, the sewing function Gj(x, λ, t) is uniquely determined by the Gauss factors
S±J (λ, t).
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4. The Generalized Fourier Transforms for Non-regular J

• Wronskian relations

〈
(
χ̂±Jχ±(x, λ)− J

)
Eβ〉

∣∣∞
x=−∞ = i

∫ ∞

−∞
dx 〈

(
[J,Q(x)]e±β (x, λ)

)
〉,

〈
(
χ̂′,±Jχ′,±(x, λ)− J

)
Eβ〉

∣∣∞
x=−∞ = i

∫ ∞

−∞
dx 〈

(
[J,Q(x)]e′,±β (x, λ)

)
〉,

• ‘squared solutions’:

e±β (x, λ) = χ±Eβχ̂
±(x, λ), e±β (x, λ) = P0J(χ±Eβχ̂

±(x, λ)),

e′,±β (x, λ) = χ′,±Eβχ̂
′,±(x, λ), e′,±β (x, λ) = P0J(χ′,±Eβχ̂

′,±(x, λ)),
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• Skew-scalar product in the “spectral space”:

[[
X,Y

]]
=
∫ ∞

−∞
dx〈X(x), [J, Y (x)]〉,

〈X,Y 〉 – the Killing form;

We assume that the Cartan-Weyl generators satisfy

〈Eα, E−β〉 = δα,β 〈Hj,Hk〉 = δjk.[[
X,Y

]]
is non-degenerate on the space of allowed potentials M.

ρ+
β = −i

[[
Q(x), e′,+β

]]
, ρ−β = −i

[[
Q(x), e′,−−β

]]
,

τ+
β = −i

[[
Q(x), e+

−β

]]
, τ−β = −i

[[
Q(x), e−β

]]
,
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Thus the mappings F : Q(x, t) → Ti can be viewed as generalized Fourier
transform in which e±β (x, λ) and e′,±β (x, λ) can be viewed as generalizations
of the standard exponentials.

• In order to work out the contributions from the discrete spectrum of L we
will need the explicit form of the singularities that the ‘squared solutions’ can
develop in the vicinity of the discrete eigenvalues λ±j .
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Lemma: If all principal minors m±k (λ) of T (λ) only m±1 (λ) have zeroes,
i.e.:

m±1 (λ) = ṁ±1,k(λ− λ±k ) +
1
2
m̈±1,k(λ− λ±k )2 +O(λ− λ±k )3.

then the structure of the singularities of e±α (x, λ) with α ∈ ∆+
1 ∪ ∆−

1

simplifies to:

e+α (x, λ) = e+α;j(x) + ė+α;j(x)(λ− λ+
j ) +O((λ− λ+

j )2),

e+−α(x, λ) =
e+−α;j(x)

(λ− λ+
j )2

+
ė+−α;j(x)

λ− λ+
j

+O(1),

e−α (x, λ) =
e−−α;j(x)

(λ− λ−j )2
+
ė−α;j(x)

λ− λ−j
+O(1),

e−−α(x, λ) = e−−α;j(x) + ė−−α;j(x)(λ− λ−j ) +O((λ− λ−j )2).
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• One more type of Wronskian relations (relating the potential δQ(x) to the
corresponding variations of the scattering data:

χ̂+δχ+(x, λ)
∣∣∞
x=−∞ = D̂+(δ~ρ+, ~E−)D+(λ)− (δ~τ+, ~E+) + D̂+δD+(λ),

χ̂−δχ−(x, λ)
∣∣∞
x=−∞ = (δ~τ−, ~E−)− D̂−(δ~ρ−, ~E+)D−(λ) + D̂−δD−(λ),

and

χ̂′,+δχ′,+(x, λ)
∣∣∞
x=−∞ = (δ~ρ+, ~E−)(λ)−D+(δ~τ+, ~E+)D̂+(λ) + D̂+δD+(λ),

χ̂′,−δχ′,−(x, λ)
∣∣∞
x=−∞ = D−(δ~τ−, ~E−)D̂−(λ)− (δ~ρ−, ~E+)(λ) + D̂−δD−(λ),

• and the corresponding “inversion formulas” (here β ∈ ∆+
1 )

δρ+
β = −i

[[
ad−1

J δQ(x), e′,+β

]]
, δρ−β = i

[[
ad−1

J δQ(x), e′,−−β

]]
,

δτ+
β = i

[[
ad−1

J δQ(x), e+
−β

]]
, δτ−β = −i

[[
ad−1

J δQ(x), e−β
]]
,
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• Assuming that the variation of Q(x) is due to its time evolution, and consider
variations of the type:

δQ(x, t) = Qtδt+O((δt)2).

Keeping only the first order terms with respect to δt we find:

dρ+
β

dt
= −i

[[
ad−1

J Qt(x), e
′,+
β

]]
,

dρ−β
dt

= i
[[

ad−1
J Qt(x), e

′,−
−β

]]
,

dτ+
β

dt
= i
[[

ad−1
J Qt(x), e+

−β

]]
,

dτ−β
dt

= −i
[[

ad−1
J Qt(x), e−β

]]
,
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Completeness of the ‘squared solutions’

• Two sets of ‘squared solutions’

{Ψ} = {Ψ}c ∪ {Ψ}d, {Φ} = {Φ}c ∪ {Φ}d,

{Ψ}c ≡
{
e+
−α(x, λ), e−α (x, λ), λ ∈ R, α ∈ ∆+

1

}
,

{Ψ}d ≡
{
e±∓α;j(x), ė±∓α;j(x), α ∈ ∆+

1 ,
}
,

{Φ}c ≡
{
e+

α (x, λ), e−−α(x, λ), λ ∈ R, α ∈ ∆+
1

}
,

{Φ}d ≡
{
e±±α;j(x), ė±±α;j(x), α ∈ ∆+

1 ,
}
,

where j = 1, . . . , N and the subscripts ‘c’ and ‘d’ refer to the continuous
and discrete spectrum of L, the latter consisting of 2N discrete eigenvalues
λ±j ∈ C±.
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Theorem: The sets {Ψ} and {Φ} form complete sets of functions in MJ.
The corresponding completeness relation has the form:

δ(x− y)Π0J =
1
π

∫ ∞

−∞
dλ(G+

1 (x, y, λ)−G−1 (x, y, λ))

− 2i
N∑

j=1

(G+
1,j(x, y) +G−1,j(x, y)),

where

Π0J =
∑

α∈∆+
1

(Eα ⊗ E−α − E−α ⊗ Eα),

G±1 (x, y, λ) =
∑

α∈∆+
1

e±±α(x, λ)⊗ e+
∓α(y, λ),
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G1,j
±(x, y) =

∑
α∈∆+

1

(ė±±α;j(x)⊗ e±∓α;j(y) + e±±α;j(x)⊗ ė±∓α;j(y)).

Expansions of Q(x) and ad−1
J δQ(x).

• One can expand any generic element F (x) of the phase space M over each of
the complete sets of ‘squared solutions’:

F (x) =
∑

α∈∆+
1

(F+
−α(x)E−α + F−α (x)Eα).
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F (x) =
1
π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
e+

α (x, λ)γ+
F ;−α(λ)− e−−α(x, λ)γ−F ;α(λ)

)

− 2i
N∑

j=1

∑
α∈∆+

1

(Z+
F ;α,j(x) + Z−F ;α,j(x)),

F (x) = −1
π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
e+
−α(x, λ)γ̃+

F ;α(λ)− e−α (x, λ)γ̃−F ;−α(λ)
)

+ 2i
N∑

j=1

∑
α∈∆+

1

(Z̃+
F ;α,j(x) + Z̃−F ;α,j(x)),

γ±F ;α(λ) =
[[

e±±α(y, λ), F (y)
]]
, γ̃±F ;α(λ) =

[[
e±∓α(y, λ), F (y)

]]
,

Z±F ;j(x) = Res
λ=λ±j

e±∓α(x, λ)γ±F ;∓α(λ), Z̃±F ;j(x) = Res
λ=λ+

j

e±±α(x, λ)γ+
F ;±α(λ),
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• Example 1 Take F (x) ≡ Q(x):

Q(x) = − i
π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
τ+
α (λ)e+

α (x, λ)− τ−α (λ)e−−α(x, λ)
)

− 2
N∑

j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

τ+
α e+

α (x, λ) + Res
λ=λ−j

τ−α e−−α(x, λ)

)
,

Q(x) =
i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
ρ+

α (λ)e′,+−α(x, λ)− ρ−α (λ)e′,−α (x, λ)
)

+ 2
N∑

j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

ρ+
αe′,+α (x, λ) + Res

λ=λ−j

ρ−αe′,−α (x, λ)

)
,
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• Example 2 Take F (x) ≡ ad−1
J δQ(x):

ad−1
J δQ(x) =

i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
δτ+

α (λ)e+
α (x, λ) + δτ−α (λ)e−−α(x, λ)

)

+ 2
N∑

j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

δτ+
α e+

α (x, λ)− Res
λ=λ−j

δτ−α e−−α(x, λ)

)
,

ad−1
J δQ(x) =

i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
δρ+

α (λ)e′,+−α(x, λ) + δρ−α (λ)e′,−α (x, λ)
)

− 2
N∑

j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

δρ+
αe′,+−α(x, λ)− Res

λ=λ−j

δρ−αe′,−α (x, λ)

)
.
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• Example 3 Take F (x) ≡ ad−1
J

dQ
dt :

ad−1
J

dQ

dt
=
i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
dτ+

α

dt
e+

α (x, λ) +
dτ−α
dt

e−−α(x, λ)
)

+ 2
N∑

j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

dτ+
α

dt
e+

α (x, λ)− Res
λ=λ−j

dτ−α
dt

e−−α(x, λ)

)
,

ad−1
J

dQ

dt
=
i

π

∫ ∞

−∞
dλ

∑
α∈∆+

1

(
dρ+

α

dt
e′,+−α(x, λ) +

dρ−α
dt

e′,−α (x, λ)
)

− 2
N∑

j=1

∑
α∈∆+

1

(
Res
λ=λ+

j

dρ+
α

dt
e′,+−α(x, λ)− Res

λ=λ−j

dρ−α
dt

e′,−α (x, λ)

)
.
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5. Hamiltonian formulation

Integrals of motion:

• One can use any of the matrix elements of m±1 (λ) and m±
2 (λ) as generating

functional of integrals of motion of our model.

Generically such integrals would have non-local densities and will not be in
involution.

he principal series of integrals is generated by m±1 (λ):

± lnm±1 =
∞∑

k=1

Ikλ
−k.
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• The integrals of motion as functionals of Q(x):

Is =
1
s

∫ ∞

−∞
dx

∫ x

±∞
dy
〈
[J,Q(y)],Λs

±Q(x)
〉
.

Using the explicit form of Λ±:

Λ±Q = iad−1
J

dQ

dx
= i

dQ+

dx
− i

dQ−

dx
,

Λ2
±Q = −d

2Q

dx2
+
[
Q+ −Q−, [Q+, Q−]

]
,

Λ3
±Q = −id

3Q+

dx3
+ i

d3Q−

dx3
+ 3i

[
Q+, [Q+

x , Q
−]
]
+ 3i

[
Q−, [Q+, Q−x ]

]
,

where

Q+(x, t) = (~q(x, t) · ~E+
1 ), Q−(x, t) = (~p(x, t) · ~E−1 ).
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one can get explicit formulas for Is:

I1 = −i
∫ ∞

−∞
dx 〈Q+(x), Q−(x)〉,

I2 =
1
2

∫ ∞

−∞
dx
(
〈Q+

x (x), Q−(x)〉 − 〈Q+(x), Q−x (x)〉
)
,

I3 = i

∫ ∞

−∞
dx

(
−〈Q+

x (x), Q−x (x)〉+
1
2
〈[Q+(x), Q−(x)], [Q+(x), Q−(x)]〉

)
.

iI1 can be interpreted as the density of the particles,

I2 is the momentum,

−iI3 is the Hamiltonian of the MNLS equations.
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Indeed, the Hamiltonian equations of motion provided by H(0) = −iI3 with
the Poissson brackets

{qk(y, t), pj(x, t)} = iδkjδ(x− y),

• The above Poisson brackets are dual to the canonical symplectic form:

Ω0 = i

∫ ∞

−∞
dx tr (δ~p(x) ∧ δ~q(x))

=
1
i

∫ ∞

−∞
dx tr

(
ad−1

J δQ(x) ∧ [J, ad−1
J δQ(x)

)
=

1
i

[[
ad−1

J δQ(x)∧
′
ad−1

J δQ(x)
]]
,
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• The symplectic form through the scattering data:

Ω0 =
1
πi

∫ ∞

−∞
dλ
(
Ω+

0 (λ)− Ω−0 (λ)
)

− 2
N∑

j=1

(
Res
λ=λ+

j

Ω+
0 (λ) + Res

λ=λ−j

Ω−0 (λ)

)
,

Ω±0 (λ) =
∑

α,γ∈∆+
1

δτ±(λ)D±α,γ ∧ δρ±γ , D±α,γ =
〈
D̂±E∓γD

±(λ)E±α

〉
,

• The classicalR-matrix approach [Faddeev;Takhtajan;1986], [Fordy,Kulish;1983]
is an effective method to determine the generating functionals of local integrals
of motion which are in involution.

• From it there follows that such integrals are generated by expanding lnm±k (λ)
over the inverse powers of λ [Gerdjikov;1987].
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Here m±k (λ) are the principal minors of T (λ); in our case

m+
1 (λ) = a+

11(λ), m+
2 (λ) = det a+(λ),

m−1 (λ) = a−22(λ), m−2 (λ) = det a−(λ).

– If we consider

lnm+
k (λ) =

∞∑
s=1

λ−kI(k)
s ,

then one can prove that the densities of I
(k)
s are local in Q(x, t).

– The fact that [Gerdjikov;1987]:

{m±k (λ),m±j (µ)} = 0, for k, j = 1, 2,

and for all λ, µ ∈ C± allow one to conclude that {I(k)
s , I

(j)
p } = 0 for all

k, j = 1, 2 and s, p ≥ 1.
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• In particular, the Hamiltonian of our model is proportional to I
(2)
3 , i.e.

H = 8iI(2)
3 .
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6. Conclusions

• A special version of the models describing F = 1 and F = 2 spinor Bose-
Einstein condensates is integrable by the ISM. The corresponding Lax pair is
on BD.I. ' SO(2r + 1)/SO(2)× SO(2r− 1) - symmetric space.

• For a generic hyperfine spin F , the dynamics within the mean field theory is
described by the 2F+1 component Gross-Pitaevskii equation in one dimension.

• If all the spin dependent interactions vanish and only intensity interaction exists,
the multi-component Gross-Pitaevskii equation in one dimension is equivalent
to the vector nonlinear Schrödinger equation with 2F + 1 components [S. V.
Manakov;1974].

• One can also treat generalized Zakharov–Shabat systems related to other
symmetric spaces.
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• For all these systems of equations one can construct soliton solutions, prove
completeness of ‘squared solutions’ etc.

• Another interesting and still open problem is the analysis of the soliton
interactions in spinor Bose-Einstein condensates.
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Thank you!
grah@inrne.bas.bg
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